1
|
Shivambu TC, Shivambu N, Nelufule T, Moshobane MC, Seoraj-Pillai N, Nangammbi TC. Returning to the Wilderness: Potential Habitat Suitability of Non-Native Pet Birds in South Africa. BIOLOGY 2024; 13:483. [PMID: 39056678 PMCID: PMC11274018 DOI: 10.3390/biology13070483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
The global trade of non-native pet birds has increased in recent decades, and this has accelerated the introduction of invasive birds in the wild. This study employed ensemble species distribution modelling (eSDM) to assess potential habitat suitability and environmental predictor variables influencing the potential distribution of non-native pet bird species reported lost and sighted in South Africa. We used data and information on lost and found pet birds from previous studies to establish and describe scenarios of how pet birds may transition from captivity to the wild. Our study revealed that models fitted and performed well in predicting the suitability for African grey (Psittacus erithacus), Budgerigar (Melopsittacus undulatus), Cockatiel (Nymphicus hollandicus), Green-cheeked conure (Pyrrhura molinae), Monk parakeet (Myiopsitta monachus), and Rose-ringed parakeet (Psittacula krameri), with the mean weighted AUC and TSS values greater than 0.765. The predicted habitat suitability differed among species, with the suitability threshold indicating that between 61% and 87% of areas were predicted as suitable. Species with greater suitability included the African grey, Cockatiel, and Rose-ringed parakeet, which demonstrated significant overlap between their habitat suitability and reported lost cases. Human footprint, bioclimatic variables, and vegetation indices largely influenced predictive habitat suitability. The pathway scenario showed the key mechanisms driving the transition of pet birds from captivity to the wild, including the role of pet owners, animal rescues, adoption practices, and environmental suitability. Our study found that urban landscapes, which are heavily populated, are at high risk of potential invasion by pet birds. Thus, implementing a thorough surveillance survey is crucial for monitoring and evaluating the establishment potential of pet species not yet reported in the wild.
Collapse
Affiliation(s)
- Tinyiko C. Shivambu
- Faculty of Science, Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (N.S.); (T.N.); (N.S.-P.); (T.C.N.)
| | - Ndivhuwo Shivambu
- Faculty of Science, Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (N.S.); (T.N.); (N.S.-P.); (T.C.N.)
| | - Takalani Nelufule
- Faculty of Science, Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (N.S.); (T.N.); (N.S.-P.); (T.C.N.)
| | - Moleseng C. Moshobane
- South African National Biodiversity Institute, Pretoria National Botanical Garden, 2 Cussonia Avenue, Brummeria, Silverton 0184, South Africa;
| | - Nimmi Seoraj-Pillai
- Faculty of Science, Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (N.S.); (T.N.); (N.S.-P.); (T.C.N.)
| | - Tshifhiwa C. Nangammbi
- Faculty of Science, Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa; (N.S.); (T.N.); (N.S.-P.); (T.C.N.)
| |
Collapse
|
2
|
Henriksen MV, Arlé E, Pili A, Clarke DA, García-Berthou E, Groom Q, Lenzner B, Meyer C, Seebens H, Tingley R, Winter M, McGeoch MA. Global indicators of the environmental impacts of invasive alien species and their information adequacy. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230323. [PMID: 38583467 PMCID: PMC10999262 DOI: 10.1098/rstb.2023.0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/18/2023] [Indexed: 04/09/2024] Open
Abstract
Monitoring the extent to which invasive alien species (IAS) negatively impact the environment is crucial for understanding and mitigating biological invasions. Indeed, such information is vital for achieving Target 6 of the Kunming-Montreal Global Biodiversity Framework. However, to-date indicators for tracking the environmental impacts of IAS have been either lacking or insufficient. Capitalizing on advances in data availability and impact assessment protocols, we developed environmental impact indicators to track realized and potential impacts of IAS. We also developed an information status indicator to assess the adequacy of the data underlying the impact indicators. We used data on 75 naturalized amphibians from 82 countries to demonstrate the indicators at a global scale. The information status indicator shows variation in the reliability of the data and highlights areas where absence of impact should be interpreted with caution. Impact indicators show that growth in potential impacts are dominated by predatory species, while potential impacts from both predation and disease transmission are distributed worldwide. Using open access data, the indicators are reproducible and adaptable across scales and taxa and can be used to assess global trends and distributions of IAS, assisting authorities in prioritizing control efforts and identifying areas at risk of future invasions. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Collapse
Affiliation(s)
- Marie V. Henriksen
- Department of Landscape and Biodiversity, Norwegian Institute of Bioeconomy Research, Trondheim 7031, Norway
| | - Eduardo Arlé
- Macroecology & Society, German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997712, Israel
| | - Arman Pili
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - David A. Clarke
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | | | | | - Bernd Lenzner
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Carsten Meyer
- Macroecology & Society, German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Geosciences and Geography, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Hanno Seebens
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, Frankfurt 6325, Germany
| | - Reid Tingley
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
- EnviroDNA Pty Ltd, 95 Albert Street, Brunswick, Victoria 3056, Australia
| | - Marten Winter
- sDiv, Synthesis Centre, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Melodie A. McGeoch
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
3
|
Tarkan AS, Bayçelebi E, Giannetto D, Özden ED, Yazlık A, Emiroğlu Ö, Aksu S, Uludağ A, Aksoy N, Baytaşoğlu H, Kaya C, Mutlu T, Kırankaya ŞG, Ergüden D, Per E, Üremiş İ, Candan O, Kekillioğlu A, Yoğurtçuoğlu B, Ekmekçi FG, Başak E, Özkan H, Kurtul I, Innal D, Killi N, Yapıcı S, Ayaz D, Çiçek K, Mol O, Çınar E, Yeğen V, Angulo E, Cuthbert RN, Soto I, Courchamp F, Haubrock PJ. Economic costs of non-native species in Türkiye: A first national synthesis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120779. [PMID: 38599083 DOI: 10.1016/j.jenvman.2024.120779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Biological invasions are increasingly recognised as a major global change that erodes ecosystems, societal well-being, and economies. However, comprehensive analyses of their economic ramifications are missing for most national economies, despite rapidly escalating costs globally. Türkiye is highly vulnerable to biological invasions owing to its extensive transport network and trade connections as well as its unique transcontinental position at the interface of Europe and Asia. This study presents the first analysis of the reported economic costs caused by biological invasions in Türkiye. The InvaCost database which compiles invasive non-native species' monetary costs was used, complemented with cost searches specific to Türkiye, to describe the spatial and taxonomic attributes of costly invasive non-native species, the types of costs, and their temporal trends. The total economic cost attributed to invasive non-native species in Türkiye (from 202 cost reporting documents) amounted to US$ 4.1 billion from 1960 to 2022. However, cost data were only available for 87 out of 872 (10%) non-native species known for Türkiye. Costs were biased towards a few hyper-costly non-native taxa, such as jellyfish, stink bugs, and locusts. Among impacted sectors, agriculture bore the highest total cost, reaching US$ 2.85 billion, followed by the fishery sector with a total cost of US$ 1.20 billion. Management (i.e., control and eradication) costs were, against expectations, substantially higher than reported damage costs (US$ 2.89 billion vs. US$ 28.4 million). Yearly costs incurred by non-native species rose exponentially over time, reaching US$ 504 million per year in 2020-2022 and are predicted to increase further in the next 10 years. A large deficit of cost records compared to other countries was also shown, suggesting a larger monetary underestimate than is typically observed. These findings underscore the need for improved cost recording as well as preventative management strategies to reduce future post-invasion management costs and help inform decisions to manage the economic burdens posed by invasive non-native species. These insights further emphasise the crucial role of standardised data in accurately estimating the costs associated with invasive non-native species for prioritisation and communication purposes.
Collapse
Affiliation(s)
- Ali Serhan Tarkan
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Department of Aquatic Basic Science, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye; Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, United Kingdom.
| | - Esra Bayçelebi
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Daniela Giannetto
- Department of Biology, Faculty of Sciences, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Emine Demir Özden
- Department of Plant Protection, Faculty of Agriculture, Düzce University, Düzce, Türkiye
| | - Ayşe Yazlık
- Department of Plant Protection, Faculty of Agriculture, Düzce University, Düzce, Türkiye
| | - Özgür Emiroğlu
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Sadi Aksu
- Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Ahmet Uludağ
- Plant Protection Department, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Necmi Aksoy
- Department of Forest Botany, Faculty of Forestry, Düzce University, Düzce, Türkiye
| | - Hazel Baytaşoğlu
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Cüneyt Kaya
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Tanju Mutlu
- Vocational School of Technical Sciences, Environmental Protection Technologies Department, Recep Tayyip Erdoğan University, Türkiye
| | | | - Deniz Ergüden
- Department of Marine Sciences, Faculty of Marine Sciences and Technology, İskenderun Technical University, İskenderun, Türkiye
| | - Esra Per
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye
| | - İlhan Üremiş
- Plant Protection Department, Faculty of Agriculture, Hatay Mustafa Kemal University, Antakya, Hatay, Türkiye
| | - Onur Candan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ordu University, Ordu, Türkiye
| | - Aysel Kekillioğlu
- Department of Biology, Faculty of Science and Literature, Nevşehir HBV University, Nevşehir, Türkiye
| | - Baran Yoğurtçuoğlu
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara, Türkiye
| | - F Güler Ekmekçi
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara, Türkiye
| | - Esra Başak
- Project House Cooperative, Moda Caddesi Borucu Han No:20/204 Kadıköy, Istanbul, Türkiye
| | - Hatice Özkan
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Türkiye
| | - Irmak Kurtul
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, United Kingdom; Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, İzmir, Türkiye
| | - Deniz Innal
- Department of Biology, Faculty of Sciences and Literature, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye
| | - Nurçin Killi
- Department of Aquatic Basic Science, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Sercan Yapıcı
- Department of Aquatic Basic Science, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Dinçer Ayaz
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Kerim Çiçek
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye; Natural History Application and Research Centre, Ege University, Izmir, Türkiye
| | - Oğuzcan Mol
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Emre Çınar
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Vedat Yeğen
- Fisheries Research Institute, Eğirdir, Isparta, Türkiye
| | - Elena Angulo
- Estación Biológica de Doñana, CSIC, Avda. Americo Vespucio 26, 41092, Seville, Spain
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif sur Yvette, France
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait.
| |
Collapse
|
4
|
Nelufule T, Robertson MP, Wilson JRU, Faulkner KT. An inventory of native-alien populations in South Africa. Sci Data 2023; 10:213. [PMID: 37061528 PMCID: PMC10105770 DOI: 10.1038/s41597-023-02119-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/29/2023] [Indexed: 04/17/2023] Open
Abstract
Species can be both native and alien to a given administrative region. Here we present the first consolidated inventory of these 'native-alien populations' for South Africa, and provide an overview of the data it contains. To gather data, literature searches were performed and experts were consulted both directly and via an on-line survey. Putative native-alien populations were then scored based on a newly developed protocol. The final inventory contains information on 77 native species from 49 families across nine classes that have formed 132 native-alien populations across the terrestrial, freshwater, and marine environments. The phenomenon is rare when compared to the prevalence of related phenomena, such as alien species introduced from other countries (2033 alien species in South Africa), but is under-reported. However, they pose a specific problem for regulators and managers and their importance will likely increase with global change. These data will be integrated with an existing alien species list and, we hope, will provide a useful foundation to address the issue. We encourage those working on biodiversity to contribute more records.
Collapse
Affiliation(s)
- Takalani Nelufule
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa.
| | - Mark P Robertson
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - John R U Wilson
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Katelyn T Faulkner
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| |
Collapse
|
5
|
The Diversity of Alien Plant Species in South Africa’s National Botanical and Zoological Gardens. DIVERSITY 2023. [DOI: 10.3390/d15030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The management of biological invasions, which pose a growing threat to natural resources and human well-being, is critical for reducing associated negative impacts. As part of the process of developing a strategy for the management of biological invasions in the South African National Biodiversity Institute’s (SANBI) gardens, we collated a list of alien plant species from 13 gardens as part of a situational analysis. We requested lists of alien plant species recorded in each of the SANBI’s gardens. A total of 380 records included 225 alien plant species belonging to 73 families. A significant number of species were intentionally introduced through horticultural trade as ornamentals (49%; n = 225), while 20.9% were consumed as either food or medicine by humans. Plant life forms included woody and herbaceous plants, graminoids, succulents and ferns. Herbaceous (42.7%; n = 225) and woody plants (3.8%) were the dominant life forms. The Walter Sisulu National Botanical Garden had the highest number of alien species (88 species), followed by Kirstenbosch (61 species) and Pretoria (46 species) National Botanical Gardens, with herbaceous species constituting the largest number in all gardens (i.e., 47, 19, and 27 species, respectively). The number of species that we recorded that were listed in the National Environmental Management: Biodiversity Act (NEM: BA) (Act No. 10 of 2004): Alien and Invasive Species Regulations’ categories were not notably different from the number of unlisted species (58.2% vs. 42.8%). The number of species listed in the different categories varied significantly across the different gardens, with a significantly higher number of unlisted species and of Category 1b species in the Walter Sisulu, Kirstenbosch and Pretoria National Botanical Gardens than in other gardens. That a significantly larger number of alien species originated from South America points to the need to improve biosecurity controls on existing relations. The results of this study provided a baseline database to help comparison between successive surveys in future.
Collapse
|
6
|
Vicente JR, Vaz AS, Roige M, Winter M, Lenzner B, Clarke DA, McGeoch MA. Existing indicators do not adequately monitor progress toward meeting invasive alien species targets. Conserv Lett 2022. [DOI: 10.1111/conl.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Joana R. Vicente
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources University of Porto Vila do Conde Portugal
- Faculty of Sciences, Department of Biology University of Porto Porto Portugal
- BIOPOLIS Program in Genomics Biodiversity and Land Planning, CIBIO Campus de Vairão Vairão Portugal
| | - A. Sofia Vaz
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources University of Porto Vila do Conde Portugal
- Faculty of Sciences, Department of Biology University of Porto Porto Portugal
- BIOPOLIS Program in Genomics Biodiversity and Land Planning, CIBIO Campus de Vairão Vairão Portugal
| | - Mariona Roige
- AgResearch, Lincoln Research Centre Lincoln New Zealand
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐Leipzig Deutscher Platz 5e Leipzig Germany
| | - Bernd Lenzner
- Bioinvasions, Global Change, Macroecology Group, Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - David A. Clarke
- Department of Environment and Genetics La Trobe University Melbourne Victoria Australia
| | - Melodie A. McGeoch
- Department of Environment and Genetics La Trobe University Melbourne Victoria Australia
| |
Collapse
|
7
|
Bellingham PJ, Arnst EA, Clarkson BD, Etherington TR, Forester LJ, Shaw WB, Sprague R, Wiser SK, Peltzer DA. The right tree in the right place? A major economic tree species poses major ecological threats. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02892-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractTree species in the Pinaceae are some of the most widely introduced non-native tree species globally, especially in the southern hemisphere. In New Zealand, plantations of radiata pine (Pinus radiata D. Don) occupy c. 1.6 million ha and form 90% of planted forests. Although radiata pine has naturalized since 1904, there is a general view in New Zealand that this species has not invaded widely. We comprehensively review where radiata pine has invaded throughout New Zealand. We used a combination of observational data and climate niche modelling to reveal that invasion has occurred nationally. Climate niche modelling demonstrates that while current occurrences are patchy, up to 76% of the land area (i.e. 211,388 km2) is climatically capable of supporting populations. Radiata pine has mainly invaded grasslands and shrublands, but also some forests. Notably, it has invaded lower-statured vegetation, including three classes of naturally uncommon ecosystems, primary successions and secondary successions. Overall, our findings demonstrate pervasive and ongoing invasion of radiata pine outside plantations. The relatively high growth rates and per individual effects of radiata pine may result in strong effects on naturally uncommon ecosystems and may alter successional trajectories. Local and central government currently manage radiata pine invasions while propagule pressure from existing and new plantations grows, hence greater emphasis is warranted both on managing current invasions and proactively preventing future radiata pine invasions. We therefore recommend a levy on new non-native conifer plantations to offset costs of managing invasions, and stricter regulations to protect vulnerable ecosystems. A levy on economic uses of invasive species to offset costs of managing invasions alongside stricter regulations to protect vulnerable ecosystems could be a widely adopted measure to avert future negative impacts.
Collapse
|
8
|
Keet JH, Datta A, Foxcroft LC, Kumschick S, Nichols GR, Richardson DM, Wilson JRU. Assessing the level of compliance with alien plant regulations in a large African protected area. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Seebens H, Kaplan E. DASCO: A workflow to downscale alien species checklists using occurrence records and to re-allocate species distributions across realms. NEOBIOTA 2022. [DOI: 10.3897/neobiota.74.81082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Information about occurrences of alien species is often provided in so-called checklists, which represents lists of reported alien species in a region. In many cases, available checklists cover whole countries, which is too coarse for many analyses and limits capabilities of assessing status and trends of biological invasions. Information about point-wise occurrences is available in large quantities at online facilities such as GBIF and OBIS, which, however, do not provide information about the invasion status of individual populations. To close this gap, we here provide a semi-automated workflow called DASCO to downscale regional checklists using occurrence records obtained from GBIF and OBIS. Within the workflow, coordinate-based occurrence records for species listed in the provided regional checklists are obtained from GBIF and OBIS, and the status of being an alien population is assigned using the information in the provided checklists. In this way, information in checklists is made available at the local scale, which can then be re-allocated to any other spatial categorisation as provided by the user. In addition, habitats of species are determined to distinguish between marine, brackish, terrestrial, and freshwater species, which allows splitting the provided checklists to the respective realms and ecoregions. By using checklists of global databases, we showcase the usage of the DASCO workflow and revealed > 35 million occurrence records of alien populations in terrestrial and marine regions worldwide, which were back-transformed to terrestrial and marine regions for comparison. DASCO has the potential to be used as a basis for the widely applied species distribution models or assessments of status and trends of biological invasions at large geographic scales. The workflow is implemented in R and in full compliance with the FAIR data principles of open science.
Collapse
|
10
|
Latombe G, Catford JA, Essl F, Lenzner B, Richardson DM, Wilson JRU, McGeoch MA. GIRAE: a generalised approach for linking the total impact of invasion to species' range, abundance and per-unit effects. Biol Invasions 2022; 24:3147-3167. [PMID: 36131994 PMCID: PMC9482606 DOI: 10.1007/s10530-022-02836-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/11/2022] [Indexed: 12/27/2022]
Abstract
The total impact of an alien species was conceptualised as the product of its range size, local abundance and per-unit effect in a seminal paper by Parker et al. (Biol Invasions 1:3-19, 1999). However, a practical approach for estimating the three components has been lacking. Here, we generalise the impact formula and, through use of regression models, estimate the relationship between the three components of impact, an approach we term GIRAE (Generalised Impact = Range size × Abundance × per-unit Effect). We discuss how GIRAE can be applied to multiple types of impact, including environmental impacts, damage and management costs. We propose two methods for applying GIRAE. The species-specific method computes the relationship between impact, range size, abundance and per-unit effect for a given species across multiple invaded sites or regions of different sizes. The multi-species method combines data from multiple species across multiple sites or regions to calculate a per-unit effect for each species and is computed using a single regression model. The species-specific method is more accurate, but it requires a large amount of data for each species and assumes a constant per-unit effect for a species across the invaded area. The multi-species method is more easily applicable and data-parsimonious, but assumes the same relationship between impact, range size and abundance for all considered species. We illustrate these methods using data about money spent managing plant invasions in different biomes of South Africa. We found clear differences between species in terms of money spent per unit area invaded, with per-unit expenditure varying substantially between biomes for some species-insights that are useful for monitoring and evaluating management. GIRAE offers a versatile and practical method that can be applied to many different types of data to better understand and manage the impacts of biological invasions. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-022-02836-0.
Collapse
Affiliation(s)
- Guillaume Latombe
- Institute of Ecology and Evolution, The University of Edinburgh, King’s Buildings, EH9 3FL Edinburgh, UK
| | - Jane A. Catford
- Department of Geography, King’s College London, 30 Aldwych, London, WC2B 4BG UK
- School of Ecosystem and Forest Sciences, University of Melbourne, VIC 3121 Richmond, Australia
| | - Franz Essl
- Bioinvasions, Global Change, Macroecology Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Bernd Lenzner
- Bioinvasions, Global Change, Macroecology Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - David M. Richardson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - John R. U. Wilson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - Melodie A. McGeoch
- Department of Ecology, Environment and Evolution, LaTrobe University, Melbourne, VIC 3086 Australia
| |
Collapse
|
11
|
Chakona A, Jordaan MS, Raimondo DC, Bills RI, Skelton PH, van der Colff D. Diversity, distribution and extinction risk of native freshwater fishes of South Africa. JOURNAL OF FISH BIOLOGY 2022; 100:1044-1061. [PMID: 35170047 DOI: 10.1111/jfb.15011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/08/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Extinction risk for 101 valid species and 18 unique genetic lineages of native freshwater fishes of South Africa was assessed in 2016 following the IUCN Red List criteria. An additional five species (three new species that were described and two species that were revalidated subsequent to the 2016 assessments) were assessed in the present study. A synthesis of the outcome of the assessments of the 106 valid species and 18 genetic lineages indicates that 45 (36%) of South Africa's freshwater fish taxa are threatened (7 Critically Endangered, 25 Endangered, 13 Vulnerable). Of the remaining taxa, 17 (14%) are listed as Near Threatened, 57 (46%) are Least Concern and five (4%) are Data Deficient. More than 60% of the endemic taxa are threatened. The Cape Fold Ecoregion has the highest proportion of threatened taxa (67%) due to the existence of a unique assemblage of narrow-range endemic species. Galaxias and Pseudobarbus have the highest number of highly threatened taxa as most of the species and lineages in these genera are classified as either CR or EN. Major threats to the native freshwater fishes of the country are invasive fish species, deterioration of water quality, impoundments and excessive water abstraction, land use changes and modification of riverine habitats. Immediate conservation efforts should focus on securing remnant populations of highly threatened taxa and preventing deterioration in threat status, because recovery is rare. Accurate delimitation of species boundaries, mapping their distribution ranges, improved knowledge of pressures and long-term monitoring of population trends need to be prioritised to generate credible data for the 2026 IUCN threat status assessments and designation of important fish areas as part of the National Freshwater Ecosystem Priority Areas (NFEPA) initiative.
Collapse
Affiliation(s)
- Albert Chakona
- NRF-South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda (Grahamstown), South Africa
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda (Grahamstown), South Africa
| | - Martine S Jordaan
- NRF-South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda (Grahamstown), South Africa
- CapeNature Biodiversity Capabilities Unit, Stellenbosch
- Center of Excellence for Invasion Biology, CapeNature Biodiversity Capabilities Unit, Stellenbosch
| | - Domitilla C Raimondo
- South African National Biodiversity Institute Threatened Species Program, Kirstenbosch National Botanical Gardens, Cape Town
| | - Roger I Bills
- NRF-South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda (Grahamstown), South Africa
| | - Paul H Skelton
- NRF-South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda (Grahamstown), South Africa
| | - Dewidine van der Colff
- Center of Excellence for Invasion Biology, CapeNature Biodiversity Capabilities Unit, Stellenbosch
- South African National Biodiversity Institute Threatened Species Program, Kirstenbosch National Botanical Gardens, Cape Town
| |
Collapse
|
12
|
Jansen C, Kumschick S. A global impact assessment of Acacia species introduced to South Africa. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02642-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
van Wilgen BW, Zengeya TA, Richardson DM. A review of the impacts of biological invasions in South Africa. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02623-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Liu C, Diagne C, Angulo E, Banerjee AK, Chen Y, Cuthbert RN, Haubrock PJ, Kirichenko N, Pattison Z, Watari Y, Xiong W, Courchamp F. Economic costs of biological invasions in Asia. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.58147] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Invasive species have caused severe impacts on biodiversity and human society. Although the estimation of environmental impacts caused by invasive species has increased in recent years, economic losses associated with biological invasions are only sporadically estimated in space and time. In this study, we synthesized the losses incurred by invasions in Asia, based on the most comprehensive database of economic costs of invasive species worldwide, including 560 cost records for 88 invasive species in 22 countries. We also assessed the differences in economic costs across taxonomic groups, geographical regions and impacted sectors, and further identified the major gaps of current knowledge in Asia. Reported economic costs of biological invasions were estimated between 1965 and 2017, and reached a total of US$ 432.6 billion (2017 value), with dramatic increases in 2000–2002 and in 2004. The highest costs were recorded for terrestrial ectotherms, for species estimated in South Asia, and for species estimated at the country level, and were related to more than one impacted sector. Two taxonomic groups with the highest reported costs were insects and mammals, and two countries with the highest costs were India and China. Non-English data covered all of 12 taxonomic groups, whereas English data only covered six groups, highlighting the importance of considering data from non-English sources to have a more comprehensive estimation of economic costs associated with biological invasions. However, we found that the estimation of economic costs was lacking for most Asian countries and for more than 96% of introduced species in Asia. Further, the estimation is heavily biased towards insects and mammals and is very limited concerning expenditures on invasion management. To optimize the allocation of limited resources, there is an important need to better and more widely study the economic costs of invasive alien species. In this way, improved cost reporting and more collaborations between scientists and stakeholders are needed across Asia.
Collapse
|
15
|
McGrannachan CM, Pagad S, McGeoch MA. A multiregional assessment of transnational pathways of introduction. NEOBIOTA 2021. [DOI: 10.3897/neobiota.64.60642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Information on the pathways by which alien taxa are introduced to new regions is vital for prioritising policy and management responses to invasions. However, available datasets are often compiled using disparate methods, making comparison and collation of pathway data difficult. Using a standardised framework for recording and categorising pathway data can help to rectify this problem and provide the information necessary to develop indicators for reporting on alien introductions. We combine the Convention on Biological Diversity’s Pathways Categorisation Scheme (CPC) with data compiled by the Invasive Species Specialist Group (ISSG) to report on multiregional trends on alien introduction pathways over the past 200+ years. We found a significant increase in the documented number of multiregional alien introduction events across all pathways of the CPC’s three hierarchical levels. The ‘escape’ pathway is the most common documented pathway used by alien taxa. Transport stowaways via shipping-related pathways are a rapidly increasing contribution to alien introductions. Most alien introduction events were of unknown pathway origin, highlighting the challenge of information gaps in pathway data and reiterating the need for standardised information-gathering practices. Combining the CPC framework with alien introduction pathways data will standardise pathway information and facilitate the development of global indicators of trends in alien introductions and the pathways they use. These indicators have the potential to inform policy and management strategies for preventing future biological invasions and can be downscaled to national and regional levels that are applicable across taxa and ecosystems.
Collapse
|
16
|
Kumschick S, Bacher S, Bertolino S, Blackburn TM, Evans T, Roy HE, Smith K. Appropriate uses of EICAT protocol, data and classifications. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.51574] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Environmental Impact Classification for Alien Taxa (EICAT) can be used to classify alien taxa according to the magnitude and type of their environmental impacts. The EICAT protocol, classifications of alien taxa using the protocol (EICAT classification) and the data underpinning classifications (EICAT data) are increasingly used by scientists and practitioners such as governments, NGOs and civil society for a variety of purposes. However, the properties of the EICAT protocol and the data it generates are not suitable for certain uses. Therefore, we present guidelines designed to clarify and facilitate the appropriate use of EICAT to tackle a broad range of conservation issues related to biological invasions, as well as to guide research and communication more generally. Here we address common misconceptions and give a brief overview of some key issues that all EICAT users need to be aware of to take maximal advantage of this resource. Furthermore, we give examples of the wide variety of ways in which the EICAT protocol, classifications and data can be and have been utilised and outline common errors and pitfalls to avoid.
Collapse
|
17
|
Brock KC, Daehler CC. Applying an invasion and risk framework to track non-native island floras: a case study of challenges and solutions in Hawai‘i. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.52764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Islands are plant invasion hotspots, with some having more non-native than native species. Many plants are recent arrivals, leading to concerns that their full spread and impacts are not yet realised. Given that islands host extraordinary numbers of endemic and threatened species, schemes are urgently needed to track the complex, species-rich but data-poor scenarios typical of islands. This study applies the unified framework by Blackburn et al. (2011) for categorising invasion stages to Hawai‘i’s non-native plant checklist and identifies potential uses and complications for species tracking and invasion management. Data deficiencies and ambiguities required lumping Blackburn et al.’s categories to align with Hawai‘i’s available data; nonetheless, this coarser categorisation describes invasion phases relevant to managers and could provide the basis for an effective tracking system. However, the unified framework does not accommodate uncertain invasion statuses, which prevents clear categorisation of species that exist outside of cultivation but are not definitely naturalised. In response to this obstacle, scores from the Hawai‘i-Pacific Weed Risk Assessment (WRA) are explored to understand their application for predicting naturalisation, including standard WRA scores as well as alternative scoring methods. We show that this predictive tool may be a promising supplement to on-the-ground monitoring for data-deficient elements of a flora. Finally, a categorisation system for tracking statuses of an entire non-native flora is proposed that requires limited investments in additional data collection while following the rationale of Blackburn et al.’s scheme. This categorisation system may be used to reveal overall invasion patterns and trends in a region, leading to valuable insights into strategies for biodiversity management and conservation.
Collapse
|
18
|
Essl F, Latombe G, Lenzner B, Pagad S, Seebens H, Smith K, Wilson JRU, Genovesi P. The Convention on Biological Diversity (CBD)’s Post-2020 target on invasive alien species – what should it include and how should it be monitored? NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.53972] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The year 2020 and the next few years are critical for the development of the global biodiversity policy agenda until the mid-21st century, with countries agreeing to a Post-2020 Global Biodiversity Framework under the Convention on Biological Diversity (CBD). Reducing the substantial and still rising impacts of invasive alien species (IAS) on biodiversity will be essential if we are to meet the 2050 Vision where biodiversity is valued, conserved, and restored. A tentative target has been developed by the IUCN Invasive Species Specialist Group (ISSG), and formally submitted to the CBD for consideration in the discussion on the Post-2020 targets. Here, we present properties of this proposal that we regard as essential for an effective Post-2020 Framework. The target should explicitly consider the three main components of biological invasions, i.e. (i) pathways, (ii) species, and (iii) sites; the target should also be (iv) quantitative, (v) supplemented by a set of indicators that can be applied to track progress, and (vi) evaluated at medium- (2030) and long-term (2050) time horizons. We also present a proposed set of indicators to track progress. These properties and indicators are based on the increasing scientific understanding of biological invasions and effectiveness of responses. Achieving an ambitious action-oriented target so that the 2050 Vision can be achieved will require substantial effort and resources, and the cooperation of a wide range of stakeholders.
Collapse
|
19
|
Wilson JRU, Bacher S, Daehler CC, Groom QJ, Kumschick S, Lockwood JL, Robinson TB, Zengeya TA, Richardson DM. Frameworks used in invasion science: progress and prospects. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.58738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Our understanding and management of biological invasions relies on our ability to classify and conceptualise the phenomenon. This need has stimulated the development of a plethora of frameworks, ranging in nature from conceptual to applied. However, most of these frameworks have not been widely tested and their general applicability is unknown. In order to critically evaluate frameworks in invasion science, we held a workshop on ‘Frameworks used in Invasion Science’ hosted by the DSI-NRF Centre of Excellence for Invasion Biology in Stellenbosch, South Africa, in November 2019, which led to this special issue. For the purpose of the workshop we defined a framework as “a way of organising things that can be easily communicated to allow for shared understanding or that can be implemented to allow for generalisations useful for research, policy or management”. Further, we developed the Stellenbosch Challenge for Invasion Science: “Can invasion science develop and improve frameworks that are useful for research, policy or management, and that are clear as to the contexts in which the frameworks do and do not apply?”. Particular considerations identified among meeting participants included the need to identify the limitations of a framework, specify how frameworks link to each other and broader issues, and to improve how frameworks can facilitate communication. We believe that the 24 papers in this special issue do much to meet this challenge. The papers apply existing frameworks to new data and contexts, review how the frameworks have been adopted and used, develop useable protocols and guidelines for applying frameworks to different contexts, refine the frameworks in light of experience, integrate frameworks for new purposes, identify gaps, and develop new frameworks to address issues that are currently not adequately dealt with. Frameworks in invasion science must continue to be developed, tested as broadly as possible, revised, and retired as contexts and needs change. However, frameworks dealing with pathways of introduction, progress along the introduction-naturalisation-invasion continuum, and the assessment of impacts are being increasingly formalised and set as standards. This, we argue, is an important step as invasion science starts to mature as a discipline.
Collapse
|
20
|
Faulkner KT, Hulme PE, Pagad S, Wilson JRU, Robertson MP. Classifying the introduction pathways of alien species: are we moving in the right direction? NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.53543] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alien species are introduced to new regions in many different ways and for different purposes. A number of frameworks have been developed to group such pathways of introduction into discrete categories in order to improve our understanding of biological invasions, provide information for interventions that aim to prevent introductions, enable reporting to national and international organisations and facilitate the prediction of threats. The introduction pathway classification framework proposed by the Convention on Biological Diversity (CBD) as a global standard is comprised of six main categories and 44 sub-categories. However, issues have arisen with its implementation. In this position paper, we outline five desirable properties of an introduction pathway classification framework – it should be compatible (i.e. the level of detail of the categories is similar to that of the available data), actionable (i.e. categories link to specific interventions), general (i.e. categories are applicable across the contexts that are of interest (e.g. taxa, habitats and regions)), equivalent (i.e. categories are equivalent in their level of detail) and distinct (i.e. categories are discrete and easily distinguished) – termed the CAGED properties. The six main categories of the CBD framework have all of the CAGED properties, but the detailed sub-categories have few. Therefore, while the framework has been proposed by the CBD as a global standard and efforts have been made to put it into practice, we argue that there is room for improvement. We conclude by presenting scenarios for how the issues identified could be addressed, noting that a hybrid model might be most appropriate.
Collapse
|
21
|
Wilson JRU, Datta A, Hirsch H, Keet JH, Mbobo T, Nkuna KV, Nsikani MM, Pyšek P, Richardson DM, Zengeya TA, Kumschick S. Is invasion science moving towards agreed standards? The influence of selected frameworks. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.53243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The need to understand and manage biological invasions has driven the development of frameworks to circumscribe, classify, and elucidate aspects of the phenomenon. But how influential have these frameworks really been? To test this, we evaluated the impact of a pathway classification framework, a framework focussing on the introduction-naturalisation-invasion continuum, and two papers that outline an impact classification framework. We analysed how these framework papers are cited and by whom, conducted a survey to determine why people have cited the frameworks, and explored the degree to which the frameworks are implemented. The four papers outlining these frameworks are amongst the most-cited in their respective journals, are highly regarded in the field, and are already seen as citation classics (although citations are overwhelmingly within the field of invasion science). The number of citations to the frameworks has increased over time, and, while a significant proportion of these are self-citations (20–40%), this rate is decreasing. The frameworks were cited by studies conducted and authored by researchers from across the world. However, relative to a previous citation analysis of invasion science as a whole, the frameworks are particularly used in Europe and South Africa and less so in North America. There is an increasing number of examples of uptake into invasion policy and management (e.g., the pathway classification framework has been adapted and adopted into EU legislation and CBD targets, and the impact classification framework has been adopted by the IUCN). However, we found that few of the citing papers (6–8%) specifically implemented or interrogated the frameworks; roughly half of all citations might be viewed as frivolous (“citation fluff”); there were several clear cases of erroneous citation; and some survey respondents felt that they have not been rigorously tested yet.
Although our analyses suggest that invasion science is moving towards a more systematic and standardised approach to recording invasions and their impacts, it appears that the proposed standards are still not applied consistently. For this to be achieved, we argue that frameworks in invasion science need to be revised or adapted to particular contexts in response to the needs and experiences of users (e.g., so they are relevant to pathologists, plant ecologists, and practitioners), the standards should be easier to apply in practice (e.g., through the development of guidelines for management), and there should be incentives for their usage (e.g., recognition for completing an EICAT assessment).
Collapse
|
22
|
Seebens H, Clarke DA, Groom Q, Wilson JRU, García-Berthou E, Kühn I, Roigé M, Pagad S, Essl F, Vicente J, Winter M, McGeoch M. A workflow for standardising and integrating alien species distribution data. NEOBIOTA 2020. [DOI: 10.3897/neobiota.59.53578] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Biodiversity data are being collected at unprecedented rates. Such data often have significant value for purposes beyond the initial reason for which they were collected, particularly when they are combined and collated with other data sources. In the field of invasion ecology, however, integrating data represents a major challenge due to the notorious lack of standardisation of terminologies and categorisations, and the application of deviating concepts of biological invasions. Here, we introduce the SInAS workflow, short for Standardising and Integrating Alien Species data. The SInAS workflow standardises terminologies following Darwin Core, location names using a proposed translation table, taxon names based on the GBIF backbone taxonomy, and dates of first records based on a set of predefined rules. The output of the SInAS workflow provides various entry points that can be used both to improve coherence among the databases and to check and correct the original data. The workflow is flexible and can be easily adapted and extended to the needs of different users. We illustrate the workflow using a case-study integrating five widely used global databases of information on biological invasions. The comparison of the standardised databases revealed a surprisingly low degree of overlap, which indicates that the amount of data may currently not be fully exploited in the original databases. We highly recommend the use and development of publicly available workflows to ensure that the integration of databases is reproducible and transparent. Workflows, such as SInAS, ultimately increase trust in data, study results, and conclusions.
Collapse
|
23
|
Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P, Jeschke JM, Kühn I, Liebhold AM, Mandrak NE, Meyerson LA, Pauchard A, Pergl J, Roy HE, Seebens H, van Kleunen M, Vilà M, Wingfield MJ, Richardson DM. Scientists' warning on invasive alien species. Biol Rev Camb Philos Soc 2020; 95:1511-1534. [PMID: 32588508 PMCID: PMC7687187 DOI: 10.1111/brv.12627] [Citation(s) in RCA: 573] [Impact Index Per Article: 114.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Biological invasions are a global consequence of an increasingly connected world and the rise in human population size. The numbers of invasive alien species – the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods – are increasing. Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders. Invasions have complex and often immense long‐term direct and indirect impacts. In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges. Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks. Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes. These biodiversity and ecosystem impacts are accelerating and will increase further in the future. Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented. For some nations, notably Australia and New Zealand, biosecurity has become a national priority. There have been long‐term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas. However, in many countries, invasions receive little attention. Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods. Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions.
Collapse
Affiliation(s)
- Petr Pyšek
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-252 43, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-128 44, Czech Republic.,Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Philip E Hulme
- Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand
| | - Dan Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, U.S.A
| | - Sven Bacher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Tim M Blackburn
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Centre for Biodiversity and Environment Research, Department of Genetics, Evolution, and Environment, University College London, London, WC1E 6BT, U.K.,Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, U.K
| | - James T Carlton
- Maritime Studies Program, Williams College - Mystic Seaport, 75 Greenmanville, Mystic, CT, 06355, U.S.A
| | - Wayne Dawson
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, U.K
| | - Franz Essl
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Division of Conservation Biology, Vegetation and Landscape Ecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Llewellyn C Foxcroft
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Conservation Services, South African National Parks, Private Bag X402, Skukuza, 1350, South Africa
| | - Piero Genovesi
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,ISPRA, Institute for Environmental Protection and Research and Chair IUCN SSC Invasive Species Specialist Group, Rome, Italy
| | - Jonathan M Jeschke
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany.,Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Ingolf Kühn
- Department Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, Halle, 06120, Germany.,Geobotany & Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle, 06108, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Andrew M Liebhold
- US Forest Service Northern Research Station, 180 Canfield St., Morgantown, West Virginia, U.S.A.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, CZ-165 00, Czech Republic
| | - Nicholas E Mandrak
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Laura A Meyerson
- Department of Natural Resources Science, The University of Rhode Island, Kingston, Rhode Island, 02881, U.S.A
| | - Aníbal Pauchard
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile.,Institute of Ecology and Biodiversity, Santiago, Chile
| | - Jan Pergl
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-252 43, Czech Republic
| | - Helen E Roy
- U.K. Centre for Ecology & Hydrology, Wallingford, OX10 8BB, U.K
| | - Hanno Seebens
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Montserrat Vilà
- Estación Biológica de Doñana (EBD-CSIC), Avd. Américo Vespucio 26, Isla de la Cartuja, Sevilla, 41092, Spain.,Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - David M Richardson
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
24
|
Faulkner KT, Robertson MP, Wilson JRU. Stronger regional biosecurity is essential to prevent hundreds of harmful biological invasions. GLOBAL CHANGE BIOLOGY 2020; 26:2449-2462. [PMID: 31957142 DOI: 10.1111/gcb.15006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Biological invasions often transcend political boundaries, but the capacity of countries to prevent invasions varies. How this variation in biosecurity affects the invasion risks posed to the countries involved is unclear. We aimed to improve the understanding of how the biosecurity of a country influences that of its neighbours. We developed six scenarios that describe biological invasions in regions with contiguous countries. Using data from alien species databases, socio-economic and biodiversity data and species distribution models, we determined where 86 of 100 of the world's worst invasive species are likely to invade and have a negative impact in the future. Information on the capacity of countries to prevent invasions was used to determine whether such invasions could be avoided. For the selected species, we predicted 2,523 discrete invasions, most of which would have significant negative impacts and are unlikely to be prevented. Of these invasions, approximately a third were predicted to spread from the country in which the species first establishes to neighbouring countries where they would cause significant negative impacts. Most of these invasions are unlikely to be prevented as the country of first establishment has a low capacity to prevent invasions or has little incentive to do so as there will be no impact in that country. Regional biosecurity is therefore essential to prevent future harmful biological invasions. In consequence, we propose that the need for increased regional co-operation to combat biological invasions be incorporated in global biodiversity targets.
Collapse
Affiliation(s)
- Katelyn T Faulkner
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, South Africa
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Mark P Robertson
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - John R U Wilson
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, South Africa
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
25
|
Novoa A, Richardson DM, Pyšek P, Meyerson LA, Bacher S, Canavan S, Catford JA, Čuda J, Essl F, Foxcroft LC, Genovesi P, Hirsch H, Hui C, Jackson MC, Kueffer C, Le Roux JJ, Measey J, Mohanty NP, Moodley D, Müller-Schärer H, Packer JG, Pergl J, Robinson TB, Saul WC, Shackleton RT, Visser V, Weyl OLF, Yannelli FA, Wilson JRU. Invasion syndromes: a systematic approach for predicting biological invasions and facilitating effective management. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02220-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractOur ability to predict invasions has been hindered by the seemingly idiosyncratic context-dependency of individual invasions. However, we argue that robust and useful generalisations in invasion science can be made by considering “invasion syndromes” which we define as “a combination of pathways, alien species traits, and characteristics of the recipient ecosystem which collectively result in predictable dynamics and impacts, and that can be managed effectively using specific policy and management actions”. We describe this approach and outline examples that highlight its utility, including: cacti with clonal fragmentation in arid ecosystems; small aquatic organisms introduced through ballast water in harbours; large ranid frogs with frequent secondary transfers; piscivorous freshwater fishes in connected aquatic ecosystems; plant invasions in high-elevation areas; tall-statured grasses; and tree-feeding insects in forests with suitable hosts. We propose a systematic method for identifying and delimiting invasion syndromes. We argue that invasion syndromes can account for the context-dependency of biological invasions while incorporating insights from comparative studies. Adopting this approach will help to structure thinking, identify transferrable risk assessment and management lessons, and highlight similarities among events that were previously considered disparate invasion phenomena.
Collapse
|
26
|
Measey J, Visser V, Dgebuadze Y, Inderjit, Li B, Dechoum M, Ziller SR, Richardson DM. The world needs BRICS countries to build capacity in invasion science. PLoS Biol 2019; 17:e3000404. [PMID: 31536486 PMCID: PMC6772094 DOI: 10.1371/journal.pbio.3000404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/01/2019] [Indexed: 11/17/2022] Open
Abstract
Developed countries are producing policies to reduce the flow of invasive species and control or eradicate existing invasions, but most developing countries are under-resourced to tackle either aspect without help. Emerging economies, such as Brazil, Russia, India, China, and South Africa (BRICS), are responsible for donating many of the world's invasive species that have the potential to reach nearly all terrestrial biomes. Implementing a proactive 'facilitated network' model is urgently required to build capacity and stimulate effective appropriate invasion science. We contend that creating a BRICS network of invasion scientists will have the immediate impact required to meet future policy demands.
Collapse
Affiliation(s)
- John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Vernon Visser
- Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa.,African Climate and Development Initiative, University of Cape Town, Rondebosch, South Africa
| | - Yury Dgebuadze
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Lomonosov Moscow State University, Moscow, Russia
| | - Inderjit
- Department of Environmental Studies, University of Delhi, Delhi, India
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Michele Dechoum
- Departamento de Ecologia e Zoologia, Programa de pós graduação em Ecologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,The Horus Institute for Environmental Conservation and Development, Florianopolis, Santa Catarina, Brazil
| | - Silvia R Ziller
- The Horus Institute for Environmental Conservation and Development, Florianopolis, Santa Catarina, Brazil
| | - David M Richardson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
27
|
Latombe G, Canavan S, Hirsch H, Hui C, Kumschick S, Nsikani MM, Potgieter LJ, Robinson TB, Saul W, Turner SC, Wilson JRU, Yannelli FA, Richardson DM. A four‐component classification of uncertainties in biological invasions: implications for management. Ecosphere 2019. [DOI: 10.1002/ecs2.2669] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- G. Latombe
- Department of Botany and Zoology Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
- Department of Mathematical Sciences Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
| | - S. Canavan
- Department of Botany and Zoology Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
- Kirstenbosch Research Centre South African National Biodiversity Institute Private Bag X7 Claremont 7735 South Africa
| | - H. Hirsch
- Department of Botany and Zoology Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
| | - C. Hui
- Department of Mathematical Sciences Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
- Mathematical and Physical Biosciences African Institute for Mathematical Sciences Cape Town 7945 South Africa
| | - S. Kumschick
- Department of Botany and Zoology Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
- Kirstenbosch Research Centre South African National Biodiversity Institute Private Bag X7 Claremont 7735 South Africa
| | - M. M. Nsikani
- Department of Botany and Zoology Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
| | - L. J. Potgieter
- Department of Botany and Zoology Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
| | - T. B. Robinson
- Department of Botany and Zoology Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
| | - W.‐C. Saul
- Department of Botany and Zoology Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
- Department of Mathematical Sciences Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
| | - S. C. Turner
- Department of Botany and Zoology Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
| | - J. R. U. Wilson
- Department of Botany and Zoology Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
- Kirstenbosch Research Centre South African National Biodiversity Institute Private Bag X7 Claremont 7735 South Africa
| | - F. A. Yannelli
- Department of Botany and Zoology Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
| | - D. M. Richardson
- Department of Botany and Zoology Centre for Invasion Biology Stellenbosch University Stellenbosch 7602 South Africa
| |
Collapse
|