1
|
Sikdar D, Shahir A, Mandal S. Evaluating the global sea snake diversity and distribution under climate change scenario. MARINE ENVIRONMENTAL RESEARCH 2025; 207:107055. [PMID: 40085979 DOI: 10.1016/j.marenvres.2025.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Anthropogenically accelerated climate change has wreaked havoc on marine ecosystems, particularly affecting marine reptiles such as sea snakes. These reptiles are highly sensitive to climate change induced coral reef degradation and environmental fluctuations, leading to habitat expansion and increased human-sea snake interactions. Despite this, till date no comprehensive investigation of global sea snake diversity and distribution has been conducted. In this study, we used MaxEnt Species Distribution Modelling (SDM) to assess effects of climate change on sea snake distribution from 1993 to 2024. This analysis integrates occurrence data sourced from exhaustive literature reviews and biogeographic databases with environmental predictors like seawater temperature, salinity, and chlorophyll a concentration. The study identifies 74 species across 11 genera and 3 families. Among 14 biogeographic habitats examined, the South Pacific and Indian Oceans exhibit highest species richness, while the Atlantic Ocean shows the lowest. Notably, species in the Bay of Bengal and Arafura Sea demonstrate significant taxonomic distinctness. Furthermore, our findings reveal a substantial expansion of sea snake habitats from equatorial to temperate regions, primarily driven by increase in seawater temperature. Optimal habitat suitability is associated with temperatures of approximately 30 °C, chlorophyll a concentration of around 0.3 mg m-3, and salinity levels between 35 and 40 g L-1. These insights into sea snake diversity and distributional shifts induced by global climate change are critical for formulating evidence-based management strategies, including implementation of sustainable fishing practices, preservation of critical habitats, and establishment of rigorous bycatch mitigation protocols to ensure conservation of these ecologically significant marine reptiles.
Collapse
Affiliation(s)
- Debosmita Sikdar
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Ahmed Shahir
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India.
| |
Collapse
|
2
|
Spatial ecology, activity patterns, and habitat use by giant pythons (Simalia amethistina) in tropical Australia. Sci Rep 2022; 12:5274. [PMID: 35347214 PMCID: PMC8960824 DOI: 10.1038/s41598-022-09369-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
Although giant snakes are abundant in some tropical forests, their ecology is far less well-known than for smaller species of snakes in cooler climates. Information on spatial ecology can clarify management issues such as the sizes and types of habitats needed for conservation. We radio-tracked 27 scrub pythons (Simalia amethistina; snout-vent lengths 2.02 to 3.70 m) in Cape York, near the northeastern tip of Australia, for a mean period of 426 days (up to 1001 days) per snake. Home ranges were larger in males than females (means 0.60 vs. 0.28 km2) and overlapped considerably among individuals. All snakes used rainforest habitat, but seasonal shifts into open woodland were common. Snakes were active primarily by night, with larger snakes hunting less of the time overall, and more often by day. Hunting behaviour was seen more often during the wet season than the dry season. Average daily displacement was < 10 m, typically involving a shift from diurnal refuge to nocturnal ambush-site. A reliance on sit-and-wait predation results in small home ranges and limited movements, despite the large body size of this species.
Collapse
|
3
|
Bessesen B, González‐Suárez M. Safe from sunburn: The divergent diel pattern of a Hydrophis sea snake. Ecol Evol 2022; 12:e8436. [PMID: 35127005 PMCID: PMC8796931 DOI: 10.1002/ece3.8436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
Diel activity patterns are an important aspect of wildlife ecology and evolution and provide valuable information for conservation and monitoring, yet for many species, activity patterns remain unstudied and may be presumed to mirror related taxa. Here, we describe the distinct diel patterns of an endemic population of venomous sea snakes Hydrophis platurus xanthos inhabiting a narrow range (circa 320 km2) in Golfo Dulce, Costa Rica. To investigate, we conducted a systematic visual survey over five 24-h cycles and evaluated 339 h of previously obtained sighting data from different studies spanning a decade. While sporadic diurnal surfacing does occur, mostly for respiration, our observations revealed marked crepuscular peaks with regular surfacing through the night. We also report on observed surface behaviors that were also found to vary in frequency at different phases of the photoperiodic cycle. In particular, we show feeding as more common at night. Hydrophis platurus xanthos has developed a circadian rhythm that differs noticeably from its taxonomic parent (H. p. platurus is reported as diurnal across its Indo-Pacific range), and no congeners have been categorized as crepuscular. Our work thus contributes to the ecological knowledge of this evolutionarily distinct marine elapid and offers insights into the potential role of environmental conditions in shaping animal activity.
Collapse
Affiliation(s)
- Brooke Bessesen
- Ecology and Evolutionary BiologyUniversity of ReadingReadingUK
| | | |
Collapse
|
4
|
Ito K, Higginson AD, Ruxton GD, Papastamatiou YP. Incorporating thermodynamics in predator-prey games predicts the diel foraging patterns of poikilothermic predators. J Anim Ecol 2021; 91:527-539. [PMID: 34652820 DOI: 10.1111/1365-2656.13608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
Models of foraging behaviour typically assume that prey do not adapt to temporal variation in predation risk, such as by avoiding foraging at certain times of the day. When this behavioural plasticity is considered-such as in predator-prey games-the role of abiotic factors is usually ignored. An abiotic factor that exerts strong influence on the physiology and behaviour of many animals is ambient temperature, although it is often ignored from game models as it is implicitly assumed that both predators and prey are homothermic. However, poikilotherms' performance may be reduced in cold conditions due to reduced muscle function, limiting the prey-capture ability of predators and the predator-avoidance and foraging abilities of prey. Here, we use a game-theoretic predator-prey model in which diel temperature changes influence foraging gains and costs to predict the evolutionarily stable diel activity of predators. Our model predicts the range of patterns observed in nature, including nocturnal, diurnal, crepuscular and a previously unexplained post-sunset crepuscular pattern observed in some sharks. In general, smaller predators are predicted to be more diurnal than larger ones. The safety of prey when not foraging is critical, explaining why predators in coral reef systems (with safe refuges) may often have different foraging patterns to pelagic predators. We make a range of testable predictions that will enable the further evaluation of this theoretical framework for understanding diel foraging patterns in poikilotherms.
Collapse
Affiliation(s)
- Koichi Ito
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Andrew D Higginson
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Graeme D Ruxton
- School of Biology, University of St. Andrews, St Andrews, UK
| | - Yannis P Papastamatiou
- Institute of the Environment, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| |
Collapse
|
5
|
Shuert CR, Marcoux M, Hussey NE, Watt CA, Auger-Méthé M. Assessing the post-release effects of capture, handling and placement of satellite telemetry devices on narwhal (Monodon monoceros) movement behaviour. CONSERVATION PHYSIOLOGY 2021; 9:coaa128. [PMID: 33659061 PMCID: PMC7905160 DOI: 10.1093/conphys/coaa128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 06/08/2023]
Abstract
Animal-borne telemetry devices have become a popular and valuable means for studying the cryptic lives of cetaceans. Evaluating the effect of capture, handling and tagging procedures remains largely unassessed across species. Here, we examine the effect of capture, handling and tagging activities on an iconic Arctic cetacean, the narwhal (Monodon monoceros), which has previously been shown to exhibit an extreme response to extended capture and handling. Using accelerometry-derived metrics of behaviour, including activity level, energy expenditure and swimming activity, we quantify the post-release responses and time to recovery of 19 individuals following capture and tagging activities considering the intrinsic covariates of sex and individual size and the extrinsic covariates of handling time and presence of a 'bolt-on' satellite telemetry device. From accelerometer-derived behaviour, most narwhals appeared to return to mean baseline behaviour (recovery) within 24 hours after release, which was supported by longer-term measures of diving data. None of the covariates measured, however, had an effect on the time individuals took to recover following release. Using generalized additive models to describe changes in behaviour over time, we found handling time to be a significant predictor of activity levels, energy expenditure and swimming behaviour following release. Individuals held for the longest period (>40 min) were found to display the largest effect in behaviour immediately following release with respect to swimming behaviour and activity levels. We also found some support for relationships between activity levels, energy expenditure and swimming activity and two other covariates: sex and the attachment of a bolt-on configuration satellite tags. Our results indicate that narwhals recover relatively quickly following capture, handling and tagging procedures, but we suggest that researchers should minimize handling time and further investigation is needed on how to mitigate potential effects of bolt-on satellite tags in these sensitive species.
Collapse
Affiliation(s)
- Courtney R Shuert
- Department of Integrative Biology, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Marianne Marcoux
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Cortney A Watt
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Marie Auger-Méthé
- Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Institute for the Oceans & Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Goiran C, Brown GP, Shine R. The behaviour of sea snakes (Emydocephalus annulatus) shifts with the tides. Sci Rep 2020; 10:11346. [PMID: 32647251 PMCID: PMC7347856 DOI: 10.1038/s41598-020-68342-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Tidal cycles are known to affect the ecology of many marine animals, but logistical obstacles have discouraged behavioural studies on sea snakes in the wild. Here, we analyse a large dataset (1,445 observations of 126 individuals) to explore tidally-driven shifts in the behaviour of free-ranging turtle-headed sea snakes (Emydocephalus annulatus, Hydrophiinae) in the Baie des Citrons, New Caledonia. Snakes tended to move into newly-inundated areas with the rising tide, and became more active (e.g. switched from inactivity to mate-searching and courting) as water levels rose. However, the relative use of alternative habitat types was largely unaffected by tidal phase.
Collapse
Affiliation(s)
- Claire Goiran
- LabEx Corail and ISEA, Université de La Nouvelle-Calédonie, BP R4, 98851, Nouméa Cedex, New Caledonia
| | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
7
|
Lear KO, Morgan DL, Whitty JM, Whitney NM, Byrnes EE, Beatty SJ, Gleiss AC. Divergent field metabolic rates highlight the challenges of increasing temperatures and energy limitation in aquatic ectotherms. Oecologia 2020; 193:311-323. [PMID: 32435843 DOI: 10.1007/s00442-020-04669-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
Environments where extreme temperatures and low productivity occur introduce energetically challenging circumstances that may be exacerbated by climate change. Despite the strong link between metabolism and temperature in ectotherms, there is a paucity of data regarding how the metabolic ecology of species affects growth and fitness under such circumstances. Here, we integrated data describing field metabolic rates and body condition of two sympatric species of ectotherms with divergent lifestyles, the benthic freshwater (or largetooth) sawfish (Pristis pristis) and the epipelagic bull shark (Carcharhinus leucas) occurring in the Fitzroy River, Western Australia, to test the implications of their differing metabolic ecologies for vulnerability to rising temperatures. Over a temperature range of 18-34 °C, sawfish had lower field metabolic rates (63-187 mg O2 kg-0.86 h-1) and lower temperature sensitivity of metabolic rates [activation energy (EA) = 0.35 eV] than bull sharks (187-506 mg O2 kg-0.86 h-1; EA = 0.48 eV). Both species lost body mass throughout the dry season, although bull sharks significantly more (0.17% mass loss day-1) than sawfish (0.07% mass loss day-1). Subsequent bioenergetics modelling showed that under future climate change scenarios, both species would reach potentially lethal levels of mass loss during dry season periods before the end of the century. These results suggest that ectotherms with low metabolic rates may be better suited to extreme environmental conditions, and that even small increases in temperature due to climate change could have substantial impacts on the ability of ectotherms to grow and survive in harsh conditions, including high temperatures and energy-limiting circumstances.
Collapse
Affiliation(s)
- Karissa O Lear
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia. .,Environment and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.
| | - David L Morgan
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Jeff M Whitty
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Nicholas M Whitney
- Anderson Cabot Center for Ocean Life, New England Aquarium, 1 Central Wharf, Boston, MA, 02110, USA
| | - Evan E Byrnes
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.,Environment and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Stephen J Beatty
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Adrian C Gleiss
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.,Environment and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| |
Collapse
|
8
|
Goiran C, Brown GP, Shine R. Niche partitioning within a population of sea snakes is constrained by ambient thermal homogeneity and small prey size. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blz206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
In many populations of terrestrial snakes, the phenotype of an individual (e.g. body size, sex, colour) affects its habitat use. One cause for that link is gape limitation, which can result in larger snakes eating prey that are found in different habitats. A second factor involves thermoregulatory opportunities, whereby individuals select habitats based upon thermal conditions. These ideas predict minimal intraspecific variation in habitat use in a species that eats small prey and lives in a thermally uniform habitat, such as the sea snake Emydocephalus annulatus, which feeds on tiny fish eggs and lives in inshore coral reefs. To test that prediction, we gathered data on water depths and substrate attributes for 1475 sightings of 128 free-ranging E. annulatus in a bay near Noumea, New Caledonia. Habitat selection varied among individuals, but with a preference for coral-dominated substrates. The body size and reproductive state of a snake affected its detectability in deep water, but overall habitat use was not linked to snake body size, colour morph, sex or pregnancy. A lack of ontogenetic shifts in habitat use allows extreme philopatry in E. annulatus, thereby reducing gene flow among populations and, potentially, delaying recolonization after local extirpation events.
Collapse
Affiliation(s)
- Claire Goiran
- LabEx Corail & ISEA, Université de la Nouvelle-Calédonie, Nouméa cedex, New Caledonia
| | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
9
|
Shuert CR, Pomeroy PP, Twiss SD. Coping styles in capital breeders modulate behavioural trade-offs in time allocation: assessing fine-scale activity budgets in lactating grey seals (Halichoerus grypus) using accelerometry and heart rate variability. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2783-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Balancing time allocation among competing behaviours is an essential part of energy management for all animals. However, trade-offs in time allocation may vary according to the sex of the individual, their age, and even underlying physiology. During reproduction, higher energetic demands and constrained internal resources place greater demand on optimizing these trade-offs insofar that small adjustments in time-activity may lead to substantial effects on an individual’s limited energy budget. The most extreme case is found in animals that undergo capital breeding, where individuals fast for the duration of each reproductive episode. We investigated potential underlying drivers of time-activity and describe aspects of trade-offs in time-activity in a wild, capital breeding pinniped, the grey seal Halichoerus grypus, during the lactation period. For the first time, we were able to access full 24-h activity budgets across the core duration of lactation as well as characterize how aspects of stress-coping styles influence time allocation through the use of animal-borne accelerometers and heart rate monitors in situ. We found that there was a distinct trade-off in time activity between time spent Resting and Alert (vigilance). This trade-off varied with the pup’s development, date, and maternal stress-coping style as indicated by a measure of heart rate variability, rMSSD. In contrast, time spent Presenting/Nursing did not vary across the duration of lactation given the variables tested. We suggest that while mothers balance time spent conserving resources (Resting) against time expending energy (Alert), they are also influenced by the inherent physiological drivers of stress-coping styles.
Significance statement
How animals apportion their time among different behaviours is key to their success. These trade-offs should be finely balanced to avoid unnecessary energy expenditure. Here, we examine how grey seal mothers balance their activity patterns during the short, but energetically demanding, period of pup-rearing. Animal-borne accelerometers provided a uniquely detailed and continuous record of activity during pup-rearing for 38 mothers. We also used heart rate monitors to provide measures of each individual’s stress-coping style. We found that mothers balance time Resting against remaining Alert while time Presenting/Nursing was largely independent of all factors measured. Stress-coping styles were found to drive the balancing and variation of all behaviours. This novel indication that differences in personality-like traits may drive whole activity budgets should be considered when assessing trade-offs in time allocation across a much wider variety of species.
Collapse
|
10
|
Pagano AM, Williams TM. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol Evol 2019; 9:4210-4219. [PMID: 31015999 PMCID: PMC6468055 DOI: 10.1002/ece3.5053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 01/27/2023] Open
Abstract
Measures of energy expenditure can be used to inform animal conservation and management, but methods for measuring the energy expenditure of free-ranging animals have a variety of limitations. Advancements in biologging technologies have enabled the use of dynamic body acceleration derived from accelerometers as a proxy for energy expenditure. Although dynamic body acceleration has been shown to strongly correlate with oxygen consumption in captive animals, it has been validated in only a few studies on free-ranging animals. Here, we use relationships between oxygen consumption and overall dynamic body acceleration in resting and walking polar bears Ursus maritimus and published values for the costs of swimming in polar bears to estimate the total energy expenditure of 6 free-ranging polar bears that were primarily using the sea ice of the Beaufort Sea. Energetic models based on accelerometry were compared to models of energy expenditure on the same individuals derived from doubly labeled water methods. Accelerometer-based estimates of energy expenditure on average predicted total energy expenditure to be 30% less than estimates derived from doubly labeled water. Nevertheless, accelerometer-based measures of energy expenditure strongly correlated (r 2 = 0.70) with measures derived from doubly labeled water. Our findings highlight the strengths and limitations in dynamic body acceleration as a measure of total energy expenditure while also further supporting its use as a proxy for instantaneous, detailed energy expenditure in free-ranging animals.
Collapse
Affiliation(s)
- Anthony M. Pagano
- Alaska Science CenterU.S. Geological SurveyAnchorageAlaska
- Present address:
Institute for Conservation ResearchSan Diego Zoo GlobalSan DiegoCalifornia
| | - Terrie M. Williams
- Department of Ecology & Evolutionary BiologyUniversity of California, Santa CruzSanta CruzCalifornia
| |
Collapse
|
11
|
Papastamatiou YP, Watanabe YY, Demšar U, Leos-Barajas V, Bradley D, Langrock R, Weng K, Lowe CG, Friedlander AM, Caselle JE. Activity seascapes highlight central place foraging strategies in marine predators that never stop swimming. MOVEMENT ECOLOGY 2018; 6:9. [PMID: 29951206 PMCID: PMC6011523 DOI: 10.1186/s40462-018-0127-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/28/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Central place foragers (CPF) rest within a central place, and theory predicts that distance of patches from this central place sets the outer limits of the foraging arena. Many marine ectothermic predators behave like CPF animals, but never stop swimming, suggesting that predators will incur 'travelling' costs while resting. Currently, it is unknown how these CPF predators behave or how modulation of behavior contributes to daily energy budgets. We combine acoustic telemetry, multi-sensor loggers, and hidden Markov models (HMMs) to generate 'activity seascapes', which combine space use with patterns of activity, for reef sharks (blacktip reef and grey reef sharks) at an unfished Pacific atoll. RESULTS Sharks of both species occupied a central place during the day within deeper, cooler water where they were less active, and became more active over a larger area at night in shallower water. However, video cameras on two grey reef sharks revealed foraging attempts/success occurring throughout the day, and that multiple sharks were refuging in common areas. A simple bioenergetics model for grey reef sharks predicted that diel changes in energy expenditure are primarily driven by changes in swim speed and not body temperature. CONCLUSIONS We provide a new method for simultaneously visualizing diel space use and behavior in marine predators, which does not require the simultaneous measure of both from each animal. We show that blacktip and grey reef sharks behave as CPFs, with diel changes in activity, horizontal and vertical space use. However, aspects of their foraging behavior may differ from other predictions of traditional CPF models. In particular, for species that never stop swimming, patch foraging times may be unrelated to patch travel distance.
Collapse
Affiliation(s)
- Yannis P. Papastamatiou
- Department of Biological Sciences, Florida International University, North Miami, Florida USA
| | - Yuuki Y. Watanabe
- National Institute of Polar Research, Tachikawa, Tokyo Japan
- Department of Polar Science, SOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Tokyo Japan
| | - Urška Demšar
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, Scotland UK
| | | | - Darcy Bradley
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, California USA
| | - Roland Langrock
- Department of Business Administration and Economics, Bielefeld University, Bielefeld, Germany
| | - Kevin Weng
- Department of Fisheries Science, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia USA
| | - Christopher G. Lowe
- Department of Biological Sciences, California State University Long Beach, Long Beach, California USA
| | - Alan M. Friedlander
- Department of Biology, University of Hawaii at Manoa, Honolulu, Hawaii USA
- Pristine Seas, National Geographic Society, Washington DC, USA
| | - Jennifer E. Caselle
- Marine Science Institute, University California Santa Barbara, Santa Barbara, California USA
| |
Collapse
|