1
|
de la Torre Cerro R, Misra G, Gleeson E, Serbin G, Zimmermann J, Cawkwell F, Wingler A, Holloway P. Modelling asynchrony in phenology considering a dynamic representation of meteorological variables. PeerJ 2025; 13:e18653. [PMID: 39959828 PMCID: PMC11827577 DOI: 10.7717/peerj.18653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/17/2024] [Indexed: 02/18/2025] Open
Abstract
Shifts in the timing of phenological events across many taxa and ecosystems are a result of climate change. Within a trophic network, phenological mismatches between interlinked species can have negative impacts for biodiversity, ecosystems, and the trophic network. Here we developed interaction indices that quantify the level of synchrony and asynchrony among groups of species in three interlinked trophic levels, as well as accounting for a dynamic representation of meteorology. Insect first flight, vegetation green-up and arrival of migrant birds were the phenological indicators, obtained from a combination of spatially and temporally explicit species observations from citizen science programmes and remote sensing platforms (i.e., Landsat). To determine phenological shifts in interlinked taxa we created and applied several phenological indices of synchrony-asynchrony, combining information from the phenological events and critical time windows of meteorological variables. To demonstrate our method of incorporating a meteorological component in our new interaction index, we implemented the relative sliding time window analysis, a stepwise regression model, to identify critical time windows preceding the phenological events on a yearly basis. The new indices of phenological change identified several asynchronies within trophic levels, allowing exploration of potential interactions based on synchrony among interlinked species. Our novel index of synchrony-asynchrony including a meteorological dimension could be highly informative and should open new pathways for studying synchrony among species and interaction networks.
Collapse
Affiliation(s)
- Rubén de la Torre Cerro
- Department of Geography, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gourav Misra
- National Centre for Geocomputation, Maynooth University, Kildare, Ireland
- Department of Computer Science, Maynooth University, Kildare, Ireland
| | - Emily Gleeson
- Research and Applications Division, Met Éireann, Dublin, Ireland
| | | | - Jesko Zimmermann
- Department of Agrifood Business and Spatial Analysis, Rural Economy and Economic Development Programme, Teagasc Ashtown Research Centre, Dublin, Ireland
| | - Fiona Cawkwell
- Department of Geography, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Astrid Wingler
- Environmental Research Institute, University College Cork, Cork, Ireland
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Paul Holloway
- Department of Geography, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Lovell RSL, Collins S, Martin SH, Pigot AL, Phillimore AB. Space-for-time substitutions in climate change ecology and evolution. Biol Rev Camb Philos Soc 2023; 98:2243-2270. [PMID: 37558208 DOI: 10.1111/brv.13004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate-biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These 'space-for-time substitutions' (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable - population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate-biotic relationships and (ii) the transferability of these relationships, i.e. whether climate-biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.
Collapse
Affiliation(s)
- Rebecca S L Lovell
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Sinead Collins
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Simon H Martin
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Albert B Phillimore
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
3
|
Environmental Drivers of Amphibian Breeding Phenology across Multiple Sites. DIVERSITY 2023. [DOI: 10.3390/d15020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A mechanistic understanding of phenology, the seasonal timing of life history events, is important for understanding species’ interactions and the potential responses of ecological communities to a rapidly changing climate. We present analysis of a seven-year dataset on the breeding phenology of wood frogs (Rana sylvatica), tiger salamanders (Ambystoma tigrinum), blue-spotted salamanders (Ambystoma laterale), and associated unisexual Ambystoma salamanders from six wetlands in Southeast Michigan, USA. We assess whether the ordinal date of breeding migrations varies among species, sexes, and individual wetlands, and we describe the specific environmental conditions associated with breeding migrations for each species/sex. Breeding date was significantly affected by species/sex identity, year, wetland, and the interactions between species/sex and year as well as wetland and year. There was a great deal of variation among years, with breeding occurring nearly synchronously among groups in some years but widely spaced between groups in other years. Specific environmental triggers for movement varied for each species and sex and changed as the breeding season progressed. In general, salamanders responded to longer temperature lags (more warmer days in a row) than wood frogs, whereas wood frogs required longer precipitation lags (more rainy days in a row) than salamanders. Wood frogs were more likely to migrate around the time of a new moon, whereas in contrast, Ambystoma salamander migration was not associated with a moon phase. Ordinal day was an important factor in all models, suggesting that these amphibians require a latency period or similar mechanism to avoid breeding too early in the year, even when weather conditions appear favorable. Male wood frogs migrated earlier than female wood frogs, and male blue-spotted salamanders migrated earlier than female A. laterale and associated unisexual females. Larger unisexual salamanders migrated earlier than smaller individuals. Differences in species’ responses to environmental cues led to wood frogs and A. laterale breeding later than tiger salamanders in colder years but not in warmer years. This suggests that, as the climate warms, wood frog and A. laterale larvae may experience less predation from tiger salamander larvae due to reduced size differences when they breed simultaneously. Our study is one of few to describe the proximate drivers of amphibian breeding migrations across multiple species, wetlands, and years, and it can inform models predicting how climate change may shift ecological interactions among pond-breeding amphibian species.
Collapse
|
4
|
Wright J, Haaland TR, Dingemanse NJ, Westneat DF. A reaction norm framework for the evolution of learning: how cumulative experience shapes phenotypic plasticity. Biol Rev Camb Philos Soc 2022; 97:1999-2021. [PMID: 35790067 PMCID: PMC9543233 DOI: 10.1111/brv.12879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Learning is a familiar process to most people, but it currently lacks a fully developed theoretical position within evolutionary biology. Learning (memory and forgetting) involves adjustments in behaviour in response to cumulative sequences of prior experiences or exposures to environmental cues. We therefore suggest that all forms of learning (and some similar biological phenomena in development, aging, acquired immunity and acclimation) can usefully be viewed as special cases of phenotypic plasticity, and formally modelled by expanding the concept of reaction norms to include additional environmental dimensions quantifying sequences of cumulative experience (learning) and the time delays between events (forgetting). Memory therefore represents just one of a number of different internal neurological, physiological, hormonal and anatomical ‘states’ that mediate the carry‐over effects of cumulative environmental experiences on phenotypes across different time periods. The mathematical and graphical conceptualisation of learning as plasticity within a reaction norm framework can easily accommodate a range of different ecological scenarios, closely linking statistical estimates with biological processes. Learning and non‐learning plasticity interact whenever cumulative prior experience causes a modification in the reaction norm (a) elevation [mean phenotype], (b) slope [responsiveness], (c) environmental estimate error [informational memory] and/or (d) phenotypic precision [skill acquisition]. Innovation and learning new contingencies in novel (laboratory) environments can also be accommodated within this approach. A common reaction norm approach should thus encourage productive cross‐fertilisation of ideas between traditional studies of learning and phenotypic plasticity. As an example, we model the evolution of plasticity with and without learning under different levels of environmental estimation error to show how learning works as a specific adaptation promoting phenotypic plasticity in temporally autocorrelated environments. Our reaction norm framework for learning and analogous biological processes provides a conceptual and mathematical structure aimed at usefully stimulating future theoretical and empirical investigations into the evolution of plasticity across a wider range of ecological contexts, while providing new interdisciplinary connections regarding learning mechanisms.
Collapse
Affiliation(s)
- Jonathan Wright
- Center for Biodiversity Dynamics (CBD), Department of Biology Norwegian University of Science and Technology (NTNU) N‐7491 Trondheim Norway
| | - Thomas R. Haaland
- Center for Biodiversity Dynamics (CBD), Department of Biology Norwegian University of Science and Technology (NTNU) N‐7491 Trondheim Norway
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Niels J. Dingemanse
- Behavioural Ecology, Department of Biology Ludwig‐Maximilians University of Munich (LMU) 82152 Planegg‐Martinsried Germany
| | - David F. Westneat
- Department of Biology University of Kentucky 101 Morgan Building Lexington KY 40506‐0225 USA
| |
Collapse
|
5
|
Williams CT, Chmura HE, Deal CK, Wilsterman K. Sex-differences in Phenology: A Tinbergian Perspective. Integr Comp Biol 2022; 62:980-997. [PMID: 35587379 DOI: 10.1093/icb/icac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/13/2022] Open
Abstract
Shifts in the timing of cyclic seasonal life-history events are among the most commonly reported responses to climate change, with differences in response rates among interacting species leading to phenological mismatches. Within a species, however, males and females can also exhibit differential sensitivity to environmental cues and may therefore differ in their responsiveness to climate change, potentially leading to phenological mismatches between the sexes. This occurs because males differ from females in when and how energy is allocated to reproduction, resulting in marked sex-differences in life-history timing across the annual cycle. In this review, we take a Tinbergian perspective and examine sex differences in timing of vertebrates from adaptive, ontogenetic, mechanistic, and phylogenetic viewpoints with the goal of informing and motivating more integrative research on sexually dimorphic phenologies. We argue that sexual and natural selection lead to sex-differences in life-history-timing and that understanding the ecological and evolutionary drivers of these differences is critical for connecting climate-driven phenological shifts to population resilience. Ontogeny may influence how and when sex differences in life-history timing arise because the early-life environment can profoundly affect developmental trajectory, rates of reproductive maturation, and seasonal timing. The molecular mechanisms underlying these organismal traits are relevant to identifying the diversity and genetic basis of population- and species-level responses to climate change, and promisingly, the molecular basis of phenology is becoming increasingly well-understood. However, because most studies focus on a single sex, the causes of sex-differences in phenology critical to population resilience often remain unclear. New sequencing tools and analyses informed by phylogeny may help generate hypotheses about mechanism as well as insight into the general "evolvability" of sex differences across phylogenetic scales, especially as trait and genome resources grow. We recommend that greater attention be placed on determining sex-differences in timing mechanisms and monitoring climate change responses in both sexes, and we discuss how new tools may provide key insights into sex-differences in phenology from all four Tinbergian domains.
Collapse
Affiliation(s)
- Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA.,Rocky Mountain Research Station, United States Forest Service, 800 E. Beckwith Ave, Missoula, MT 59801, USA
| | - Cole K Deal
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Kathryn Wilsterman
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Bailey LD, van de Pol M, Adriaensen F, Arct A, Barba E, Bellamy PE, Bonamour S, Bouvier JC, Burgess MD, Charmantier A, Cusimano C, Doligez B, Drobniak SM, Dubiec A, Eens M, Eeva T, Ferns PN, Goodenough AE, Hartley IR, Hinsley SA, Ivankina E, Juškaitis R, Kempenaers B, Kerimov AB, Lavigne C, Leivits A, Mainwaring MC, Matthysen E, Nilsson JÅ, Orell M, Rytkönen S, Senar JC, Sheldon BC, Sorace A, Stenning MJ, Török J, van Oers K, Vatka E, Vriend SJG, Visser ME. Bird populations most exposed to climate change are less sensitive to climatic variation. Nat Commun 2022; 13:2112. [PMID: 35440555 PMCID: PMC9018789 DOI: 10.1038/s41467-022-29635-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species' range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two co-familial European songbirds, the great tit (Parus major) and blue tit (Cyanistes caeruleus), covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity than those in evergreen and mixed habitats. However, populations with higher sensitivity tended to have experienced less rapid change in climate over the past decades, such that populations with high phenological sensitivity will not necessarily exhibit the strongest phenological advancement. Our results show that to effectively assess the impact of climate change on phenology across a species' range it will be necessary to account for intra-specific variation in phenological sensitivity, climate change exposure, and the ecological characteristics of a population.
Collapse
Affiliation(s)
- Liam D Bailey
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands. .,Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany.
| | - Martijn van de Pol
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Frank Adriaensen
- Evolutionary Ecology Group, Department of Biology, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Aneta Arct
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Emilio Barba
- 'Cavanilles' Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Paul E Bellamy
- RSPB Centre for Conservation Science, The Lodge, Sandy, Bedfordshire, UK
| | - Suzanne Bonamour
- Sorbonne Université, Centre d'Écologie et des Sciences de la Conservation (UMR 7204), Muséum National d'Histoire Naturelle, Paris, France
| | | | - Malcolm D Burgess
- RSPB Centre for Conservation Science, The Lodge, Sandy, Bedfordshire, UK.,Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, EPHE, IRD, Univ Montpellier, Montpellier, France
| | | | - Blandine Doligez
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Szymon M Drobniak
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland.,Ecology & Evolution Research Centre; School of Biological, Environmental and Earth Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Anna Dubiec
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, Finland.,Kevo Subarctic Research Institute, University of Turku, Turku, Finland
| | - Peter N Ferns
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Anne E Goodenough
- School of Natural and Social Sciences, Francis Close Hall, University of Gloucestershire, Cheltenham, UK
| | - Ian R Hartley
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - Elena Ivankina
- Zvenigorod Biological Station, Lomonosov Moscow State University, Moscow, Russia
| | | | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Anvar B Kerimov
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Claire Lavigne
- INRAE, PSH, Plantes et Systèmes de culture Horticoles, Avignon, France
| | - Agu Leivits
- Department of Nature Conservation, Environmental Board, Tallinn, Estonia
| | | | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, Universiteitsplein 1, University of Antwerp, Antwerp, Belgium
| | - Jan-Åke Nilsson
- Evolutionary Ecology, Department of Biology, University of Lund, Lund, Sweden
| | - Markku Orell
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Seppo Rytkönen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Juan Carlos Senar
- Evolutionary and Behavioural Ecology Research Unit, Museu de Ciències Naturals de Barcelona, Barcelona, Spain
| | - Ben C Sheldon
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | | | - Martyn J Stenning
- School of Life Sciences, University of Sussex, Sussex, East Sussex, UK
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Emma Vatka
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Stefan J G Vriend
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
7
|
Reid JM, Acker P. Conceptualizing the evolutionary quantitative genetics of phenological life‐history events: Breeding time as a plastic threshold trait. Evol Lett 2022; 6:220-233. [PMID: 35784452 PMCID: PMC9233176 DOI: 10.1002/evl3.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/22/2022] [Accepted: 01/30/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jane M. Reid
- Centre for Biodiversity Dynamics NTNU Trondheim 7491 Norway
- School of Biological Sciences University of Aberdeen Aberdeen AB24 2TZ United Kingdom
| | - Paul Acker
- Centre for Biodiversity Dynamics NTNU Trondheim 7491 Norway
| |
Collapse
|
8
|
Le Vaillant J, Potti J, Camacho C, Canal D, Martínez-Padilla J. Fluctuating selection driven by global and local climatic conditions leads to stasis in breeding time in a migratory bird. J Evol Biol 2021; 34:1541-1553. [PMID: 34415649 DOI: 10.1111/jeb.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
The origin of natural selection is linked to environmental heterogeneity, which influences variation in relative fitness among phenotypes. However, individuals in wild populations are exposed to a plethora of biotic and abiotic environmental factors. Surprisingly, the relative influence of multiple environmental conditions on the relative fitness of phenotypes has rarely been tested in wild populations. Identifying the main selection agent(s) is crucial when the target phenotype is tightly linked to reproduction and when temporal variation in selection is expected to affect evolutionary responses. By using individual-based data from a 29-year study of a short-lived migratory songbird, the pied flycatcher (Ficedula hypoleuca), we studied the relative influence of 28 temperature- and precipitation-based factors at local and global scales on selection on breeding time (egg laying) at the phenotypic level. Selection, estimated using the number of recruits as a proxy for fitness, penalized late breeders. Minimum temperatures in April and May were the environmental drivers that best explained selection on laying date. In particular, there was negative directional selection on laying date mediated by minimum temperature in April, being strongest in cold years. In addition, nonlinear selection on laying date was influenced by minimum temperatures in May, with selection on laying date changing from null to negative as the breeding season progressed. The intensity of selection on late breeders increased when minimum temperatures in May were highest. Our results illustrate the complex influence of environmental factors on selection on laying date in wild bird populations. Despite minimum temperature in April being the only variable that changed over time, its increase did not induce a shift in laying date in the population. In this songbird population, stabilizing selection has led to a three-decade stasis in breeding time. We suggest that variation in the effects of multiple climatic variables on selection may constrain phenotypic change.
Collapse
Affiliation(s)
- Justine Le Vaillant
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Sevilla, Spain
| | - Jaime Potti
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, Sevilla, Spain
| | - Carlos Camacho
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (CSIC), Jaca, Spain
| | - David Canal
- Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - Jesús Martínez-Padilla
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (CSIC), Jaca, Spain
| |
Collapse
|
9
|
Samplonius JM, Atkinson A, Hassall C, Keogan K, Thackeray SJ, Assmann JJ, Burgess MD, Johansson J, Macphie KH, Pearce-Higgins JW, Simmonds EG, Varpe Ø, Weir JC, Childs DZ, Cole EF, Daunt F, Hart T, Lewis OT, Pettorelli N, Sheldon BC, Phillimore AB. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat Ecol Evol 2020; 5:155-164. [PMID: 33318690 DOI: 10.1038/s41559-020-01357-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022]
Abstract
Climate warming has caused the seasonal timing of many components of ecological food chains to advance. In the context of trophic interactions, the match-mismatch hypothesis postulates that differential shifts can lead to phenological asynchrony with negative impacts for consumers. However, at present there has been no consistent analysis of the links between temperature change, phenological asynchrony and individual-to-population-level impacts across taxa, trophic levels and biomes at a global scale. Here, we propose five criteria that all need to be met to demonstrate that temperature-mediated trophic asynchrony poses a growing risk to consumers. We conduct a literature review of 109 papers studying 129 taxa, and find that all five criteria are assessed for only two taxa, with the majority of taxa only having one or two criteria assessed. Crucially, nearly every study was conducted in Europe or North America, and most studies were on terrestrial secondary consumers. We thus lack a robust evidence base from which to draw general conclusions about the risk that climate-mediated trophic asynchrony may pose to populations worldwide.
Collapse
Affiliation(s)
- Jelmer M Samplonius
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK.
| | | | - Christopher Hassall
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Katharine Keogan
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK.,Marine Scotland Science, Marine Laboratory, Aberdeen, UK
| | | | | | - Malcolm D Burgess
- RSPB Centre for Conservation Science, Sandy, UK.,Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | | - Kirsty H Macphie
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - James W Pearce-Higgins
- British Trust for Ornithology, Thetford, UK.,Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Emily G Simmonds
- Department of Mathematical Sciences and Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Øystein Varpe
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Norwegian Institute for Nature Research, Bergen, Norway
| | - Jamie C Weir
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Ella F Cole
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Tom Hart
- Department of Zoology, University of Oxford, Oxford, UK
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Ben C Sheldon
- Department of Zoology, University of Oxford, Oxford, UK
| | - Albert B Phillimore
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Torre Cerro R, Holloway P. A review of the methods for studying biotic interactions in phenological analyses. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rubén Torre Cerro
- Department of Geography University College Cork Cork Ireland
- Environmental Research Institute University College Cork Cork Ireland
| | - Paul Holloway
- Department of Geography University College Cork Cork Ireland
- Environmental Research Institute University College Cork Cork Ireland
| |
Collapse
|
11
|
Simmonds EG, Cole EF, Sheldon BC, Coulson T. Phenological asynchrony: a ticking time‐bomb for seemingly stable populations? Ecol Lett 2020; 23:1766-1775. [DOI: 10.1111/ele.13603] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Emily G. Simmonds
- Department of Zoology Edward Grey InstituteUniversity of Oxford OxfordOX1 3SZUK
- Department of Mathematical Sciences and Centre for Biodiversity Dynamics Norwegian University of Science and Technology (NTNU) Trondheim Norway
| | - Ella F. Cole
- Department of Zoology Edward Grey InstituteUniversity of Oxford OxfordOX1 3SZUK
| | - Ben C. Sheldon
- Department of Zoology Edward Grey InstituteUniversity of Oxford OxfordOX1 3SZUK
| | - Tim Coulson
- Department of Zoology Edward Grey InstituteUniversity of Oxford OxfordOX1 3SZUK
| |
Collapse
|
12
|
Bison M, Yoccoz NG, Carlson B, Klein G, Laigle I, Van Reeth C, Asse D, Delestrade A. Best environmental predictors of breeding phenology differ with elevation in a common woodland bird species. Ecol Evol 2020; 10:10219-10229. [PMID: 33005377 PMCID: PMC7520200 DOI: 10.1002/ece3.6684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Temperatures in mountain areas are increasing at a higher rate than the Northern Hemisphere land average, but how fauna may respond, in particular in terms of phenology, remains poorly understood. The aim of this study was to assess how elevation could modify the relationships between climate variability (air temperature and snow melt-out date), the timing of plant phenology and egg-laying date of the coal tit (Periparus ater). We collected 9 years (2011-2019) of data on egg-laying date, spring air temperature, snow melt-out date, and larch budburst date at two elevations (~1,300 m and ~1,900 m asl) on a slope located in the Mont-Blanc Massif in the French Alps. We found that at low elevation, larch budburst date had a direct influence on egg-laying date, while at high-altitude snow melt-out date was the limiting factor. At both elevations, air temperature had a similar effect on egg-laying date, but was a poorer predictor than larch budburst or snowmelt date. Our results shed light on proximate drivers of breeding phenology responses to interannual climate variability in mountain areas and suggest that factors directly influencing species phenology vary at different elevations. Predicting the future responses of species in a climate change context will require testing the transferability of models and accounting for nonstationary relationships between environmental predictors and the timing of phenological events.
Collapse
Affiliation(s)
- Marjorie Bison
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
| | - Nigel G. Yoccoz
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Bradley Carlson
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
| | - Geoffrey Klein
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
- Institute of GeographyUniversity of NeuchatelNeuchatelSwitzerland
| | - Idaline Laigle
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
| | - Colin Van Reeth
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
| | - Daphné Asse
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
- Centre d’Ecologie Fonctionnelle et EvolutiveUMR 5175CNRS‐Université de Montpellier – Université Paul‐Valéry Montpellier – EPHEMontpellierFrance
| | - Anne Delestrade
- Centre de Recherches sur les Ecosystèmes d’Altitude (CREA Mont‐Blanc)Observatoire du Mont‐BlancChamonixFrance
| |
Collapse
|
13
|
Cascading effects of temperature alterations on trophic ecology of European grayling (Thymallus thymallus). Sci Rep 2019; 9:18358. [PMID: 31798001 PMCID: PMC6892815 DOI: 10.1038/s41598-019-55000-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 11/21/2019] [Indexed: 11/23/2022] Open
Abstract
The aims of this project were to study: diet composition, food selectivity and the phenology of different prey items in grayling’s (Thymallus thymallus) diet. It was hypothesized, that alterations in mayfly emergence, caused by reservoir-induced thermal changes, have consequences for trophic ecology of drift-feeding fish. Sampling of fish and macroinvertebrates were conducted in two closely located rivers, one human-modified and the other an undisturbed river. Grayling preyed mainly on aquatic insects, but only mayflies were preferred. Seasonal changes of the fish diet were observed, and air temperature is considered a predictor of prey occurrence with different time lags, depending on the biology of the organisms. Significant differences in the abundances and probability of mayfly occurrence between two studied rivers were shown. The observed phenological shift suggests that distorted environmental cues were experienced by the Ephemeroptera in the modified river. The “lost generation” of insects which failed to complete development became a new food for fish. The results presented indicate that reservoir-induced thermal alterations in the rivers, similarly to climate change, can lead to a chain of consequences in the ecosystems. Taking into consideration the projected climate scenarios, further monitoring and forecasting of these effects are considered an important step for future mitigating actions and adaptive management of water resources.
Collapse
|
14
|
Shutt JD, Cabello IB, Keogan K, Leech DI, Samplonius JM, Whittle L, Burgess MD, Phillimore AB. The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird. Proc Biol Sci 2019; 286:20190952. [PMID: 31409248 DOI: 10.1098/rspb.2019.0952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Establishing the cues or constraints that influence avian timing of breeding is the key to accurate prediction of future phenology. This study aims to identify the aspects of the environment that predict the timing of two measures of breeding phenology (nest initiation and egg laying date) in an insectivorous woodland passerine, the blue tit (Cyanistes caeruleus). We analyse data collected from a 220 km, 40-site transect over 3 years and consider spring temperatures, tree leafing phenology, invertebrate availability and photoperiod as predictors of breeding phenology. We find that mean night-time temperature in early spring is the strongest predictor of both nest initiation and lay date and suggest this finding is most consistent with temperature acting as a constraint on breeding activity. Birch budburst phenology significantly predicts lay date additionally to temperature, either as a direct cue or indirectly via a correlated variable. We use cross-validation to show that our model accurately predicts lay date in two further years and find that similar variables predict lay date well across the UK national nest record scheme. This work refines our understanding of the principal factors influencing the timing of tit reproductive phenology and suggests that temperature may have both a direct and indirect effect.
Collapse
Affiliation(s)
- Jack D Shutt
- Institute of Evolutionary Biology, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Irene Benedicto Cabello
- Institute of Evolutionary Biology, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Katharine Keogan
- Institute of Evolutionary Biology, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - David I Leech
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, UK
| | - Jelmer M Samplonius
- Institute of Evolutionary Biology, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Lorienne Whittle
- Woodland Trust, Kempton Way, Grantham, Lincolnshire NG31 6LL, UK
| | - Malcolm D Burgess
- RSPB Centre for Conservation Science, The Lodge, Sandy, Bedfordshire SG19 2DL, UK.,Centre for Research in Animal Behaviour, The University of Exeter, Exeter, Devon EX4 4QG, UK
| | - Albert B Phillimore
- Institute of Evolutionary Biology, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| |
Collapse
|