1
|
Irvine LM, Lagerquist BA, Schorr GS, Falcone EA, Mate BR, Palacios DM. Ecological drivers of movement for two sympatric marine predators in the California current large marine ecosystem. MOVEMENT ECOLOGY 2025; 13:19. [PMID: 40102967 PMCID: PMC11917063 DOI: 10.1186/s40462-025-00542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND An animal's movement reflects behavioral decisions made to address ecological needs; specifically, that movement will become less directional in regions with high prey availability, indicating foraging behavior. In the marine realm, animal behavior occurs below the sea surface and is difficult to observe. We used an extensive satellite tagging dataset to explore how physical and biological habitat characteristics influence blue (Balaenoptera musculus) and fin (B. physalus) whale movement and foraging behavior in the California Current Ecosystem across four known bioregions. METHODS We fitted movement models to 14 years of blue whale satellite tracking data and 13 years of fin whale data to characterize their movement persistence, with higher move persistence values representing more directional movement and lower move persistence values representing less directional movement. Models were evaluated against a range of physical and biological environmental predictors to identify significant correlates of low move persistence (i.e., presumed intensified foraging behavior). We then used data from a subset of sensor-equipped tags that monitored vertical behavior (e.g., dive and feeding), in addition to movement, to test the relationship between vertical behavior and movement persistence. RESULTS Low move persistence was strongly correlated with shallower water depth and sea surface height for both species, with additional effects of chlorophyll-a concentration, vorticity and marine nekton biomass for blue whales. Data from sensor-equipped tags additionally showed that low move persistence occurred when whales made more numerous feeding dives. Temporal patterns of bioregion occupancy coincided with seasonal peaks in productivity. Most blue whale low-move-persistence movements occurred in the northern, nearshore bioregion with a late-season peak in productivity and were evenly distributed across all bioregions for fin whales. CONCLUSIONS We demonstrated that low move persistence is indicative of increased feeding behavior for both blue and fin whales. The environmental drivers of low move persistence were similar to those previously identified for survey-based species distribution models, linking environmental metrics to subsurface behavior. Occupancy and movement behavior patterns across bioregions indicate both species moved to exploit seasonal and spatial variability in productivity, with blue whales especially focusing on the bioregion of highest productivity during late summer and fall.
Collapse
Affiliation(s)
- Ladd M Irvine
- Marine Mammal Institute, Oregon State University, Newport, OR, USA.
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, USA.
| | - Barbara A Lagerquist
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, USA
| | | | | | - Bruce R Mate
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, USA
| | - Daniel M Palacios
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, USA
- Center for Coastal Studies, Provincetown, MA, USA
| |
Collapse
|
2
|
Savoca MS, Kumar M, Sylvester Z, Czapanskiy MF, Meyer B, Goldbogen JA, Brooks CM. Whale recovery and the emerging human-wildlife conflict over Antarctic krill. Nat Commun 2024; 15:7708. [PMID: 39256348 PMCID: PMC11387826 DOI: 10.1038/s41467-024-51954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
The Southern Ocean ecosystem has undergone extensive changes in the past two centuries driven by industrial sealing and whaling, climate change and commercial fishing. However, following the end of commercial whaling, some populations of whales in this region are recovering. Baleen whales are reliant on Antarctic krill, which is also the largest Southern Ocean fishery. Since 1993, krill catch has increased fourfold, buoyed by nutritional supplement and aquaculture industries. In this Perspective, we approximate baleen whale consumption of Antarctic krill before and after whaling to examine if the ecosystem can support both humans and whales as krill predators. Our back-of-the-envelope calculations suggest that current krill biomass cannot support both an expanding krill fishery and the recovery of whale populations to pre-whaling sizes, highlighting an emerging human-wildlife conflict. We then provide recommendations for enhancing sustainability in this region by reducing encounters with whales and bolstering the krill population.
Collapse
Affiliation(s)
- Matthew S Savoca
- Department of Oceans, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
| | - Mehr Kumar
- Department of Oceans, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Zephyr Sylvester
- Department of Environmental Studies, University of Colorado, Boulder, Boulder, CO, USA
| | - Max F Czapanskiy
- Department of Oceans, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Bettina Meyer
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Jeremy A Goldbogen
- Department of Oceans, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Cassandra M Brooks
- Department of Environmental Studies, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
3
|
Cole MR, Ware C, McHuron EA, Costa DP, Ponganis PJ, McDonald BI. Deep dives and high tissue density increase mean dive costs in California sea lions (Zalophus californianus). J Exp Biol 2023; 226:jeb246059. [PMID: 37345474 DOI: 10.1242/jeb.246059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Diving is central to the foraging strategies of many marine mammals and seabirds. Still, the effect of dive depth on foraging cost remains elusive because energy expenditure is difficult to measure at fine temporal scales in wild animals. We used depth and acceleration data from eight lactating California sea lions (Zalophus californianus) to model body density and investigate the effect of dive depth and tissue density on rates of energy expenditure. We calculated body density in 5 s intervals from the rate of gliding descent. We modeled body density across depth in each dive, revealing high tissue densities and diving lung volumes (DLVs). DLV increased with dive depth in four individuals. We used the buoyancy calculated from dive-specific body-density models and drag calculated from swim speed to estimate metabolic power and cost of transport in 5 s intervals during descents and ascents. Deeper dives required greater mean power for round-trip vertical transit, especially in individuals with higher tissue density. These trends likely follow from increased mean swim speed and buoyant hinderance that increasingly outweighs buoyant aid in deeper dives. This suggests that deep diving is either a 'high-cost, high-reward' strategy or an energetically expensive option to access prey when prey in shallow waters are limited, and that poor body condition may increase the energetic costs of deep diving. These results add to our mechanistic understanding of how foraging strategy and body condition affect energy expenditure in wild breath-hold divers.
Collapse
Affiliation(s)
- Mason R Cole
- Moss Landing Marine Laboratories, San Jose State University, 8272 Moss Landing Rd, Moss Landing, CA 95039, USA
| | - Colin Ware
- Center for Coastal and Ocean Mapping, University of New Hampshire, Durham, NH 03924, USA
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA 98105, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, Center for Marine Biodiversity and Biomedicine, 8655 Kennel Way, La Jolla, CA 92037, USA
| | - Birgitte I McDonald
- Moss Landing Marine Laboratories, San Jose State University, 8272 Moss Landing Rd, Moss Landing, CA 95039, USA
| |
Collapse
|
4
|
Kok ACM, Hildebrand MJ, MacArdle M, Martinez A, Garrison LP, Soldevilla MS, Hildebrand JA. Kinematics and energetics of foraging behavior in Rice's whales of the Gulf of Mexico. Sci Rep 2023; 13:8996. [PMID: 37268677 DOI: 10.1038/s41598-023-35049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
Rorqual foraging behavior varies with species, prey type and foraging conditions, and can be a determining factor for their fitness. Little is known about the foraging ecology of Rice's whales (Balaenoptera ricei), an endangered species with a population of fewer than 100 individuals. Suction cup tags were attached to two Rice's whales to collect information on their diving kinematics and foraging behavior. The tagged whales primarily exhibited lunge-feeding near the sea bottom and to a lesser extent in the water-column and at the sea surface. During 6-10 min foraging dives, the whales typically circled their prey before executing one or two feeding lunges. Longer duration dives and dives with more feeding-lunges were followed by an increase in their breathing rate. The median lunge rate of one lunge per dive of both animals was much lower than expected based on comparative research on other lunge-feeding baleen whales, and may be associated with foraging on fish instead of krill or may be an indication of different foraging conditions. Both animals spent extended periods of the night near the sea surface, increasing the risk for ship strike. Furthermore, their circling before lunging may increase the risk for entanglement in bottom-longline fishing gear. Overall, these data show that Rice's whale foraging behavior differs from other lunge feeding rorqual species and may be a significant factor in shaping our understanding of their foraging ecology. Efforts to mitigate threats to Rice's whales will benefit from improved understanding of patterns in their habitat use and fine-scale ecology.
Collapse
Affiliation(s)
- Annebelle C M Kok
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Maya J Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maria MacArdle
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anthony Martinez
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, National Marine Fisheries Service, Miami, FL, USA
| | - Lance P Garrison
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, National Marine Fisheries Service, Miami, FL, USA
| | - Melissa S Soldevilla
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, National Marine Fisheries Service, Miami, FL, USA
| | - John A Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
5
|
Brent AE, Buchholtz EA, Mansfield JH. Evolutionary assembly and disassembly of the mammalian sternum. Curr Biol 2023; 33:197-205.e2. [PMID: 36563692 DOI: 10.1016/j.cub.2022.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Evolutionary transitions are frequently associated with novel anatomical structures,1 but the origins of the structures themselves are often poorly known. We use developmental, genetic, and paleontological data to demonstrate that the therian sternum was assembled from pre-existing elements. Imaging of the perinatal mouse reveals two paired sternal elements, both composed primarily of cells with lateral plate mesoderm origin. Location, articulations, and development identify them as homologs of the interclavicle and the sternal bands of synapsid outgroups. The interclavicle, not previously recognized in therians,2 articulates with the clavicle and differs from the sternal bands in both embryonic HOX expression and pattern of skeletal maturation. The sternal bands articulate with the ribs in two styles, most clearly differentiated by their association with sternebrae. Evolutionary trait mapping indicates that the interclavicle and sternal bands were independent elements throughout most of synapsid history. The differentiation of rib articulation styles and the subdivision of the sternal bands into sternebrae were key innovations likely associated with transitions in locomotor and respiratory mechanics.3,4 Fusion of the interclavicle and the anterior sternal bands to form a presternum anterior to the first sternebra was a historically recent innovation unique to therians. Subsequent disassembly of the radically reduced sternum of mysticete cetaceans was element specific, reflecting the constraints that conserved developmental programs exert on composite structures.
Collapse
Affiliation(s)
- Ava E Brent
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA
| | - Emily A Buchholtz
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA.
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA
| |
Collapse
|
6
|
Field measurements reveal exposure risk to microplastic ingestion by filter-feeding megafauna. Nat Commun 2022; 13:6327. [PMID: 36319629 PMCID: PMC9626449 DOI: 10.1038/s41467-022-33334-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
Microparticles, such as microplastics and microfibers, are ubiquitous in marine food webs. Filter-feeding megafauna may be at extreme risk of exposure to microplastics, but neither the amount nor pathway of microplastic ingestion are well understood. Here, we combine depth-integrated microplastic data from the California Current Ecosystem with high-resolution foraging measurements from 191 tag deployments on blue, fin, and humpback whales to quantify plastic ingestion rates and routes of exposure. We find that baleen whales predominantly feed at depths of 50-250 m, coinciding with the highest measured microplastic concentrations in the pelagic ecosystem. Nearly all (99%) microplastic ingestion is predicted to occur via trophic transfer. We predict that fish-feeding whales are less exposed to microplastic ingestion than krill-feeding whales. Per day, a krill-obligate blue whale may ingest 10 million pieces of microplastic, while a fish-feeding humpback whale likely ingests 200,000 pieces of microplastic. For species struggling to recover from historical whaling alongside other anthropogenic pressures, our findings suggest that the cumulative impacts of multiple stressors require further attention.
Collapse
|
7
|
Gough WT, Cade DE, Czapanskiy MF, Potvin J, Fish FE, Kahane-Rapport SR, Savoca MS, Bierlich KC, Johnston DW, Friedlaender AS, Szabo A, Bejder L, Goldbogen JA. Fast and Furious: Energetic Tradeoffs and Scaling of High-Speed Foraging in Rorqual Whales. Integr Org Biol 2022; 4:obac038. [PMID: 36127894 PMCID: PMC9475666 DOI: 10.1093/iob/obac038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/30/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Although gigantic body size and obligate filter feeding mechanisms have evolved in multiple vertebrate lineages (mammals and fishes), intermittent ram (lunge) filter feeding is unique to a specific family of baleen whales: rorquals. Lunge feeding is a high cost, high benefit feeding mechanism that requires the integration of unsteady locomotion (i.e., accelerations and maneuvers); the impact of scale on the biomechanics and energetics of this foraging mode continues to be the subject of intense study. The goal of our investigation was to use a combination of multi-sensor tags paired with UAS footage to determine the impact of morphometrics such as body size on kinematic lunging parameters such as fluking timing, maximum lunging speed, and deceleration during the engulfment period for a range of species from minke to blue whales. Our results show that, in the case of krill-feeding lunges and regardless of size, animals exhibit a skewed gradient between powered and fully unpowered engulfment, with fluking generally ending at the point of both the maximum lunging speed and mouth opening. In all cases, the small amounts of propulsive thrust generated by the tail were unable to overcome the high drag forces experienced during engulfment. Assuming this thrust to be minimal, we predicted the minimum speed of lunging across scale. To minimize the energetic cost of lunge feeding, hydrodynamic theory predicts slower lunge feeding speeds regardless of body size, with a lower boundary set by the ability of the prey to avoid capture. We used empirical data to test this theory and instead found that maximum foraging speeds remain constant and high (∼4 m s–1) across body size, even as higher speeds result in lower foraging efficiency. Regardless, we found an increasing relationship between body size and this foraging efficiency, estimated as the ratio of energetic gain from prey to energetic cost. This trend held across timescales ranging from a single lunge to a single day and suggests that larger whales are capturing more prey—and more energy—at a lower cost.
Collapse
Affiliation(s)
- William T Gough
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - David E Cade
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - Max F Czapanskiy
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - Jean Potvin
- Saint Louis University , Saint Louis, MO 63103, USA
| | - Frank E Fish
- West Chester University , West Chester, PA 19383, USA
| | | | - Matthew S Savoca
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - K C Bierlich
- Oregon State University , Corvallis, OR 97331, USA
| | | | | | - Andy Szabo
- Alaska Whale Foundation , Sitka, AK, 99835, USA
| | - Lars Bejder
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa , Kaheohe, HI 96822, USA
- Department of Bioscience, Aarhus University , Aarhus 8000, Denmark
| | - Jeremy A Goldbogen
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| |
Collapse
|
8
|
Nichols RC, Cade DE, Kahane-Rapport S, Goldbogen J, Stimpert A, Nowacek D, Read AJ, Johnston DW, Friedlaender A. Intra-seasonal variation in feeding rates and diel foraging behaviour in a seasonally fasting mammal, the humpback whale. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211674. [PMID: 35814912 PMCID: PMC9257586 DOI: 10.1098/rsos.211674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/13/2022] [Indexed: 06/01/2023]
Abstract
Antarctic humpback whales forage in summer, coincident with the seasonal abundance of their primary prey, the Antarctic krill. During the feeding season, humpback whales accumulate energy stores sufficient to fuel their fasting period lasting over six months. Previous animal movement modelling work (using area-restricted search as a proxy) suggests a hyperphagic period late in the feeding season, similar in timing to some terrestrial fasting mammals. However, no direct measures of seasonal foraging behaviour existed to corroborate this hypothesis. We attached high-resolution, motion-sensing biologging tags to 69 humpback whales along the Western Antarctic Peninsula throughout the feeding season from January to June to determine how foraging effort changes throughout the season. Our results did not support existing hypotheses: we found a significant reduction in foraging presence and feeding rates from the beginning to the end of the feeding season. During the early summer period, feeding occurred during all hours at high rates. As the season progressed, foraging occurred mostly at night and at lower rates. We provide novel information on seasonal changes in foraging of humpback whales and suggest that these animals, contrary to nearly all other animals that seasonally fast, exhibit high feeding rates soon after exiting the fasting period.
Collapse
Affiliation(s)
- Ross C. Nichols
- Institute of Marine Sciences, Long Marine Laboratory, University of California, Santa Cruz. 115 McAllister Way, Santa Cruz, CA 95060, USA
| | - David E. Cade
- Department of Biology, Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
| | - Shirel Kahane-Rapport
- Department of Biology, Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
| | - Jeremy Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
| | - Alison Stimpert
- Moss Landing Marine Laboratories, San Jose State University, 8272 Moss Landing Road, Moss Landing, CA 95039, USA
| | - Douglas Nowacek
- Nicholas School of the Environment and Earth Sciences & Pratt School of Engineering, Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | - Andrew J. Read
- Nicholas School of the Environment and Earth Sciences, Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | - David W. Johnston
- Nicholas School of the Environment and Earth Sciences, Duke University Marine Laboratory, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | - Ari Friedlaender
- Institute of Marine Sciences, Long Marine Laboratory, University of California, Santa Cruz. 115 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
9
|
Optimal diving and oxygen use. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Social exploitation of extensive, ephemeral, environmentally controlled prey patches by supergroups of rorqual whales. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Savoca MS, Czapanskiy MF, Kahane-Rapport SR, Gough WT, Fahlbusch JA, Bierlich KC, Segre PS, Di Clemente J, Penry GS, Wiley DN, Calambokidis J, Nowacek DP, Johnston DW, Pyenson ND, Friedlaender AS, Hazen EL, Goldbogen JA. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 2021; 599:85-90. [PMID: 34732868 DOI: 10.1038/s41586-021-03991-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/01/2021] [Indexed: 11/09/2022]
Abstract
Baleen whales influence their ecosystems through immense prey consumption and nutrient recycling1-3. It is difficult to accurately gauge the magnitude of their current or historic ecosystem role without measuring feeding rates and prey consumed. To date, prey consumption of the largest species has been estimated using metabolic models3-9 based on extrapolations that lack empirical validation. Here, we used tags deployed on seven baleen whale (Mysticeti) species (n = 321 tag deployments) in conjunction with acoustic measurements of prey density to calculate prey consumption at daily to annual scales from the Atlantic, Pacific, and Southern Oceans. Our results suggest that previous studies3-9 have underestimated baleen whale prey consumption by threefold or more in some ecosystems. In the Southern Ocean alone, we calculate that pre-whaling populations of mysticetes annually consumed 430 million tonnes of Antarctic krill (Euphausia superba), twice the current estimated total biomass of E. superba10, and more than twice the global catch of marine fisheries today11. Larger whale populations may have supported higher productivity in large marine regions through enhanced nutrient recycling: our findings suggest mysticetes recycled 1.2 × 104 tonnes iron yr-1 in the Southern Ocean before whaling compared to 1.2 × 103 tonnes iron yr-1 recycled by whales today. The recovery of baleen whales and their nutrient recycling services2,3,7 could augment productivity and restore ecosystem function lost during 20th century whaling12,13.
Collapse
Affiliation(s)
- Matthew S Savoca
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
| | - Max F Czapanskiy
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | | | - William T Gough
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - James A Fahlbusch
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.,Cascadia Research Collective, Olympia, WA, USA
| | - K C Bierlich
- Duke University Marine Laboratory, Duke University, Beaufort, NC, USA.,Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| | - Paolo S Segre
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Jacopo Di Clemente
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Department of Biology, University of Southern Denmark, Odense, Denmark.,Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Gwenith S Penry
- Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| | - David N Wiley
- Stellwagen Bank National Marine Sanctuary, NOAA National Ocean Service, Scituate, MA, USA
| | | | - Douglas P Nowacek
- Duke University Marine Laboratory, Duke University, Beaufort, NC, USA
| | - David W Johnston
- Duke University Marine Laboratory, Duke University, Beaufort, NC, USA
| | - Nicholas D Pyenson
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA.,Department of Paleontology and Geology, Burke Museum of Natural History and Culture, Seattle, WA, USA
| | - Ari S Friedlaender
- Long Marine Laboratory, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Elliott L Hazen
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.,Long Marine Laboratory, University of California, Santa Cruz, Santa Cruz, CA, USA.,Environmental Research Division, NOAA Southwest Fisheries Science Center, Monterey, CA, USA
| | | |
Collapse
|
12
|
Tosa MI, Dziedzic EH, Appel CL, Urbina J, Massey A, Ruprecht J, Eriksson CE, Dolliver JE, Lesmeister DB, Betts MG, Peres CA, Levi T. The Rapid Rise of Next-Generation Natural History. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.698131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many ecologists have lamented the demise of natural history and have attributed this decline to a misguided view that natural history is outdated and unscientific. Although there is a perception that the focus in ecology and conservation have shifted away from descriptive natural history research and training toward hypothetico-deductive research, we argue that natural history has entered a new phase that we call “next-generation natural history.” This renaissance of natural history is characterized by technological and statistical advances that aid in collecting detailed observations systematically over broad spatial and temporal extents. The technological advances that have increased exponentially in the last decade include electronic sensors such as camera-traps and acoustic recorders, aircraft- and satellite-based remote sensing, animal-borne biologgers, genetics and genomics methods, and community science programs. Advances in statistics and computation have aided in analyzing a growing quantity of observations to reveal patterns in nature. These robust next-generation natural history datasets have transformed the anecdotal perception of natural history observations into systematically collected observations that collectively constitute the foundation for hypothetico-deductive research and can be leveraged and applied to conservation and management. These advances are encouraging scientists to conduct and embrace detailed descriptions of nature that remain a critically important component of the scientific endeavor. Finally, these next-generation natural history observations are engaging scientists and non-scientists alike with new documentations of the wonders of nature. Thus, we celebrate next-generation natural history for encouraging people to experience nature directly.
Collapse
|
13
|
Potvin J, Cade DE, Werth AJ, Shadwick RE, Goldbogen JA. Rorqual Lunge-Feeding Energetics Near and Away from the Kinematic Threshold of Optimal Efficiency. Integr Org Biol 2021; 3:obab005. [PMID: 34104873 PMCID: PMC8179629 DOI: 10.1093/iob/obab005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Humpback and blue whales are large baleen-bearing cetaceans, which use a unique prey-acquisition strategy—lunge feeding—to engulf entire patches of large plankton or schools of forage fish and the water in which they are embedded. Dynamically, and while foraging on krill, lunge-feeding incurs metabolic expenditures estimated at up to 20.0 MJ. Because of prey abundance and its capture in bulk, lunge feeding is carried out at high acquired-to-expended energy ratios of up to 30 at the largest body sizes (∼27 m). We use bio-logging tag data and the work-energy theorem to show that when krill-feeding at depth while using a wide range of prey approach swimming speeds (2–5 m/s), rorquals generate significant and widely varying metabolic power output during engulfment, typically ranging from 10 to 50 times the basal metabolic rate of land mammals. At equal prey field density, such output variations lower their feeding efficiency two- to three-fold at high foraging speeds, thereby allowing slow and smaller rorquals to feed more efficiently than fast and larger rorquals. The analysis also shows how the slowest speeds of harvest so far measured may be connected to the biomechanics of the buccal cavity and the prey’s ability to collectively avoid engulfment. Such minimal speeds are important as they generate the most efficient lunges. Sommaire Les rorquals à bosse et rorquals bleus sont des baleines à fanons qui utilisent une technique d’alimentation unique impliquant une approche avec élan pour engouffrer de larges quantités de plancton et bancs de petits poissons, ainsi que la masse d’eau dans laquelle ces proies sont situés. Du point de vue de la dynamique, et durant l’approche et engouffrement de krill, leurs dépenses énergétiques sont estimées jusqu’à 20.0 MJ. À cause de l’abondance de leurs proies et capture en masse, cette technique d’alimentation est effectuée à des rapports d’efficacité énergétique (acquise -versus- dépensée) estimés aux environs de 30 dans le cas des plus grandes baleines (27 m). Nous utilisons les données recueillies par des capteurs de bio-enregistrement ainsi que le théorème reliant l’énergie à l’effort pour démontrer comment les rorquals s’alimentant sur le krill à grandes profondeurs, et à des vitesses variant entre 2 et 5 m/s, maintiennent des taux de dépenses énergétiques entre 10 et 50 fois le taux métabolique basal des mammifères terrestres. À densités de proies égales, ces variations d’énergie utilisée peuvent réduire le rapport d’efficacité énergétique par des facteurs entre 2x et 3x, donc permettant aux petits et plus lents rorquals de chasser avec une efficacité comparable à celle des rorquals les plus grands et rapides. Notre analyse démontre aussi comment des vitesses d’approche plus lentes peuvent être reliées à la biomécanique de leur poche ventrale extensible, et à l’habilitée des proies à éviter d’être engouffrer. Ces minimums de vitesses sont importants car ils permettent une alimentation plus efficace énergétiquement.
Collapse
Affiliation(s)
- J Potvin
- Department of Physics, Saint Louis University, St. Louis, MO 63103, USA
| | - D E Cade
- Institute of Marine Sciences, University of California Santa Cruz, Sant Cruz, CA 95060, USA
| | - A J Werth
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA
| | - R E Shadwick
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - J A Goldbogen
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
14
|
Segre PS, Weir CR, Stanworth A, Cartwright S, Friedlaender AS, Goldbogen JA. Biomechanically distinct filter-feeding behaviors distinguish sei whales as a functional intermediate and ecologically flexible species. J Exp Biol 2021. [DOI: 10.1242/jeb.238873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
With their ability to facultatively switch between filter-feeding modes, sei whales represent a functional and ecological intermediate in the transition between intermittent and continuous filter feeding. Morphologically resembling their lunge-feeding, rorqual relatives, sei whales have convergently evolved the ability to skim prey near the surface of the water, like the more distantly related balaenids. Because of their intermediate nature, understanding how sei whales switch between feeding behaviors may shed light on the rapid evolution and flexibility of filter-feeding strategies. We deployed multi-sensor bio-logging tags on two sei whales and measured the kinematics of feeding behaviors in this poorly understood and endangered species. To forage at the surface, sei whales used a unique combination of surface lunges and skim-feeding behaviors. The surface lunges were slow and stereotyped, and were unlike lunges performed by other rorqual species. The skim-feeding events featured a different filtration mechanism from the lunges and were kinematically different from the continuous filter feeding used by balaenids. While foraging below the surface, sei whales used faster and more variable lunges. The morphological characteristics that allow sei whales to effectively perform different feeding behaviors suggest that sei whales rapidly evolved their functionally intermediate and ecologically flexible form to compete with larger and more efficient rorqual species.
Collapse
Affiliation(s)
- Paolo S. Segre
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | | | | | | | - Ari S. Friedlaender
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
15
|
Pirotta E, Booth CG, Cade DE, Calambokidis J, Costa DP, Fahlbusch JA, Friedlaender AS, Goldbogen JA, Harwood J, Hazen EL, New L, Southall BL. Context-dependent variability in the predicted daily energetic costs of disturbance for blue whales. CONSERVATION PHYSIOLOGY 2021; 9:coaa137. [PMID: 33505702 PMCID: PMC7816799 DOI: 10.1093/conphys/coaa137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 05/28/2023]
Abstract
Assessing the long-term consequences of sub-lethal anthropogenic disturbance on wildlife populations requires integrating data on fine-scale individual behavior and physiology into spatially and temporally broader, population-level inference. A typical behavioral response to disturbance is the cessation of foraging, which can be translated into a common metric of energetic cost. However, this necessitates detailed empirical information on baseline movements, activity budgets, feeding rates and energy intake, as well as the probability of an individual responding to the disturbance-inducing stressor within different exposure contexts. Here, we integrated data from blue whales (Balaenoptera musculus) experimentally exposed to military active sonar signals with fine-scale measurements of baseline behavior over multiple days or weeks obtained from accelerometry loggers, telemetry tracking and prey sampling. Specifically, we developed daily simulations of movement, feeding behavior and exposure to localized sonar events of increasing duration and intensity and predicted the effects of this disturbance source on the daily energy intake of an individual. Activity budgets and movements were highly variable in space and time and among individuals, resulting in large variability in predicted energetic intake and costs. In half of our simulations, an individual's energy intake was unaffected by the simulated source. However, some individuals lost their entire daily energy intake under brief or weak exposure scenarios. Given this large variation, population-level models will have to assess the consequences of the entire distribution of energetic costs, rather than only consider single summary statistics. The shape of the exposure-response functions also strongly influenced predictions, reinforcing the need for contextually explicit experiments and improved mechanistic understanding of the processes driving behavioral and physiological responses to disturbance. This study presents a robust approach for integrating different types of empirical information to assess the effects of disturbance at spatio-temporal and ecological scales that are relevant to management and conservation.
Collapse
Affiliation(s)
- Enrico Pirotta
- Department of Mathematics and Statistics, Washington State University, Vancouver, WA 98686, USA
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 N73K, Ireland
| | - Cormac G Booth
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| | - David E Cade
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| | | | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| | - James A Fahlbusch
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
- Cascadia Research Collective, Olympia, WA 98501, USA
| | - Ari S Friedlaender
- Southall Environmental Associates, Inc., Aptos, CA 95003, USA
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| | - Jeremy A Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - John Harwood
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews KY16 9LZ, UK
| | - Elliott L Hazen
- Southwest Fisheries Science Center, Environmental Research Division, National Oceanic and Atmospheric Administration (NOAA), Monterey, CA 93940, USA
| | - Leslie New
- Department of Mathematics and Statistics, Washington State University, Vancouver, WA 98686, USA
| | - Brandon L Southall
- Southall Environmental Associates, Inc., Aptos, CA 95003, USA
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
16
|
Kahane-Rapport SR, Savoca MS, Cade DE, Segre PS, Bierlich KC, Calambokidis J, Dale J, Fahlbusch JA, Friedlaender AS, Johnston DW, Werth AJ, Goldbogen JA. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J Exp Biol 2020; 223:jeb224196. [PMID: 32820028 DOI: 10.1242/jeb.224196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
Fundamental scaling relationships influence the physiology of vital rates, which in turn shape the ecology and evolution of organisms. For diving mammals, benefits conferred by large body size include reduced transport costs and enhanced breath-holding capacity, thereby increasing overall foraging efficiency. Rorqual whales feed by engulfing a large mass of prey-laden water at high speed and filtering it through baleen plates. However, as engulfment capacity increases with body length (engulfment volume∝body length3.57), the surface area of the baleen filter does not increase proportionally (baleen area∝body length1.82), and thus the filtration time of larger rorquals predictably increases as the baleen surface area must filter a disproportionally large amount of water. We predicted that filtration time should scale with body length to the power of 1.75 (filter time∝body length1.75). We tested this hypothesis on four rorqual species using multi-sensor tags with corresponding unoccupied aircraft systems-based body length estimates. We found that filter time scales with body length to the power of 1.79 (95% CI: 1.61-1.97). This result highlights a scale-dependent trade-off between engulfment capacity and baleen area that creates a biomechanical constraint to foraging through increased filtration time. Consequently, larger whales must target high-density prey patches commensurate to the gulp size to meet their increased energetic demands. If these optimal patches are absent, larger rorquals may experience reduced foraging efficiency compared with smaller whales if they do not match their engulfment capacity to the size of targeted prey aggregations.
Collapse
Affiliation(s)
- S R Kahane-Rapport
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - M S Savoca
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - D E Cade
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - P S Segre
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - K C Bierlich
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 27710, USA
| | - J Calambokidis
- Cascadia Research Collective, 218 W. 4th Ave., Olympia, WA 98501, USA
| | - J Dale
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 27710, USA
| | - J A Fahlbusch
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - A S Friedlaender
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - D W Johnston
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 27710, USA
| | - A J Werth
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA
| | - J A Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|