1
|
Zheng H, Yu X, Wang C, Guo X, Gao C, Chen K, Wang G, Lin H, Liu C, Liu J, Wang F. Elucidation of the mechanism of the Yinhua Miyanling Tablet against urinary tract infection based on a combined strategy of network pharmacology, multi-omics and molecular biology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118835. [PMID: 39293704 DOI: 10.1016/j.jep.2024.118835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yinhua Miyanling Tablet (YMT), a traditional Chinese medicine consisting of 10 herbs, has been widely used clinically to treat urinary tract infections (UTIs), however, its therapeutic mechanism is not fully understood. AIM OF THE STUDY To investigate the mechanism of YMT in treating UTIs through network pharmacology, multi-omics and experimental validation. MATERIALS AND METHODS Clinically, blood and urine samples from YMT-treated UTI patients were collected for transcriptomic and metabolomic analyses. Computationally, compounds that are related to YMT were obtained from the databases, relevant targets were identified, and UTI-related targets were analyzed to determine the core signaling pathways. Subsequently, an integrated approach combining multi-omics and network pharmacology assisted in identifying the key pathways underlying therapeutic effects of YMT on UTI. Finally, a mouse model of UTI was established using uropathogenic Escherichia coli (UPEC), and the therapeutic mechanism of YMT on UTI was validated by ELISA, qRT-PCR and Western blotting. RESULTS After taking YMT, patients showed reduced levels of urinary bacteria, white blood cells, and serum inflammatory factors (CRP, IL-6 and TNF-α). Multi-omics analysis combined with network pharmacology demonstrated that YMT significantly inhibited the TLR/MAPK/NFκB signaling pathway. In vivo experiments confirmed that YMT attenuated UPEC-induced pathological changes in bladder structural, reduced the expression of bladder proteins (TLR4, MyD88, p-p38 MAPK and p-p65 NFκB), increased protein expression of IκB-α, and attenuated the release of inflammatory factors (TNF-α, IL-6 and IL-1β) in mice. CONCLUSION YMT is effective in treating UTI by down-regulating the TLR4/p38MAPK/p65NFκB pathway, thereby providing a scientific basis for its clinical application.
Collapse
Affiliation(s)
- Haoyu Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiao Yu
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chao Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaoping Guo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chencheng Gao
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Kai Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Hongqiang Lin
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chuangui Liu
- National and Local United Engineering R&D Center of Ginseng Innovative Drugs, Changchun, 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Omar O, Rydén L, Wamied AR, Al-Otain I, Alhawaj H, Abuohashish H, Al-Qarni F, Emanuelsson L, Johansson A, Palmquist A, Thomsen P. Molecular mechanisms of poor osseointegration in irradiated bone: In vivo study in a rat tibia model. J Clin Periodontol 2024; 51:1236-1251. [PMID: 38798064 DOI: 10.1111/jcpe.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
AIM Radiotherapy is associated with cell depletion and loss of blood supply, which are linked to compromised bone healing. However, the molecular events underlying these effects at the tissue-implant interface have not been fully elucidated. This study aimed to determine the major molecular mediators associated with compromised osseointegration due to previous exposure to radiation. MATERIALS AND METHODS Titanium implants were placed in rat tibiae with or without pre-exposure to 20 Gy irradiation. Histomorphometric, biomechanical, quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay analyses were performed at 1 and 4 weeks after implantation. RESULTS The detrimental effects of irradiation were characterized by reduced bone-implant contact and removal torque. Furthermore, pre-exposure to radiation induced different molecular dysfunctions such as (i) increased expression of pro-inflammatory (Tnf) and osteoclastic (Ctsk) genes and decreased expression of the bone formation (Alpl) gene in implant-adherent cells; (ii) increased expression of bone formation (Alpl and Bglap) genes in peri-implant bone; and (iii) increased expression of pro-inflammatory (Tnf) and pro-fibrotic (Tgfb1) genes in peri-implant soft tissue. The serum levels of pro-inflammatory, bone formation and bone resorption proteins were greater in the irradiated rats. CONCLUSIONS Irradiation causes the dysregulation of multiple biological activities, among which perturbed inflammation seems to play a common role in hindering osseointegration.
Collapse
Affiliation(s)
- Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Louise Rydén
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Ibrahim Al-Otain
- Radiation Oncology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Hussain Alhawaj
- Department of Environmental Health Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hatem Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Al-Qarni
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Johansson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Venegoni C, Pederzoli F, Locatelli I, Alchera E, Martinez-Vidal L, Di Coste A, Bandini M, Necchi A, Montorsi F, Salonia A, Moschini M, Jose J, Scarfò F, Lucianò R, Alfano M. Topographic modification of the extracellular matrix precedes the onset of bladder cancer. Matrix Biol Plus 2024; 23:100154. [PMID: 38882394 PMCID: PMC11179621 DOI: 10.1016/j.mbplus.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024] Open
Abstract
Background Non-muscle invasive bladder cancer (NMIBC) patients are affected by a high risk of recurrence. The topography of collagen fibers represents a hallmark of the neoplastic extracellular microenvironment. Objective Assess the topographic change associated with different stages of bladder cancer (from neoplastic lesions to bona fide tumor) and whether those changes favour the development of NMIBC. Design Setting and Participants Seventy-one clinical samples of urothelial carcinoma at different stages were used. Topographic changes preceding tumor onset and progression were evaluated in the rat bladder cancer model induced by nitrosamine (BBN), a bladder-specific carcinogen. The preclinical model of actinic cystitis was also used in combination with BBN. Validated hematoxylin-eosin sections were used to assess the topography of collagen fibrils associated with pre-tumoral steps, NMIBC, and MIBC. Findings Linearization of collagen fibers was higher in Cis and Ta vs. dysplastic urothelium, further increased in T1 and greatest in T2 tumors. In the BBN preclinical model, an increase in the linearization of collagen fibers was established since the beginning of inflammation, such as the onset of atypia of a non-univocal nature and dysplasia, and further increased in the presence of the tumor. Linearization of collagen fibers in the model of actinic cystitis was associated with earlier onset of BBN-induced tumor. Conclusions The topographic modification of the extracellular microenvironment occurs during the inflammatory processes preceding and favoring the onset of bladder cancer. The topographic reconfiguration of the stroma could represent a marker for identifying and treating the non-neoplastic tissue susceptible to tumor recurrence.
Collapse
Affiliation(s)
- Chiara Venegoni
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Filippo Pederzoli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Laura Martinez-Vidal
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Di Coste
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Bandini
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Necchi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Marco Moschini
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Jithin Jose
- FUJIFILM Visualsonics Inc., Amsterdam, the Netherlands
| | | | | | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
4
|
Smith J, Tan JKH, Short C, O'Neill H, Moro C. The effect of myeloablative radiation on urinary bladder mast cells. Sci Rep 2024; 14:6219. [PMID: 38485999 PMCID: PMC10940702 DOI: 10.1038/s41598-024-56655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Radiation-induced cystitis is an inflammatory condition affecting the urinary bladder, which can develop as a side effect of abdominopelvic radiotherapy, specifically external-beam radiation therapy or myeloablative radiotherapy. A possible involvement of mast cells in the pathophysiology of radiation-induced cystitis has been indicated in cases of external-beam radiation therapy; however, there is no evidence that these findings apply to the myeloablative aetiology. As such, this study investigated potential changes to urinary bladder mast cell prevalence when exposed to myeloablative radiation. Lethally irradiated C57BL/6J mice that received donor rescue bone marrow cells exhibited an increased mast cell frequency amongst host leukocytes 1 week following irradiation. By 4 weeks, no significant difference in either frequency or cell density was observed. However mast cell diameter was smaller, and a significant increase in mast cell number in the adventitia was observed. This study highlights that mast cells constitute a significant portion of the remaining host leukocyte population following radiation exposure, with changes to mast cell distribution and decreased cell diameter four weeks following radiation-induced injury.
Collapse
Affiliation(s)
- Jessica Smith
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Jonathan Kah Huat Tan
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Christie Short
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Helen O'Neill
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Christian Moro
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4226, Australia.
| |
Collapse
|
5
|
Smith J, Toto R, Moro C. The effects of radiation on myeloid lineage immune cells within the rodent urinary bladder: a systematic review. Int Urol Nephrol 2023; 55:3005-3014. [PMID: 37620625 PMCID: PMC10611598 DOI: 10.1007/s11255-023-03748-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE Radiotherapy is a prominent therapy for many malignant and non-malignant disorders, though it can cause side effects such as radiation-induced cystitis. Current research has highlighted a role for mast cells and macrophages in the prognosis of such radiation-induced toxicities. However, the prognostic value of these immune cells in the pathophysiology of radiation-induced cystitis is not clear. As such, a systematic review was conducted to assess myeloid-lineage immune cells for their prognostic value in radiation-induced cystitis to address this gap in literature. METHODS The protocol was registered in PROSPERO, and searches were performed in PubMed, Embase and Web of Science databases for pre-clinical rodent studies on radiation-induced cystitis. RESULTS After de-duplication, 153 articles were screened for relevancy by title and abstract. Title and abstract screening deemed 64 studies irrelevant. The remaining 85 studies were full-text screened, yielding seven unique articles for data extraction. Most included studies had an unclear risk of bias. The findings of this systematic review suggest that the prognostic value of myeloid-lineage immune cells in radiation-induced cystitis is still unclear, indicating a need for further research in this field. CONCLUSION Although the studies reviewed provide some insight into the role of these immune cells in disease pathology, the limited number of studies and unclear risk of bias further highlights a need for additional, high-quality research in this area. In summary, this systematic review highlights a need to understand the involvement of immune cells in radiation-induced cystitis pathophysiology and lay the groundwork for further research in this area. TRIAL REGISTRATION PROSPERO registration: CRD42022345960.
Collapse
Affiliation(s)
- Jessica Smith
- Faculty of Health Sciences and Medicine, Bond University, Queensland, 4226, Australia
| | - Rimaz Toto
- Faculty of Health Sciences and Medicine, Bond University, Queensland, 4226, Australia
| | - Christian Moro
- Faculty of Health Sciences and Medicine, Bond University, Queensland, 4226, Australia.
| |
Collapse
|
6
|
Müller-Seubert W, Ostermaier P, Horch RE, Distel L, Frey B, Erber R, Arkudas A. The Influence of Different Irradiation Regimens on Inflammation and Vascularization in a Random-Pattern Flap Model. J Pers Med 2023; 13:1514. [PMID: 37888125 PMCID: PMC10608321 DOI: 10.3390/jpm13101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Irradiation plays an important role in the oncological treatment of various tumor entities. The aim of the study was to investigate the influence of different irradiation regimens on random-pattern flaps at the molecular and histopathological levels. METHODS Twenty-five rats underwent harvesting of bilateral random-pattern fasciocutaneous flaps. The right flaps received irradiation, while the left flaps served as non-irradiated intraindividual controls. Five rats served as a non-irradiated control group. Four different irradiation regimens with give rats each were tested: 20 Gy postoperatively, 3 × 12 Gy postoperatively, 20 Gy preoperatively, and 3 × 12 Gy preoperatively. Two weeks after surgery, HE staining and immunohistochemical staining for CD68 and ERG, as well as PCR analysis to detect Interleukin 6, HIF-1α, and VEGF, were performed. RESULTS A postoperative cumulative higher dose of irradiation appeared to result in an increase in necrosis, especially in the superficial layers of the flap compared to preoperative or single-stage irradiation. In addition, we observed increased expression of VEGF and HIF-1α in all irradiation groups. CONCLUSION Even though no statistically significant differences were found between the different groups, there was a tendency for fractional postoperative irradiation with a higher total dose to have a more harmful effect compared to preoperative or single-dose irradiation.
Collapse
Affiliation(s)
- Wibke Müller-Seubert
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuernberg (FAU), 91054 Erlangen, Germany; (P.O.); (R.E.H.)
| | - Patrick Ostermaier
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuernberg (FAU), 91054 Erlangen, Germany; (P.O.); (R.E.H.)
| | - Raymund E. Horch
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuernberg (FAU), 91054 Erlangen, Germany; (P.O.); (R.E.H.)
| | - Luitpold Distel
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuernberg (FAU), 91054 Erlangen, Germany;
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuernberg (FAU), 91054 Erlangen, Germany;
| | - Ramona Erber
- Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuernberg (FAU), Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany;
| | - Andreas Arkudas
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuernberg (FAU), 91054 Erlangen, Germany; (P.O.); (R.E.H.)
| |
Collapse
|
7
|
High-Intensity Interval Training Minimizes the Deleterious Effects of Arterial Hypertension on the Urinary Bladder of Spontaneously Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9979397. [PMID: 36865350 PMCID: PMC9974255 DOI: 10.1155/2023/9979397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/23/2023]
Abstract
Arterial hypertension promotes urological complications by modifying the functional capacity of the urinary bladder. On the other hand, physical exercise has been suggested as a nonpharmacological tool to improve blood pressure regulation. High-intensity interval training (HIIT) can effectively increase peak oxygen consumption, body composition, physical fitness, and health-related characteristics of adults; however, its action on the urinary bladder is little discussed. In the present study, we verified the effect of HIIT on the modulation of the redox state, morphology, and inflammatory and apoptotic processes of the urinary bladder of hypertensive rats. Spontaneously hypertensive rats (SHR) were divided into two groups: SHR sedentary and SHR submitted to HIIT. Arterial hypertension promoted an increase in the plasma redox state, modified the volume of the urinary bladder, and increased collagen deposition in detrusor muscle. It was also possible to identify, in the sedentary SHR group, an increase in inflammatory markers such as IL-6 and TNF-α in the urinary bladder, as well as a reduction in BAX expression. However, in the HIIT group, reduced blood pressure levels were observed, together with an improvement in morphology, such as a decrease in collagen deposition. HIIT also regulated the proinflammatory response, promoting increases in IL-10 and BAX expressions and in the number of plasma antioxidant enzymes. The present work highlights the intracellular pathways involved with the oxidative and inflammatory capacity of the urinary bladder and the potential effect of HIIT on the regulation of the urothelium and detrusor muscle of hypertensive rats.
Collapse
|
8
|
Pan W, Han J, Wei N, Wu H, Wang Y, Sun J. LINC00702-mediated DUSP1 transcription in the prevention of bladder cancer progression: Implications in cancer cell proliferation and tumor inflammatory microenvironment. Genomics 2022; 114:110428. [PMID: 35809838 DOI: 10.1016/j.ygeno.2022.110428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 06/23/2022] [Accepted: 07/03/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) can mediate the biological processes during tumorigenesis which may be affected by tumor associated macrophages (TAMs). Hence, we aim to identify the functionality of LINC00702 in regulation of bladder cancer cells and M2-TAMs. METHODS After induction of M2-TAMs from THP-1 monocyte, we evaluated effects of LINC00702 on bladder cancer cells and M2-TAMs, which were validated in a xenograft tumor mouse model. RESULTS Low LINC00702 expression was determined in bladder cancer tissues. LINC00702 could promote DUSP1 transcription by recruiting JUND to its promoter. Ectopic LINC00702 expression suppressed the bladder cancer cell proliferation and secretion of inflammatory cytokines by M2-TAMs through up-regulation of DUSP1. The anti-tumor activity of LINC00702 was ultimately validated in vivo. CONCLUSION LINC00702 promoted DUSP1 by recruiting JUND to inhibit the proliferation of bladder cancer cells and the secretion of inflammatory factors, thus modulating bladder cancer inflammatory microenvironment.
Collapse
Affiliation(s)
- Weiyun Pan
- Department of ICU, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Jun Han
- Department of Neonatology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Na Wei
- Department of the First Operating Room, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Hui Wu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Yizhuo Wang
- Cancer center, The First Hospital of Jilin University, Changchun 130021, PR China.
| | - Jingnan Sun
- Department of Hematolody, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
9
|
Jafari NV, Rohn JL. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol 2022; 15:1127-1142. [PMID: 36180582 PMCID: PMC9705259 DOI: 10.1038/s41385-022-00565-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
All mucosal surfaces must deal with the challenge of exposure to the outside world. The urothelium is a highly specialized layer of stratified epithelial cells lining the inner surface of the urinary bladder, a gruelling environment involving significant stretch forces, osmotic and hydrostatic pressures, toxic substances, and microbial invasion. The urinary bladder plays an important barrier role and allows the accommodation and expulsion of large volumes of urine without permitting urine components to diffuse across. The urothelium is made up of three cell types, basal, intermediate, and umbrella cells, whose specialized functions aid in the bladder's mission. In this review, we summarize the recent insights into urothelial structure, function, development, regeneration, and in particular the role of umbrella cells in barrier formation and maintenance. We briefly review diseases which involve the bladder and discuss current human urothelial in vitro models as a complement to traditional animal studies.
Collapse
Affiliation(s)
- Nazila V Jafari
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK.
| |
Collapse
|
10
|
Ionizing radiation and toll like receptors: A systematic review article. Hum Immunol 2021; 82:446-454. [PMID: 33812705 DOI: 10.1016/j.humimm.2021.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022]
Abstract
Ionizing radiation, including X and gamma rays, are used for various purposes such as; medicine, nuclear power, research, manufacturing, food preservation and construction. Furthermore, people are also exposed to ionizing radiation from their workplace or the environment. Apart from DNA fragmentation resulting in apoptosis, several additional mechanisms have been proposed to describe how radiation can alter human cell functions. Ionizing radiation may alter immune responses, which are the main cause of human disorders. Toll like receptors (TLRs) are important human innate immunity receptors which participate in several immune and non-immune cell functions including, induction of appropriate immune responses and immune related disorders. Based on the role played by ionizing radiation on human cell systems, it has been hypothesized that radiation may affect immune responses. Therefore, the main aim of this review article is to discuss recent information regarding the effects of ionizing radiation on TLRs and their related disorders.
Collapse
|
11
|
Zuppone S, Bresolin A, Spinelli AE, Fallara G, Lucianò R, Scarfò F, Benigni F, Di Muzio N, Fiorino C, Briganti A, Salonia A, Montorsi F, Vago R, Cozzarini C. Pre-clinical Research on Bladder Toxicity After Radiotherapy for Pelvic Cancers: State-of-the Art and Challenges. Front Oncol 2020; 10:527121. [PMID: 33194587 PMCID: PMC7642999 DOI: 10.3389/fonc.2020.527121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023] Open
Abstract
Despite the dramatic advancements in pelvic radiotherapy, urinary toxicity remains a significant side-effect. The assessment of clinico-dosimetric predictors of radiation cystitis (RC) based on clinical data has improved substantially over the last decade; however, a thorough understanding of the physiopathogenetic mechanisms underlying the onset of RC, with its variegated acute and late urinary symptoms, is still largely lacking, and data from pre-clinical research is still limited. The aim of this review is to provide an overview of the main open issues and, ideally, to help investigators in orienting future research. First, anatomy and physiology of bladder, as well as the current knowledge of dose and dose-volume effects in humans, are briefly summarized. Subsequently, pre-clinical radiobiology aspects of RC are discussed. The findings suggest that pre-clinical research on RC in animal models is a lively field of research with growing interest in the development of new radioprotective agents. The availability of new high precision micro-irradiators and the rapid advances in small animal imaging might lead to big improvement into this field. In particular, studies focusing on the definition of dose and fractionation are warranted, especially considering the growing interest in hypo-fractionation and ablative therapies for prostate cancer treatment. Moreover, improvement in radiotherapy plans optimization by selectively reducing radiation dose to more radiosensitive substructures close to the bladder would be of paramount importance. Finally, thanks to new pre-clinical imaging platforms, reliable and reproducible methods to assess the severity of RC in animal models are expected to be developed.
Collapse
Affiliation(s)
- Stefania Zuppone
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Fondazione Centro San Raffaele, Milan, Italy
| | - Andrea Bresolin
- Fondazione Centro San Raffaele, Milan, Italy.,Department of Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonello E Spinelli
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Fallara
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Lucianò
- Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Scarfò
- Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Benigni
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nadia Di Muzio
- Department of Radiotherapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Claudio Fiorino
- Department of Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Briganti
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Riccardo Vago
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Cesare Cozzarini
- Department of Radiotherapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Podmolíková L, Mukanyangezi MF, Dahlqvist AJ, Naluai ÅT, Ny L, Giglio D. Radiation of the urinary bladder attenuates the development of lipopolysaccharide-induced cystitis. Int Immunopharmacol 2020; 83:106334. [PMID: 32179244 DOI: 10.1016/j.intimp.2020.106334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 11/17/2022]
Abstract
In the present study we assessed how ionizing radiation affects TLR4-stimulated immune activation in lipopolysaccharide (LPS)-induced cystitis. LPS or saline was administered intravesically to female rats followed by urinary bladder irradiation (20 Gy) 24 h later or sham treatment. Presence in the urinary bladder of inflammatory cells (mast cells, CD3+, ionized calcium-binding adapter molecule 1 (Iba-1)+, CD68+, CD40+, CD80+, CD11c + and CD206 + cells) and expression of oxidative stress (8-OHdG), hypoxia (HIF1α) and anti-oxidative responses (NRF2, HO-1, SOD1, SOD2, catalase) were assessed 14 days later with western blot, qPCR and/or immunohistochemistry. LPS stimulation resulted in a decrease of Iba-1 + cells in the urothelium, an increase in mast cells in the submucosa and a decrease in the bladder protein expression of HO-1, while no changes in the bladder expression of 8-OHdG, NRF2, SOD1, SOD2, catalase and HIF1α were observed. Bladder irradiation inhibited the LPS-driven increase in mast cells and the decrease in Iba1 + cells. Combining LPS and radiation increased the expression of 8-OHdG and number of CD3-positive cells in the urothelium and led to a decrease in NRF2α gene expression in the urinary bladder. In conclusion, irradiation may attenuate LPS-induced immune responses in the urinary bladder but potentiates LPS-induced oxidative stress, which as a consequence may have an impact on the urinary bladder immune sensing of pathogens and danger signals.
Collapse
Affiliation(s)
- Lucie Podmolíková
- Department of Pharmacology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Faculty of Medicine, Charles University, Hradec Králové, Czech Republic.
| | | | - Annika Janina Dahlqvist
- Department of Pharmacology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Åsa Torinsson Naluai
- Department of Microbiology & Immunology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Ny
- Department of Oncology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Giglio
- Department of Pharmacology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Oncology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Radiation Cystitis: a Contemporary Review. CURRENT BLADDER DYSFUNCTION REPORTS 2019. [DOI: 10.1007/s11884-019-00538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Radiation induces changes in toll-like receptors of the uterine cervix of the rat. PLoS One 2019; 14:e0215250. [PMID: 30998706 PMCID: PMC6472742 DOI: 10.1371/journal.pone.0215250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/28/2019] [Indexed: 01/02/2023] Open
Abstract
Radiotherapy is an important therapeutic approach against cervical cancer but associated with adverse effects including vaginal fibrosis and dyspareunia. We here assessed the immunological and oxidative responses to cervical irradiation in an animal model for radiation-induced cervicitis. Rats were sedated and either exposed to 20 Gy of ionising radiation given by a linear accelerator or only sedated (controls) and euthanized 1–14 days later. The expressions of toll-like receptors (TLRs) and coupled intracellular pathways in the cervix were assessed with immunohistofluorescence and western blot. Expression of cytokines were analysed with the Bio-Plex Suspension Array System (Bio-Rad). We showed that TLRs 2–9 were expressed in the rat cervix and cervical irradiation induced up-regulation of TLR5, TRIF and NF-κB. In the irradiated cervical epithelium, TLR5 and TRIF were increased in concert with an up-regulation of oxidative stress (8-OHdG) and antioxidant enzymes (SOD-1 and catalase). G-CSF, M-CSF, IL-10, IL- 17A, IL-18 and RANTES expressions in the cervix decreased two weeks after cervical irradiation. In conclusion, the rat uterine cervix expresses the TLRs 2–9. Cervical irradiation induces immunological changes and oxidative stress, which could have importance in the development of adverse effects to radiotherapy.
Collapse
|
16
|
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections in humans, and the majority are caused by uropathogenic Escherichia coli (UPEC). The rising antibiotic resistance among UPEC and the frequent failure of antibiotics to effectively treat recurrent UTI and catheter-associated UTI motivate research on alternative ways of managing UTI. Abundant evidence indicates that the toxic radical nitric oxide (NO), formed by activation of the inducible nitric oxide synthase, plays an important role in host defence to bacterial infections, including UTI. The major source of NO production during UTI is from inflammatory cells, especially neutrophils, and from the uroepithelial cells that are known to orchestrate the innate immune response during UTI. NO and reactive nitrogen species have a wide range of antibacterial targets, including DNA, heme proteins, iron-sulfur clusters, and protein thiol groups. However, UPEC have acquired a variety of defence mechanisms for protection against NO, such as the NO-detoxifying enzyme flavohemoglobin and the NO-tolerant cytochrome bd-I respiratory oxidase. The cytotoxicity of NO-derived intermediates is nonspecific and may be detrimental to host cells, and a balanced NO production is crucial to maintain the tissue integrity of the urinary tract. In this review, we will give an overview of how NO production from host cells in the urinary tract is activated and regulated, the effect of NO on UPEC growth and colonization, and the ability of UPEC to protect themselves against NO. We also discuss the attempts that have been made to develop NO-based therapeutics for UTI treatment.
Collapse
|
17
|
de Oliveira MG, Mónica FZ, Calmasini FB, Alexandre EC, Tavares EBG, Soares AG, Costa SKP, Antunes E. Deletion or pharmacological blockade of TLR4 confers protection against cyclophosphamide-induced mouse cystitis. Am J Physiol Renal Physiol 2018; 315:F460-F468. [PMID: 29717937 DOI: 10.1152/ajprenal.00100.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a chronic inflammatory disease without consistently effective treatment. We investigate the role of toll-like receptor 4 (TLR4) on voiding dysfunction and inflammation in the cyclophosphamide (CYP)-induced mouse cystitis. Male C57BL/6 [wild-type, (WT)] and/or TLR4 knockout (TLR4-/-) mice were treated with an injection of CYP (300 mg/kg, 24 h) or saline (10 ml/kg). The pharmacological blockade of the TLR4 by resatorvid (10 mg/kg) was also performed 1 h prior CYP-injection in WT mice. Urodynamic profiles were assessed by voiding stain on filter paper and filling cystometry. Contractile responses to carbachol were measured in isolated bladders. In CYP-exposed WT mice, mRNA for TLR4, myeloid differentiation primary response 88, and TIR-domain-containing adapter-inducing interferon-β increased by 45%, 72%, and 38%, respectively ( P < 0.05). In free-moving mice, CYP-exposed mice exhibited a higher number of urinary spots and smaller urinary volumes. Increases of micturition frequency and nonvoiding contractions, concomitant with decreases of intercontraction intervals and capacity, were observed in the filling cystometry of WT mice ( P < 0.05). Carbachol-induced bladder contractions were significantly reduced in the CYP group, which was paralleled by reduced mRNA for M2 and M3 muscarinic receptors. These functional and molecular alterations induced by CYP were prevented in TLR4-/- and resatorvid-treated mice. Additionally, the increased levels of inflammatory markers induced by CYP exposure, myeloperoxidase activity, interleukin-6, and tumor necrosis factor-alpha were significantly reduced by resatorvid treatment. Our findings reveal a central role for the TLR4 signaling pathway in initiating CYP-induced bladder dysfunction and inflammation and thus emphasize that TLR4 receptor blockade may have clinical value for IC/BPS treatment.
Collapse
Affiliation(s)
- Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , Brazil
| | - Fabiola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , Brazil
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , Brazil
| | - Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , Brazil
| | - Edith B G Tavares
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , Brazil
| | - Antonio G Soares
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , Brazil
| |
Collapse
|
18
|
Giglio D, Podmolíková L, Tobin G. Changes in the Neuronal Control of the Urinary Bladder in a Model of Radiation Cystitis. J Pharmacol Exp Ther 2018; 365:327-335. [PMID: 29530925 DOI: 10.1124/jpet.117.246371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/20/2018] [Indexed: 03/08/2025] Open
Abstract
Currently, we have assessed the neuronal control of the urinary bladder in radiation cystitis and whether interstitial cells contribute to the condition. Fourteen days after bladder irradiation (20 Gy), rats were sedated and the urinary bladder was cut into two sagittal halves where electrical field stimulation (EFS; 5-20 Hz) was applied on the pelvic nerve afferents or stretch (80 mN) on one-half of the bladder, while contractions were registered on the contralateral half of the bladder in the absence and presence of increasing doses of imatinib (1-10 mg/kg; inhibitor of c-kit-positive interstitial cells), atropine (1 mg/kg; to block muscarinic M3 receptors), or pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (2 mg/kg; P2X1 purinoceptor antagonist). Urinary bladders were also excised for organ bath experiments, Western blot, quantitative polymerase chain reaction, and immunohistochemistry. In vivo, EFS contractions were enhanced after irradiation, and imatinib (1-10 mg/mg) inhibited contractions by EFS and stretched dose-dependently in controls but not in irradiated bladders. In the irradiated bladder in vitro, atropine resistance was increased and imatinib (100 µM) inhibited contractions by EFS and agonists (ATP, methacholine) in irradiated bladders and controls. The urinary bladder expressions of P2X1 purinoceptors, muscarinic M3 receptor, choline acetyltransferase, c-kit, and the agonist of c-kit, stem cell factor, were not changed by irradiation. In conclusion, bladder irradiation affects several levels of neuronal control of the urinary bladder. Interstitial cells may contribute to some of the symptoms associated with radiation cystitis.
Collapse
Affiliation(s)
- Daniel Giglio
- Department of Pharmacology, Institution of Neuroscience and Physiology (D.G., L.P., G.T.) and Department of Oncology, Institution of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden (D.G.); and Department of Medical Biochemistry, Faculty of Medicine, Charles University, Hradec Králové, Czech Republic (L.P.)
| | - Lucie Podmolíková
- Department of Pharmacology, Institution of Neuroscience and Physiology (D.G., L.P., G.T.) and Department of Oncology, Institution of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden (D.G.); and Department of Medical Biochemistry, Faculty of Medicine, Charles University, Hradec Králové, Czech Republic (L.P.)
| | - Gunnar Tobin
- Department of Pharmacology, Institution of Neuroscience and Physiology (D.G., L.P., G.T.) and Department of Oncology, Institution of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden (D.G.); and Department of Medical Biochemistry, Faculty of Medicine, Charles University, Hradec Králové, Czech Republic (L.P.)
| |
Collapse
|
19
|
Podmolíková L, Mukanyangezi M, Nieto-Marín P, Giglio D. Cholinergic regulation of proliferation of the urothelium in response to E. coli lipopolysaccharide exposition. Int Immunopharmacol 2018; 56:222-229. [DOI: 10.1016/j.intimp.2018.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 02/05/2023]
|
20
|
Oscarsson N, Ny L, Mölne J, Lind F, Ricksten SE, Seeman-Lodding H, Giglio D. Hyperbaric oxygen treatment reverses radiation induced pro-fibrotic and oxidative stress responses in a rat model. Free Radic Biol Med 2017; 103:248-255. [PMID: 28034833 DOI: 10.1016/j.freeradbiomed.2016.12.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/10/2016] [Accepted: 12/24/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE Radiotherapy is effective in the treatment of tumors in the pelvic area but is associated with side effects such as cystitis and proctitis. Hyperbaric Oxygen Therapy (HBOT) has emerged as a treatment modality for radiation-induced side effects. In a rat model for radiation cystitis, we studied the effects of HBOT on oxidative stress and pro-fibrotic factors. MATERIALS AND METHODS Sedated Sprague-Dawley rats underwent bladder irradiation of 20Gy with and without 20 sessions of HBOT during a fortnight. Control animals were treated with and without HBOT. All four groups of animals were euthanized 28 days later. Histopathological examinations, immunohistochemistry and quantitative polymerase chain reaction (qPCR) were used to analyze changes in oxidative stress (8-OHdG), anti-oxidative responses (SOD-1, SOD2, HO-1 and NRFα) and a panel of Th1-type and Th2-type cytokines (IL-1β, IL-4, IL-5, IL-6, IL-10, IL-13, TNF-α, TGF-β, IFN-γ) in the urinary bladder. RESULTS Bladder irradiation increased the expression of 8-OHdG, SOD2, HO-1, NRFα, IL-10, TNF-α and tended to increase TGF-β. These changes were completely reversed by HBOT while HBOT in control animals had no effects on the studied markers for oxidative stress, anti-oxidative responses and Th1-type and Th2-type cytokines. CONCLUSIONS Radiation induced a significant elevation of oxidative stress, antioxidants and pro-fibrotic factors in our animal model for radiation cystitis that were completely reversed and normalized by HBOT. Our findings indicate that HBOT may prevent radiation-induced changes by affecting oxidative stress and inflammatory cascades induced by radiation. SUMMARY Radiotherapy may cause the development of chronic inflammation and fibrosis, significantly impairing organ function. We hypothesized that bladder irradiation induces an oxidative stress reaction, thereby triggering the redox system and thus initiating an inflammatory and pro-fibrotic response. We aimed to assess whether these changes would be reversed by hyperbaric oxygen using an animal model for radiation cystitis. Our study show that hyperbaric oxygen therapy may reverse oxidative stress and pro-inflammatory factors induced by radiation.
Collapse
Affiliation(s)
- N Oscarsson
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - L Ny
- Department of Oncology, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Sweden
| | - J Mölne
- Department of Pathology, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Sweden
| | - F Lind
- Section of Anesthesiology and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - S-E Ricksten
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Sweden
| | - H Seeman-Lodding
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Sweden
| | - D Giglio
- Department of Oncology, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Pharmacology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|