1
|
Zhao Y, Zhang Z, Hao X, Zhang Y, Si X, Yan C. Architecture and stability of tripartite ecological networks with two interaction types. Ecology 2025; 106:e70098. [PMID: 40342013 DOI: 10.1002/ecy.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 05/11/2025]
Abstract
Over the past few decades, studies on empirical ecological networks have primarily focused on single antagonistic or mutualistic interactions. However, many species engage in multiple interactions that support distinct ecosystem functions. The architecture of networks integrating these interactions, along with their cascading effects on community dynamics, remains underexplored in ecological research. In this study, we compiled two datasets of empirical plant-herbivore/host-parasitoid (PHP) and pollinator-plant-herbivore (PPH) networks, representing two common types of tripartite networks in terrestrial ecosystems: antagonism-antagonism and mutualism-antagonism. We identified the patterns of subnetwork structures and interconnection properties in these networks and examined their relationships with community stability. Our findings revealed distinct pathway effects of network architecture on persistence and local stability in both PHP and PPH networks, with subnetwork modularity and nestedness showing a few strong direct effects and mediating the indirect effects of subnetwork size and connectance. In PHP networks, subnetwork modularity enhanced persistence and local stability, whereas subnetwork nestedness directly undermined them. However, both subnetwork topologies consistently mediated the destabilizing effects of subnetwork size and connectance on the entire network. In PPH networks, persistence was primarily affected by the plant-herbivore subnetwork, while the size, connectance, and modularity of different subnetworks had opposing effects on local stability. Regarding interconnection properties, the correlation of interaction similarity destabilized PHP networks, whereas the correlation of interaction degree promoted local stability in PPH networks. Further analysis indicated that structure-persistence relationships vary significantly across guilds, and the network-level effects of network architecture can be reversed, negligible, or biased in specific guilds. These findings advance our understanding of how network architecture influences ecosystem stability and underscore the importance of considering multiple interaction types when predicting community dynamics.
Collapse
Affiliation(s)
- Yangyang Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhicheng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiyang Hao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, China
| | - Yongjun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, China
| | - Xingfeng Si
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Chuan Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Martínez-Núñez C, Casanelles Abella J, Frey D, Zanetta A, Moretti M. Local and landscape factors shape alpha and beta trophic interaction diversity in urban gardens. Proc Biol Sci 2024; 291:20232501. [PMID: 38772421 DOI: 10.1098/rspb.2023.2501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
Promoting urban green spaces is an effective strategy to increase biodiversity in cities. However, our understanding of how local and landscape factors influence trophic interactions in these urban contexts remains limited. Here, we sampled cavity-nesting bees and wasps and their natural enemies within 85 urban gardens in Zurich (Switzerland) to identify factors associated with the diversity and dissimilarity of antagonistic interactions in these communities. The proportions of built-up area and urban green area at small landscape scales (50 m radius), as well as the management intensity, sun exposure, plant richness and proportion of agricultural land at the landscape scale (250 m radius), were key drivers of interaction diversity. This increased interaction diversity resulted not only from the higher richness of host and natural enemy species, but also from species participating in more interactions. Furthermore, dissimilarity in community structure and interactions across gardens (beta-diversity) were primarily influenced by differences in built-up areas and urban green areas at the landscape scale, as well as by management intensity. Our study offers crucial insights for urban planning and conservation strategies, supporting sustainability goals by helping to understand the factors that shape insect communities and their trophic interactions in urban gardens.
Collapse
Affiliation(s)
- Carlos Martínez-Núñez
- Department of Ecology and Evolution, Estación Biológica de Doñana EBD (CSIC), Calle Avenida Américo Vespucio, 26 , Sevilla 41092, Spain
| | - Joan Casanelles Abella
- Swiss Federal Institute of Aquatic Science and Technology EAWAG, Ueberlandstrasse 133 , Dübendorf, Switzerland
- Urban Productive Ecosystems, TUM School of Life Sciences, Hans Carl-von-Carlowitz-Platz 2 , Feising 85354, Germany
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111 , Birmensdorf 8903, Switzerland
| | - David Frey
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111 , Birmensdorf 8903, Switzerland
| | - Andrea Zanetta
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111 , Birmensdorf 8903, Switzerland
| | - Marco Moretti
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111 , Birmensdorf 8903, Switzerland
| |
Collapse
|
3
|
Allen WJ, Bufford JL, Barnes AD, Barratt BIP, Deslippe JR, Dickie IA, Goldson SL, Howlett BG, Hulme PE, Lavorel S, O'Brien SA, Waller LP, Tylianakis JM. A network perspective for sustainable agroecosystems. TRENDS IN PLANT SCIENCE 2022; 27:769-780. [PMID: 35501260 DOI: 10.1016/j.tplants.2022.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Nature-based management aims to improve sustainable agroecosystem production, but its efficacy has been variable. We argue that nature-based agroecosystem management could be significantly improved by explicitly considering and manipulating the underlying networks of species interactions. A network perspective can link species interactions to ecosystem functioning and stability, identify influential species and interactions, and suggest optimal management approaches. Recent advances in predicting the network roles of species from their functional traits could allow direct manipulation of network architecture through additions or removals of species with targeted traits. Combined with improved understanding of the structure and dynamics of networks across spatial and temporal scales and interaction types, including social-ecological, applying these tools to nature-based management can contribute to sustainable agroecosystems.
Collapse
Affiliation(s)
- Warwick J Allen
- Bio-Protection Research Centre/Bioprotection Aotearoa, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Jennifer L Bufford
- Bio-Protection Research Centre/Bioprotection Aotearoa, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Andrew D Barnes
- Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton 3204, New Zealand
| | - Barbara I P Barratt
- AgResearch, Invermay Research Centre, Mosgiel 9053, New Zealand; Department of Botany, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Julie R Deslippe
- Centre for Biodiversity and Restoration Ecology and School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Ian A Dickie
- Bio-Protection Research Centre/Bioprotection Aotearoa, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Stephen L Goldson
- Bio-Protection Research Centre/Bioprotection Aotearoa, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand; AgResearch, Private Bag 4749, Christchurch 8140, New Zealand
| | - Brad G Howlett
- The New Zealand Institute for Plant and Food Research Limited, Christchurch, New Zealand
| | - Philip E Hulme
- Bio-Protection Research Centre/Bioprotection Aotearoa, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Sandra Lavorel
- Manaaki Whenua Landcare Research, Lincoln, New Zealand; Laboratoire d'Ecologie Alpine, Université Grenoble Alpes CNRS, Université Savoie Mont-Blanc, 38000 Grenoble, France
| | - Sophie A O'Brien
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Lauren P Waller
- Bio-Protection Research Centre/Bioprotection Aotearoa, PO Box 85084, Lincoln University, Lincoln 7647, New Zealand
| | - Jason M Tylianakis
- Bio-Protection Research Centre/Bioprotection Aotearoa, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|