1
|
Gaedke U, Li X, Guill C, Hemerik L, de Ruiter PC. Seasonal Shifts in Trophic Interaction Strength Drive Stability of Natural Food Webs. Ecol Lett 2025; 28:e70075. [PMID: 39891499 PMCID: PMC11786205 DOI: 10.1111/ele.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
It remains challenging to understand why natural food webs are remarkably stable despite highly variable environmental factors and population densities. We investigated the dynamics in the structure and stability of Lake Constance's pelagic food web using 7 years of high-frequency observations of biomasses and production, leading to 59 seasonally resolved quantitative food web descriptions. We assessed the dynamics in asymptotic food web stability through maximum loop weight, which revealed underlying stability mechanisms. Maximum loop weight showed a recurrent seasonal pattern with a consistently high stability despite pronounced dynamics in biomasses, fluxes and productivity. This stability resulted from seasonal rewiring of the food web, driven by energetic constraints within loops and their embedding into food web structure. The stabilising restructuring emerged from counter-acting effects of metabolic activity and competitiveness/susceptibility to predation within a diverse grazer community on loop weight. This underscores the role of functional diversity in promoting food web stability.
Collapse
Affiliation(s)
- Ursula Gaedke
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Xiaoxiao Li
- School of Ecology, Environment and ResourcesGuangdong University of TechnologyGuangzhouChina
| | - Christian Guill
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Lia Hemerik
- Biometris, Department of Mathematical and Statistical MethodsWageningen UniversityWageningenThe Netherlands
| | - Peter C. de Ruiter
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
- Biometris, Department of Mathematical and Statistical MethodsWageningen UniversityWageningenThe Netherlands
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
2
|
Li X, Yang W, Ma X, Zhu Z, Sun T, Cui B, Yang Z. Invasive Spartina alterniflora habitat forms high energy fluxes but low food web stability compared to adjacent native vegetated habitats. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117487. [PMID: 36801685 DOI: 10.1016/j.jenvman.2023.117487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Invasive Spartina spp. mostly colonizes a bare tidal flat and then establishes a new vegetated habitat, where it promotes the productivity of local ecosystems. However, it was unclear whether the invasive habitat could well exhibit ecosystem functioning, e.g. how its high productivity propagates throughout the food web and whether it thereby develops a high food web stability relative to native vegetated habitats. By developing quantitative food webs for a long-established invasive Spartina alterniflora habitat and adjacent native salt marsh (Suaeda salsa) and seagrass (Zostera japonica) habitats in China's Yellow River Delta, we investigated the distributions of energy fluxes, assessed the stability of food webs, and investigated the net trophic effects between trophic groups by combining all direct and indirect trophic interactions. Results showed that the total energy flux in the invasive S. alterniflora habitat was comparable to that in the Z. japonica habitat, whereas 4.5 times higher than that in the S. salsa habitat. While, the invasive habitat had the lowest trophic transfer efficiencies. Food web stability in the invasive habitat was about 3 and 40 times lower than that in the S. salsa and Z. japonica habitats, respectively. Additionally, there were strong net effects caused by intermediate invertebrate species in the invasive habitat rather than by fish species in both native habitats. This study revealed the contradiction between the promotion of energy fluxes and the decrease of food web stability resulting from the invasion of S. alterniflora, which provides new insights into the community-based management of plant invasions.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China.
| | - Xu Ma
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Zhenchang Zhu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Tao Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
3
|
Ginzburg LR, Damuth J. The Issue Isn’t Which Model of Consumer Interference Is Right, but Which One Is Least Wrong. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.860542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Empirical observations and an analogy with the history of ballistics illuminate the ongoing debate about the default choice for types of functional responses, based on consumer interference. The two ideal views of consumer interference are: (1) There is no direct mutual interference among consumers (“prey-dependence”), and (2) Consumers show strong mutual interference, the functional response depending on the number of prey per consumer (“ratio-dependence”). Each of these minimal-information concepts are what we refer to as “root” models, of limited accuracy in themselves, but they are the base upon which we erect complex models for specific, real-world cases. We argue that the ratio dependent view coincides more naturally with the way we model the dynamics of any population, and taken alone it is the model more consistent with empirical observations. Both root models often will give the “wrong answer” when applied directly to real world cases. Nevertheless, one root model may be “less wrong” than the other. This is not unlike developments 400 years ago in physics, when two root models competed in ballistics. Galileo’s demonstration that the default trajectory of a projectile is a parabola eventually replaced what had been the dominant root model since Aristotle. Both ballistic root models are inaccurate in the presence of air friction, but the parabolic model is, overall, less wrong. We argue that the ratio-dependent model, like the parabolic trajectory, is the “less wrong” and it is therefore a natural view from which to start thinking about consumer-resource interaction and developing more elaborate models.
Collapse
|
4
|
Microbial Diversity Characteristics of Areca Palm Rhizosphere Soil at Different Growth Stages. PLANTS 2021; 10:plants10122706. [PMID: 34961178 PMCID: PMC8705836 DOI: 10.3390/plants10122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/03/2022]
Abstract
The rhizosphere microflora are key determinants that contribute to plant health and productivity, which can support plant nutrition and resistance to biotic and abiotic stressors. However, limited research is conducted on the areca palm rhizosphere microbiota. To further study the effect of the areca palm’s developmental stages on the rhizosphere microbiota, the rhizosphere microbiota of areca palm (Areca catechu) grown in its main producing area were examined in Wanning, Hainan province, at different vegetation stages by an Illumina Miseq sequence analysis of the 16S ribosomal ribonucleic acid and internal transcribed spacer genes. Significant shifts of the taxonomic composition of the bacteria and fungi were observed in the four stages. Burkholderia-Caballeronia-Paraburkholderia were the most dominant group in stage T1 and T2; the genera Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium were decreased significantly from T1 to T2; and the genera Acidothermus and Bacillus were the most dominant in stage T3 and T4, respectively. Meanwhile, Neocosmospora, Saitozyma, Penicillium, and Trichoderma were the most dominant genera in the stage T1, T2, T3, and T4, respectively. Among the core microbiota, the dominant bacterial genera were Burkholderia-Caballeronia-Paraburkholderia and Bacillus, and the dominant fungal genera were Saitozyma and Trichoderma. In addition, we identified five bacterial genera and five fungal genera that reached significant levels during development. Finally, we constructed the OTU (top 30) interaction network of bacteria and fungi, revealed its interaction characteristics, and found that the bacterial OTUs exhibited more extensive interactions than the fungal OTUs. Understanding the rhizosphere soil microbial diversity characteristics of the areca palm could provide the basis for exploring microbial association and maintaining the areca palm’s health.
Collapse
|