1
|
Ermitão T, Gouveia CM, Bastos A, Russo AC. Recovery Following Recurrent Fires Across Mediterranean Ecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e70013. [PMID: 39726993 DOI: 10.1111/gcb.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
In fire-prone regions such as the Mediterranean biome, fire seasons are becoming longer, and fires are becoming more frequent and severe. Post-fire recovery dynamics is a key component of ecosystem resilience and stability. Even though Mediterranean ecosystems can tolerate high exposure to extreme temperatures and recover from fire, changes in climate conditions and fire intensity or frequency might contribute to loss of ecosystem resilience and increase the potential for irreversible changes in vegetation communities. In this study, we assess the recovery rates of burned vegetation after recurrent fires across Mediterranean regions globally, based on remotely sensed Enhanced Vegetation Index (EVI) data, a proxy for vegetation status, from 2001 to 2022. Recovery rates are quantified through a statistical model of EVI time-series. This approach allows resolving recovery dynamics in time and space, overcoming the limitations of space-for-time approaches typically used to study recovery dynamics through remote sensing. We focus on pixels burning repeatedly over the study period and evaluate how fire severity, pre-fire vegetation greenness, and post-fire climate conditions modulate vegetation recovery rates of different vegetation types. We detect large contrasts between recovery rates, mostly explained by regional differences in vegetation type. Particularly, needle-leaved forests tend to recover faster following the second event, contrasting with shrublands that tend to recover faster from the first event. Our results also show that fire severity can promote a faster recovery across forested ecosystems. An important modulating role of pre-fire fuel conditions on fire severity is also detected, with pixels with higher EVI before the fire resulting in stronger relative greenness loss. In addition, post-fire climate conditions, particularly air temperature and precipitation, were found to modulate recovery speed across all regions, highlighting how direct impacts of fire can compound with impacts from climate anomalies in time and likely destabilise ecosystems under changing climate conditions.
Collapse
Affiliation(s)
- Tiago Ermitão
- Faculdade de Ciências, Instituto Dom Luiz, Universidade de Lisboa, Lisbon, Portugal
- Instituto Português do Mar e da Atmosfera, IPMA, Lisbon, Portugal
| | - Célia M Gouveia
- Faculdade de Ciências, Instituto Dom Luiz, Universidade de Lisboa, Lisbon, Portugal
- Instituto Português do Mar e da Atmosfera, IPMA, Lisbon, Portugal
| | - Ana Bastos
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
- Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany
| | - Ana C Russo
- Faculdade de Ciências, Instituto Dom Luiz, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory TERRA, CEF - Forest Research Centre, School of Agriculture, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
2
|
Rodrigues MS, Dias LF, Nunes JP. Impact of nature-based solutions on sustainable development goals in Mediterranean agroecosystems: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123071. [PMID: 39476663 DOI: 10.1016/j.jenvman.2024.123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Mediterranean agroecosystems' vulnerability to hydroclimatic extremes threatens their resilience and sustainability. Nature-based Solutions present a sustainable strategy to address global challenges. This meta-analysis of 70 studies developed in Mediterranean climates identified solutions to improve soil health and water quality in agroecosystems by estimating their effects on soil organic matter, organic carbon, water, erosion, and Kjeldahl nitrogen, total nitrogen, nitrate, total phosphorus, phosphate, and suspended solids, respectively. Using meta-regression, we analysed how the interaction with biophysical conditions (e.g., soil texture and irrigation practices for soil health and macrophyte species and temperature for water quality) drives the effects of Nature-based Solutions. The results indicate that these solutions can improve soil health and water quality, supporting the achievement of land and water Sustainable Development Goals. Among all the options considered for rehabilitating land ecosystems, afforestation led to significant increases in soil organic carbon up to 137%. Of all tillage practices tested, eliminating soil disturbance combined with using cover crops and mulching revealed the potential to counteract agricultural land degradation, showing significant reductions in erosion as high as 98%. The individual application of organic inputs showed the potential to reverse ongoing agricultural soil degradation trends. Applying olive mill wastewater was associated with a significant increase of 249\% in soil organic matter. However, applying manure compost in no-tilled plots with herbaceous cover reduced the soil water content at field capacity by 46\%.Constructed wetlands have shown the most significant results in improving water quality by reducing pollutants and contributing to protecting and restoring aquatic ecosystems. Polycultural systems with horizontal subsurface flow reduced Kjeldahl nitrogen by 9%, nitrates and phosphorus by 3%, and total suspended solids by 10%. However, in continuous aerated systems, nitrate levels increased by 36%. The reduction in total nitrogen in subsurface vertical flow systems was 11%, while surface flow wetlands with two macrophyte species reduced total suspended solids by 6%. Implementing Nature-based Solutions in Mediterranean agroecosystems depended on biophysical conditions, highlighting the need for site-specific adaptation based on local conditions and objectives. In a global change scenario, mainstreaming these solutions as sustainable land and water management practices is vital for enhancing the resilience and sustainability of Mediterranean agroecosystems, providing ecosystem services beyond soil health and water quality, including climate change mitigation, biodiversity protection and human well-being.
Collapse
Affiliation(s)
- Miguel Silva Rodrigues
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, 1749-016, Portugal.
| | - Luís Filipe Dias
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, 1749-016, Portugal.
| | - João Pedro Nunes
- Soil Physics and Land Management Group, Wageningen University and Research, P.O. Box 9101, 6700 HB, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Cardozo GA, Volaire F, Chapon P, Barotin C, Barkaoui K. Can we identify tipping points of resilience loss in Mediterranean rangelands under increased summer drought? Ecology 2024; 105:e4383. [PMID: 39054896 DOI: 10.1002/ecy.4383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/15/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Mediterranean ecosystems are predicted to undergo longer and more intense summer droughts. The mechanisms underlying the response of herbaceous communities to such drier environments should be investigated to identify the resilience thresholds of Mediterranean rangelands. A 5-year experiment was conducted in deep and shallow soil rangelands of southern France. A rainout shelter for 75 days in summer imposed drier and warmer conditions. Total soil water content was measured monthly to model available daily soil water. Aboveground net primary production (ANPP), forage quality, and the proportion of graminoids in ANPP were measured in spring and autumn. Plant senescence and plant cover were assessed in summer and spring, respectively. The experimental years were among the driest ever recorded at the site. Therefore, manipulated summer droughts were drier than long-term ambient conditions. Interactions between treatment, community type, and experimental year were found for most variables. In shallow soil communities, spring plant cover decreased markedly with time. This legacy effect, driven by summer plant mortality and the loss of perennial graminoids, led to an abrupt loss of resilience when the extreme water stress index exceeded 37 mm 10 day-1, characterized by a reduction of spring plant cover below 50% and a decreased ANPP in rainy years. Conversely, the ANPP of deep soil communities remained unaffected by increased summer drought, although the presence of graminoids increased and forage nutritive value decreased. This study highlights the role of the soil water reserve of Mediterranean plant communities in modulating ecosystem responses to chronically intensified summer drought. Communities on deep soils were resilient, but communities on shallow soils showed a progressive, rapid, and intense degradation associated with a loss of resilience capacity. Notably, indexes of extreme stress were a better indicator of tipping points than indexes of integrated annual stress. Considering the role of soil water availability in other herbaceous ecosystems should improve the ability to predict the resilience of plant communities under climate change.
Collapse
Affiliation(s)
- Gerónimo A Cardozo
- CEFE, Univ Montpellier, CNRS, EPHE, INRAE, IRD, Montpellier, France
- Instituto Nacional de Investigación Agropecuaria (INIA), Área de Pasturas y Forrajes, Estación Experimental INIA Treinta y Tres, Treinta y Tres, Uruguay
| | - Florence Volaire
- CEFE, Univ Montpellier, CNRS, EPHE, INRAE, IRD, Montpellier, France
| | - Pascal Chapon
- CEFE, Univ Montpellier, CNRS, EPHE, INRAE, IRD, Montpellier, France
| | | | - Karim Barkaoui
- CIRAD, UMR AMAP, Montpellier, France
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| |
Collapse
|
4
|
Hidalgo-Galvez MD, Barkaoui K, Volaire F, Matías L, Cambrollé J, Fernández-Rebollo P, Carbonero MD, Pérez-Ramos IM. Can trees buffer the impact of climate change on pasture production and digestibility of Mediterranean dehesas? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155535. [PMID: 35489515 DOI: 10.1016/j.scitotenv.2022.155535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Sustainability and functioning of silvopastoral ecosystems are being threatened by the forecasted warmer and drier environments in the Mediterranean region. Scattered trees of these ecosystems could potentially mitigate the impact of climate change on herbaceous plant community but this issue has not yet tested experimentally. We carried out a field manipulative experiment of increased temperature (+2-3 °C) using Open Top Chambers and rainfall reduction (30%) through rain-exclusion shelters to evaluate how net primary productivity and digestibility respond to climate change over three consecutive years, and to test whether scattered trees could buffer the effects of higher aridity in Mediterranean dehesas. First, we observed that herbaceous communities located beneath tree canopy were less productive (351 g/m2) than in open grassland (493 g/m2) but had a higher digestibility (44% and 41%, respectively), likely promoted by tree shade and the higher soil fertility of this habitat. Second, both habitats responded similarly to climate change in terms of net primary productivity, with a 33% increase under warming and a 13% decrease under reduced rainfall. In contrast, biomass digestibility decreased under increased temperatures (-7.5%), since warming enhanced the fiber and lignin content and decreased the crude protein content of aerial biomass. This warming-induced effect on biomass digestibility only occurred in open grasslands, suggesting a buffering role of trees in mitigating the impact of climate change. Third, warming did not only affect these ecosystem processes in a direct way but also indirectly via changes in plant functional composition. Our findings suggest that climate change will alter both the quantity and quality of pasture production, with expected warmer conditions increasing net primary productivity but at the expense of reducing digestibility. This negative effect of warming on digestibility might be mitigated by scattered trees, highlighting the importance of implementing strategies and suitable management to control tree density in these ecosystems.
Collapse
Affiliation(s)
- Maria Dolores Hidalgo-Galvez
- Institute of Natural Resources and Agrobiology of Sevilla (IRNAS-CSIC), 10 Reina Mercedes Avenue, 41012 Seville, Spain; Integrated Biology Doctoral Program, University of Seville, 6 Reina Mercedes Avenue, 41012 Seville, Spain.
| | - Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France; ABSys, University of Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - Florence Volaire
- Centre d'Écologie Fontionnelle et Évolutive de Montpellier (CEFE-CNRS), 1919 Route de Mende, 34293 Montpellier cedex 5, France.
| | - Luis Matías
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, 6 Reina Mercedes Avenue, 41012 Seville, Spain.
| | - Jesús Cambrollé
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, 6 Reina Mercedes Avenue, 41012 Seville, Spain.
| | - Pilar Fernández-Rebollo
- Department of Forestry Engineering ETSIAM, School of Agricultural and Forestry Engineering ETSIAM, University of Córdoba, 14071 Córdoba, Spain.
| | - Maria Dolores Carbonero
- Department of Agricultural Production, Institute of Agricultural and Fishing Research and Education (IFAPA), km. 15, El Viso Road, 14270 Hinojosa del Duque, Córdoba, Spain.
| | - Ignacio Manuel Pérez-Ramos
- Institute of Natural Resources and Agrobiology of Sevilla (IRNAS-CSIC), 10 Reina Mercedes Avenue, 41012 Seville, Spain.
| |
Collapse
|
5
|
Han ZQ, Liu T, Zhao WX, Wang HY, Sun QM, Sun H, Li BL. A new species abundance distribution model including the hydrological niche differentiation in water-limited ecosystems. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Han ZQ, Liu T, Wang T, Liu HF, Hao XR, Ouyang YN, Zheng B, Li BL. Quantification of water resource utilization efficiency as the main driver of plant diversity in the water-limited ecosystems. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.108974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Lv X, He Q, Zhou G. Contrasting responses of steppe Stipa ssp. to warming and precipitation variability. Ecol Evol 2019; 9:9061-9075. [PMID: 31463004 PMCID: PMC6706196 DOI: 10.1002/ece3.5452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/11/2022] Open
Abstract
Climate change, characterized by warming and precipitation variability, restricted the growth of plants in arid and semiarid areas, and various functional traits are impacted differently. Comparing responses of functional traits to warming and precipitation variability and determining critical water threshold of dominate steppe grasses from Inner Mongolia facilitates the identification and monitoring of water stress effects. A combination of warming (ambient temperature, +1.5°C and +2.0°C) and varying precipitation (-30%, -15%, ambient, +15%, and +30%) manipulation experiments were performed on four Stipa species (S. baicalensis, S. bungeana, S. grandis, and S. breviflora) from Inner Mongolia steppe. The results showed that the functional traits of the four grasses differed in their responses to precipitation, but they shared common sensitive traits (root/shoot ratio, R/S, and specific leaf area; SLA) under ambient temperature condition. Warming increased the response of the four grasses to changing precipitation, and these differences in functional traits resulted in changes to their total biomass, with leaf area, SLA, and R/S making the largest contributions. Critical water thresholds of the four grasses were identified, and warming led to their higher optimum precipitation requirements. The four steppe grasses were able to adapt better to mild drought (summer precipitation decreased by 12%-28%) when warming 1.5°C rather than 2.0°C. These results indicated that if the Paris Agreement to limit global warming to 1.5°C will be accomplished, this will increase the probability for sustained viability of the Stipa steppes in the next 50-100 years.
Collapse
Affiliation(s)
- Xiaomin Lv
- State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
| | - Qijin He
- College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Guangsheng Zhou
- State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
- Collaborative Innovation Center on Forecast Meteorological Disaster Warning and AssessmentNanjing University of Information Science & TechnologyNanjingChina
| |
Collapse
|