1
|
Kunutsor SK, Lehoczki A, Laukkanen JA. The untapped potential of cold water therapy as part of a lifestyle intervention for promoting healthy aging. GeroScience 2025; 47:387-407. [PMID: 39078461 PMCID: PMC11872954 DOI: 10.1007/s11357-024-01295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
Healthy aging is a crucial goal in aging societies of the western world, with various lifestyle strategies being employed to achieve it. Among these strategies, hydrotherapy stands out for its potential to promote cardiovascular and mental health. Cold water therapy, a hydrotherapy technique, has emerged as a lifestyle strategy with the potential capacity to evoke a wide array of health benefits. This review aims to synthesize the extensive body of research surrounding cold water therapy and its beneficial effects on various health systems as well as the underlying biological mechanisms driving these benefits. We conducted a search for interventional and observational cohort studies from MEDLINE and EMBASE up to July 2024. Deliberate exposure of the body to cold water results in distinct physiological responses that may be linked to several health benefits. Evidence, primarily from small interventional studies, suggests that cold water therapy positively impacts cardiometabolic risk factors, stimulates brown adipose tissue and promotes energy expenditure-potentially reducing the risk of cardiometabolic diseases. It also triggers the release of stress hormones, catecholamines and endorphins, enhancing alertness and elevating mood, which may alleviate mental health conditions. Cold water therapy also reduces inflammation, boosts the immune system, promotes sleep and enhances recovery following exercise. The optimal duration and temperature needed to derive maximal benefits is uncertain but current evidence suggests that short-term exposure and lower temperatures may be more beneficial. Overall, cold water therapy presents a potential lifestyle strategy to enhancing physical and mental well-being, promoting healthy aging and extending the healthspan, but definitive interventional evidence is warranted.
Collapse
Affiliation(s)
- Setor K Kunutsor
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R2H 2A6, Canada.
- Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
| | - Andrea Lehoczki
- Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Jari A Laukkanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Wellbeing Services County of Central Finland, Department of Medicine, Finland District, Jyväskylä, Finland
| |
Collapse
|
2
|
Ferguson LF, Ross PA, van Heerwaarden B. Wolbachia infection negatively impacts Drosophila simulans heat tolerance in a strain- and trait-specific manner. Environ Microbiol 2024; 26:e16609. [PMID: 38558489 DOI: 10.1111/1462-2920.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three Wolbachia strains (wRi, wAu and wNo) on the survival and fertility of Drosophila simulans exposed to heat stress during development or as adults. The effect of Wolbachia infection on heat tolerance was generally small and trait/strain specific. Only the wNo infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the wRi and wAu strains reduced egg-to-adult survival but only the wNo infection reduced male fertility. Wolbachia densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.
Collapse
Affiliation(s)
- Liam F Ferguson
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Perran A Ross
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Belinda van Heerwaarden
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Singh K, Kochar E, Gahlot P, Bhatt K, Prasad NG. Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance. BMC Ecol Evol 2021; 21:219. [PMID: 34872492 PMCID: PMC8650462 DOI: 10.1186/s12862-021-01934-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Abstract
Background In insect species like Drosophila melanogaster, evolution of increased resistance or evolution of particular traits under specific environmental conditions can lead to energy trade-offs with other crucial life-history traits. Adaptation to cold stress can, in principle, involve modification of reproductive traits and physiological responses. Reproductive traits carry a substantial cost; and therefore, the evolution of reproductive traits in response to cold stress could potentially lead to trade-offs with other life-history traits. We have successfully selected replicate populations of Drosophila melanogaster for increased resistance to cold shock for over 33 generations. In these populations, the ability to recover from cold shock, mate, and lay fertile eggs 24 h post cold shock is under selection. These populations have evolved a suite of reproductive traits including increased egg viability, male mating ability, and siring ability post cold shock. These populations also show elevated mating rate both with and without cold shock. In the present study, we quantified a suite of life-history related traits in these populations to assess if evolution of cold shock resistance in these populations comes at a cost of other life-history traits. Results To assess life-history cost, we measured egg viability, mating frequency, longevity, lifetime fecundity, adult mortality, larva to adult development time, larvae to adults survival, and body weight in the cold shock selected populations and their controls under two treatments (a) post cold chock and (b) without cold shock. Twenty-four hours post cold shock, the selected population had significantly higher egg viability and mating frequency compared to control populations indicating that they have higher cold shock resistance. Selected populations had significantly longer pre-adult development time compared to their control populations. Females from the selected populations had higher body weight compared to their control populations. However, we did not find any significant difference between the selected and control populations in longevity, lifetime fecundity, adult mortality, larvae to adults survival, and male body weight under the cold chock or no cold shock treatments. Conclusions These findings suggest that cold shock selected populations have evolved higher mating frequency and egg viability. However, there is no apparent life-history associated cost with the evolution of egg viability and reproductive performances under the cold stress condition. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01934-2.
Collapse
Affiliation(s)
- Karan Singh
- Department of Cell Biology, NYU Grossman School of Medicine, 650 Medical Science Building, 550 First Ave, New York, NY, 10016, USA. .,Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Mohali, Punjab, 140306, India.
| | - Ekta Kochar
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Mohali, Punjab, 140306, India
| | - Prakhar Gahlot
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Mohali, Punjab, 140306, India
| | - Karan Bhatt
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Mohali, Punjab, 140306, India
| | - Nagaraj Guru Prasad
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Mohali, Punjab, 140306, India
| |
Collapse
|
4
|
Ghehsareh Ardestani E, Heidari Ghahfarrokhi Z. Ensembpecies distribution modeling of Salvia hydrangea under future climate change scenarios in Central Zagros Mountains, Iran. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
5
|
Zwoinska MK, Rodrigues LR, Slate J, Snook RR. Phenotypic Responses to and Genetic Architecture of Sterility Following Exposure to Sub-Lethal Temperature During Development. Front Genet 2020; 11:573. [PMID: 32582294 PMCID: PMC7283914 DOI: 10.3389/fgene.2020.00573] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Thermal tolerance range, based on temperatures that result in incapacitating effects, influences species’ distributions and has been used to predict species’ response to increasing temperature. Reproductive performance may also be negatively affected at less extreme temperatures, but such sublethal heat-induced sterility has been relatively ignored in studies addressing the potential effects of, and ability of species’ to respond to, predicted climate warming. The few studies examining the link between increased temperature and reproductive performance typically focus on adults, although effects can vary between life history stages. Here we assessed how sublethal heat stress during development impacted subsequent adult fertility and its plasticity, both of which can provide the raw material for evolutionary responses to increased temperature. We quantified phenotypic and genetic variation in fertility of Drosophila melanogaster reared at standardized densities in three temperatures (25, 27, and 29°C) from a set of lines of the Drosophila Genetic Reference Panel (DGRP). We found little phenotypic variation at the two lower temperatures with more variation at the highest temperature and for plasticity. Males were more affected than females. Despite reasonably large broad-sense heritabilities, a genome-wide association study found little evidence for additive genetic variance and no genetic variants were robustly linked with reproductive performance at specific temperatures or for phenotypic plasticity. We compared results on heat-induced male sterility with other DGRP results on relevant fitness traits measured after abiotic stress and found an association between male susceptibility to sterility and male lifespan reduction following oxidative stress. Our results suggest that sublethal stress during development has profound negative consequences on male adult reproduction, but despite phenotypic variation in a population for this response, there is limited evolutionary potential, either through adaptation to a specific developmental temperature or plasticity in response to developmental heat-induced sterility.
Collapse
Affiliation(s)
| | | | - Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Macchiano A, Sasson DA, Leith NT, Fowler-Finn KD. Patterns of Thermal Sensitivity and Sex-Specificity of Courtship Behavior Differs Between Two Sympatric Species of Enchenopa Treehopper. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Austin CJ, Moehring AJ. Local thermal adaptation detected during multiple life stages across populations of
Drosophila melanogaster. J Evol Biol 2019; 32:1342-1351. [DOI: 10.1111/jeb.13530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 11/30/2022]
Affiliation(s)
| | - Amanda J. Moehring
- Department of Biology The University of Western Ontario London ON Canada
| |
Collapse
|
8
|
Phenology of Drosophila species across a temperate growing season and implications for behavior. PLoS One 2019; 14:e0216601. [PMID: 31095588 PMCID: PMC6521991 DOI: 10.1371/journal.pone.0216601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/24/2019] [Indexed: 11/25/2022] Open
Abstract
Drosophila community composition is complex in temperate regions with different abundance of flies and species across the growing season. Monitoring Drosophila populations provides insights into the phenology of both native and invasive species. Over a single growing season, we collected Drosophila at regular intervals and determined the number of individuals of the nine species we found in Kansas, USA. Species varied in their presence and abundance through the growing season with peak diversity occurring after the highest seasonal temperatures. We developed models for the abundance of the most common species, Drosophila melanogaster, D. simulans, D. algonquin, and the recent invasive species, D. suzukii. These models revealed that temperature played the largest role in abundance of each species across the season. For the two most commonly studied species, D. melanogaster and D. simulans, the best models indicate shifted thermal optima compared to laboratory studies, implying that fluctuating temperature may play a greater role in the physiology and ecology of these insects than indicated by laboratory studies, and should be considered in global climate change studies.
Collapse
|
9
|
Mutamiswa R, Chidawanyika F, Nyamukondiwa C. Thermal plasticity potentially mediates the interaction between host Chilo partellus Swinhoe (Lepidoptera: Crambidae) and endoparasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae) in rapidly changing environments. PEST MANAGEMENT SCIENCE 2018; 74:1335-1345. [PMID: 29193807 DOI: 10.1002/ps.4807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Increasing climatic average temperatures and variability elicit various insect physiological responses that affect fitness and survival and may influence subsequent trophic interactions in agroecosystems. In this background, we investigated short- and long-term plastic responses to temperature of the laboratory-reared stemborer Chilo partellus and its larval endoparasitoid Cotesia flavipes. RESULTS Rapid cold- and heat-hardening effects in C. partellus larvae, pupae and adults and C. flavipes adults were highly significant (P < 0.001). High-temperature acclimation improved critical thermal limits and heat knockdown time in C. partellus larvae and C. flavipes adults, respectively. Low-temperature acclimation enhanced the supercooling point in C. flavipes and the chill coma recovery time in both C. partellus larvae and C. flavipes adults. CONCLUSION The results of this study suggest that thermal plasticity may enhance the survival of these two species when they are subjected to lethal low and high temperatures. However, C. partellus appeared to be more plastic than C. flavipes. These results have three major implications: (1) C. partellus may inhabit slightly warmer environments than C. flavipes, suggesting a potential mismatch in biogeography; (2) host-parasitoid relationships are complex and are probably trait dependent, and (3) host-parasitoid differential thermal plastic responses may offset biocontrol efficacy. These results may help inform biocontrol decision making under conditions of global change. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Reyard Mutamiswa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Frank Chidawanyika
- Agricultural Research Council, Plant Protection Research, Weeds Division, Hilton, South Africa
- School of Lifesciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| |
Collapse
|
10
|
Askari Seyahooei M, Mohammadi-Rad A, Hesami S, Bagheri A. Temperature and Exposure Time in Cold Storage Reshape Parasitic Performance of Habrobracon hebetor (Hymenoptera: Braconidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:564-569. [PMID: 29415154 DOI: 10.1093/jee/toy004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
Cold storage can extend shelf life of parasitoids for use in biocontrol. However, cold storage may have negative impacts on life history traits of the parasitoids and, therefore, on their performance as biocontrol agents. Here, we examine the effect of cold storage on life history traits of Habrobracon hebetor (Say) (Hymenoptera: Braconidae), a parasitoid of several economic lepidopteran pests. Newly emerged wasps were stored at three constant temperatures (3°C, 5°C, 7°C) for up to 4 wk. Both temperature and exposure time significantly affected longevity, parasitism, fecundity, and sex ratio. Significant reduction in longevity was observed at 3°C and 7°C, whereas longevity of wasps stored at 5°C remained stable up to the second week and then gradually decreased in Weeks 3 and 4. Parasitism rate also significantly decreased after cold storage at 3°C, 5°C, and 7°C (ranked from high to low). Fecundity decreased at T 3°C and T 5°C but this trait was not affected by storage at T 7°C. A significant shift in male production was observed at T 5°C in Week 3, but in Week 4, the only treatment with male biased reproduction was T 3°C. These results show that the effect of temperature and exposure time in cold storage is trait dependent. Overall, storage at 5°C for a period of 3 wk least impacted most life-history traits of H. hebetor wasps.
Collapse
Affiliation(s)
- Majeed Askari Seyahooei
- Plant Protection Research Department, Hormozgan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | | | - Shahram Hesami
- Department of Entomology, Islamic Azad University, Shiraz Branch, Shiraz, Iran
| | - Abdoolnabi Bagheri
- Plant Protection Research Department, Hormozgan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| |
Collapse
|
11
|
Saxon AD, O'Brien EK, Bridle JR. Temperature fluctuations during development reduce male fitness and may limit adaptive potential in tropical rainforest Drosophila. J Evol Biol 2018; 31:405-415. [PMID: 29282784 DOI: 10.1111/jeb.13231] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/23/2017] [Accepted: 12/19/2017] [Indexed: 01/19/2023]
Abstract
Understanding the potential for organisms to tolerate thermal stress through physiological or evolutionary responses is crucial given rapid climate change. Although climate models predict increases in both temperature mean and variance, such tolerances are typically assessed under constant conditions. We tested the effects of temperature variability during development on male fitness in the rainforest fly Drosophila birchii, by simulating thermal variation typical of the warm and cool margins of its elevational distribution, and estimated heritabilities and genetic correlations of fitness traits. Reproductive success was reduced for males reared in warm (mean 24 °C) fluctuating (±3 °C) vs. constant conditions but not in cool fluctuating conditions (mean 17 °C), although fluctuations reduced body size at both temperatures. Male reproductive success under warm fluctuating conditions was similar to that at constant 27 °C, indicating that briefly exceeding critical thermal limits has similar fitness costs to continuously stressful conditions. There was substantial heritable variation in all traits. However, reproductive success traits showed no genetic correlation between treatments reflecting temperature variation at elevational extremes, which may constrain evolutionary responses at these ecological margins. Our data suggest that even small increases in temperature variability will threaten tropical ectotherms living close to their upper thermal limits, both through direct effects on fitness and by limiting their adaptive potential.
Collapse
Affiliation(s)
- A D Saxon
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - E K O'Brien
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - J R Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Batista MRD, Rocha FB, Klaczko LB. Altitudinal distribution of two sibling species of the Drosophila tripunctata group in a preserved tropical forest and their male sterility thermal thresholds. J Therm Biol 2018; 71:69-73. [DOI: 10.1016/j.jtherbio.2017.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
13
|
Miller CJJ, Matute DR. The Effect of Temperature on Drosophila Hybrid Fitness. G3 (BETHESDA, MD.) 2017; 7:377-385. [PMID: 27913636 PMCID: PMC5295587 DOI: 10.1534/g3.116.034926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/09/2016] [Indexed: 01/05/2023]
Abstract
Mechanisms of reproductive isolation inhibit gene flow between species and can be broadly sorted into two categories: prezygotic and postzygotic. While comparative studies suggest that prezygotic barriers tend to evolve first, postzygotic barriers are crucial for maintaining species boundaries and impeding gene flow that might otherwise cause incipient species to merge. Most, but not all, postzygotic barriers result from genetic incompatibilities between two or more loci from different species, and occur due to divergent evolution in allopatry. Hybrid defects result from improper allelic interactions between these loci. While some postzygotic barriers are environmentally-independent, the magnitude of others has been shown to vary in penetrance depending on environmental factors. We crossed Drosophila melanogaster mutants to two other species, D. simulans and D. santomea, and collected fitness data of the hybrids at two different temperatures. Our goal was to examine the effect of temperature on recessive incompatibility alleles in their genomes. We found that temperature has a stronger effect on the penetrance of recessive incompatibility alleles in the D. simulans genome than on those in the D. santomea genome. These results suggest that the penetrance of hybrid incompatibilities can be strongly affected by environmental context, and that the magnitude of such gene-by-environment interactions can be contingent on the genotype of the hybrid.
Collapse
Affiliation(s)
- Charles J J Miller
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27510
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27510
| |
Collapse
|
14
|
Ecological insights from assessments of phenotypic plasticity in a Neotropical species of Drosophila. J Therm Biol 2016; 62:7-14. [DOI: 10.1016/j.jtherbio.2016.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
|
15
|
Separation of the bioclimatic spaces of Himalayan tree rhododendron species predicted by ensemble suitability models. Glob Ecol Conserv 2014. [DOI: 10.1016/j.gecco.2014.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Sillero N, Reis M, Vieira CP, Vieira J, Morales-Hojas R. Niche evolution and thermal adaptation in the temperate species Drosophila americana. J Evol Biol 2014; 27:1549-61. [PMID: 24835376 DOI: 10.1111/jeb.12400] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/29/2022]
Abstract
The study of ecological niche evolution is fundamental for understanding how the environment influences species' geographical distributions and their adaptation to divergent environments. Here, we present a study of the ecological niche, demographic history and thermal performance (locomotor activity, developmental time and fertility/viability) of the temperate species Drosophila americana and its two chromosomal forms. Temperature is the environmental factor that contributes most to the species' and chromosomal forms' ecological niches, although precipitation is also important in the model of the southern populations. The past distribution model of the species predicts a drastic reduction in the suitable area for the distribution of the species during the last glacial maximum (LGM), suggesting a strong bottleneck. However, DNA analyses did not detect a bottleneck signature during the LGM. These contrasting results could indicate that D. americana niche preference evolves with environmental change, and thus, there is no evidence to support niche conservatism in this species. Thermal performance experiments show no difference in the locomotor activity across a temperature range of 15 to 38 °C between flies from the north and the south of its distribution. However, we found significant differences in developmental time and fertility/viability between the two chromosomal forms at the model's optimal temperatures for the two forms. However, results do not indicate that they perform better for the traits studied here in their respective optimal niche temperatures. This suggests that behaviour plays an important role in thermoregulation, supporting the capacity of this species to adapt to different climatic conditions across its latitudinal distribution.
Collapse
Affiliation(s)
- N Sillero
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Observatório Astronómico Prof. Manuel de Barros, Porto, Portugal
| | | | | | | | | |
Collapse
|
17
|
Fallis LC, Fanara JJ, Morgan TJ. Developmental thermal plasticity among Drosophila melanogaster populations. J Evol Biol 2014; 27:557-64. [PMID: 26230171 DOI: 10.1111/jeb.12321] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022]
Abstract
Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organism's behaviour and fitness. Most ecologically relevant phenotypes that are adaptive are also complex and thus they are influenced by many underlying loci that interact with the environment. In this study, we quantified the degree of thermal phenotypic plasticity within and among populations by measuring chill-coma recovery times of lines reared from egg to adult at two different environmental temperatures. We used sixty genotypes from six natural populations of Drosophila melanogaster sampled along a latitudinal gradient in South America. We found significant variation in thermal plasticity both within and among populations. All populations exhibit a cold acclimation response, with flies reared at lower temperatures having increased resistance to cold. We tested a series of environmental parameters against the variation in population mean thermal plasticity and discovered the mean thermal plasticity was significantly correlated with altitude of origin of the population. Pairing our data with previous experiments on viability fitness assays in the same populations in fixed and variable environments suggests an adaptive role of this thermal plasticity in variable laboratory environments. Altogether, these data demonstrate abundant variation in adaptive thermal plasticity within and among populations.
Collapse
Affiliation(s)
- L C Fallis
- The Division of Biology, The Ecological Genomics Institute, Kansas State University, Manhattan, KS, USA
| | - J J Fanara
- Departamento de Ecologia, Genetica y Evolucion-IEGEBA (CONICET-UBA), FCEN, UBA, Buenos Aires, Argentina
| | - T J Morgan
- The Division of Biology, The Ecological Genomics Institute, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
18
|
A direct test of the effects of changing atmospheric pressure on the mating behavior of Drosophila melanogaster. Evol Ecol 2014. [DOI: 10.1007/s10682-014-9689-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|