1
|
Calle X, Garrido-Moreno V, Lopez-Gallardo E, Norambuena-Soto I, Martínez D, Peñaloza-Otárola A, Troncossi A, Guerrero-Moncayo A, Ortega A, Maracaja-Coutinho V, Parra V, Chiong M, Lavandero S. Mitochondrial E3 ubiquitin ligase 1 (MUL1) as a novel therapeutic target for diseases associated with mitochondrial dysfunction. IUBMB Life 2022; 74:850-865. [PMID: 35638168 DOI: 10.1002/iub.2657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Mitochondrial E3 ubiquitin ligase 1 (MUL1) is a mitochondrial outer membrane-anchored protein-containing transmembrane domain in its N- and C-terminal regions, where both are exposed to the cytosol. Interestingly the C-terminal region has a RING finger domain responsible for its E3 ligase activity, as ubiquitin or in SUMOylation, interacting with proteins related to mitochondrial fusion and fission, cell survival, and tumor suppressor process, such as Akt. Therefore, MUL1 is involved in various cellular processes, such as mitochondrial dynamics, inter-organelle communication, proliferation, mitophagy, immune response, inflammation and cell apoptosis. MUL1 is expressed at a higher basal level in the heart, immune system organs, and blood. Here, we discuss the role of MUL1 in mitochondrial dynamics and its function in various pathological models, both in vitro and in vivo. In this context, we describe the role of MUL1 in: (1) the inflammatory response, by regulating NF-κB activity; (2) cancer, by promoting cell death and regulating exonuclear function of proteins, such as p53; (3) neurological diseases, by maintaining communication with other organelles and interacting with proteins to eliminate damaged organelles and; (4) cardiovascular diseases, by maintaining mitochondrial fusion/fission homeostasis. In this review, we summarize the latest advances in the physiological and pathological functions of MUL1. We also describe the different substrates of MUL1, acting as a positive or negative regulator in various pathologies associated with mitochondrial dysfunction. In conclusion, MUL1 could be a potential key target for the development of therapies that focus on ensuring the functionality of the mitochondrial network and, furthermore, the quality control of intracellular components by synchronously modulating the activity of different cellular mechanisms involved in the aforementioned pathologies. This, in turn, will guide the development of targeted therapies.
Collapse
Affiliation(s)
- Ximena Calle
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valeria Garrido-Moreno
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Erik Lopez-Gallardo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Daniela Martínez
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Allan Peñaloza-Otárola
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Angelo Troncossi
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Guerrero-Moncayo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Angélica Ortega
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile.,Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Semisynthesis and biological evaluation of (+)-sclerotiorin derivatives as antitumor agents for the treatment of hepatocellular carcinoma. Eur J Med Chem 2022; 232:114166. [DOI: 10.1016/j.ejmech.2022.114166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
|
3
|
Ye H, Meng Y. Honokiol regulates endoplasmic reticulum stress by promoting the activation of the sirtuin 1-mediated protein kinase B pathway and ameliorates high glucose/high fat-induced dysfunction in human umbilical vein endothelial cells. Endocr J 2021; 68:981-992. [PMID: 33952780 DOI: 10.1507/endocrj.ej20-0747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Honokiol plays an important role in anti-oxidation, but its role in diabetic vascular complications is unclear. In this study, the effects of honokiol in high glucose/high fat (HG/HF)-induced human umbilical vein endothelial cells (HUVECs) were explored. After pre-treatment with honokiol, the cells were transferred to an HG/HF medium, and cell viability and apoptosis were respectively measured by methyl tetrazolium and flow cytometry. Moreover, the contents of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were measured. The expressions of C/EBP homologous protein (CHOP), glucose-regulated protein 78 (GRP78), phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase (p-PERK), phosphorylated-inositol requiring enzyme-1α (p-IRE1α), cleaved caspase-3 and SIRT1 were determined by Western blot or quantitative reverse transcription PCR, respectively. Finally, the viability, apoptosis, and the contents of ROS, MDA, and SOD, as well as the expressions of CHOP, GRP78, p-PERK, p-IRE1α, cleaved caspase-3, Akt, p-Akt, and SIRT1 in the cells transfected with small interfering RNA SIRT1 (siSIRT1) were detected by the previously mentioned methods. Honokiol reversed the effect of HG/HF on promoting cell apoptosis, ROS and MDA contents, and the expressions of CHOP, GRP78, p-PERK, p-IRE1α and cleaved caspase-3, and also reversed the inhibitory effect of HG/HF on cell viability, SOD content and SIRT1 expression. However, siSIRT1 reversed the above effects caused by honokiol. Honokiol activated SIRT1 promoter. SIRT1 interacted with Akt, consequently promoting the activity of Akt. Therefore, honokiol activates the Akt pathway by regulating SIRT1 expression to regulate endoplasmic reticulum stress, promotes cell viability and inhibits the apoptosis of HG/HF-induced HUVECs.
Collapse
Affiliation(s)
- Hong Ye
- Department of Cardiovascular Medicine, Anhui Chest Hospital, Hefei City, Anhui Province, 230000, China
| | - Ying Meng
- Department of Cardiology, Hefei Binhu Hospital, Hefei City, Anhui Province, 230011, China
| |
Collapse
|
4
|
Hu CF, Liao XY, Xu DD, Ruan YB, Gao FG. K48-Linked Ubiquitination Contributes to Nicotine-Augmented Bone Marrow-Derived Dendritic-Cell-Mediated Adaptive Immunity. Vaccines (Basel) 2021; 9:vaccines9030278. [PMID: 33808531 PMCID: PMC8003133 DOI: 10.3390/vaccines9030278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/23/2023] Open
Abstract
K48-linked ubiquitination determining antigen degradation and the endosomal recruitments of p97 and Sec61 plays vital roles in dendritic cell (DC) cross-presentation. Our previous studies revealed that nicotine treatment increases bone marrow-derived dendritic cell (BM-DC) cross-presentation and promotes BM-DC-based cytotoxic T lymphocyte (CTL) priming. But the effect of nicotine on K48-linked ubiquitination and the mechanism of nicotine-increased BM-DC cross-presentation are still uncertain. In this study, we first demonstrated that ex vivo nicotine administration obviously increased K48-linked ubiquitination in BM-DC. Then, we found that K48-linked ubiquitination was essential for nicotine-augmented cross-presentation, BM-DC-based CTL priming, and thereby the superior cytolytic capacity of DC-activated CTL. Importantly, K48-linked ubiquitination was verified to be necessary for nicotine-augmented endosomal recruitments of p97 and Sec61. Importantly, mannose receptor (MR), which is an important antigenic receptor for cross-presentation, was exactly catalyzed with K48-linked ubiquitination by the treatment with nicotine. Thus, these data suggested that K48-linked ubiquitination contributes to the superior adaptive immunity of nicotine-administrated BM-DC. Regulating K48-linked ubiquitination might have therapeutic potential for DC-mediated immune therapy.
Collapse
Affiliation(s)
- Chun Fang Hu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China; (C.F.H.); (X.Y.L.); (D.D.X.)
| | - Xiao Yan Liao
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China; (C.F.H.); (X.Y.L.); (D.D.X.)
| | - Dan Dan Xu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China; (C.F.H.); (X.Y.L.); (D.D.X.)
| | - Yi Bin Ruan
- Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang 550003, China
- Correspondence: (Y.B.R.); (F.G.G.)
| | - Feng Guang Gao
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China; (C.F.H.); (X.Y.L.); (D.D.X.)
- Correspondence: (Y.B.R.); (F.G.G.)
| |
Collapse
|
5
|
Gao Y, Miksys S, Palmour RM, Tyndale RF. The Influence of Tobacco Smoke/Nicotine on CYP2A Expression in Human and African Green Monkey Lungs. Mol Pharmacol 2020; 98:658-668. [PMID: 33055223 DOI: 10.1124/molpharm.120.000100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/17/2020] [Indexed: 11/22/2022] Open
Abstract
CYP2A enzymes metabolically inactivate nicotine and activate tobacco-derived procarcinogens [e.g., 4-[methylnitrosamino]-1-(3-pyridyl)-1-butanone]. Smoking decreases nicotine clearance, and chronic nicotine reduces hepatic CYP2A activity. However, little is known about the impact of smoking or nicotine on the expression of CYP2A in the lung. We investigated 1) the levels of human lung CYP2A mRNA in smokers versus nonsmokers and 2) the impact of daily nicotine treatment on lung CYP2A protein levels in African green monkeys (AGMs). Lung CYP2A13, CYP2A6, and CYP2A7 (and CYP1A2) mRNA levels in smokers and nonsmokers were assessed in Gene Expression Omnibus data sets (GSE30063, GSE108134, and GSE11784). The impact of chronic, twice-daily, subcutaneous nicotine at two doses (0.3 and 0.5 mg/kg) versus vehicle on lung CYP2A protein levels was assessed. The impact of ethanol self-administration was also investigated, with and without nicotine treatment. Smokers versus nonsmokers (from GSE30063 and GSE108134) had lower (1.04- to 1.12-fold) levels of lung CYP2A13, CYP2A6, and CYP2A7 (and higher CYP1A2) mRNA. Both doses of nicotine tested decreased AGM lung CYP2A protein (3- to 7-fold). Ethanol self-administration had no effect on AGM lung CYP2A protein, and there was no interaction between ethanol and nicotine. Our results suggest that smoking was associated with a reduction in human lung CYP2A13, CYP2A6, and CYP2A7 mRNA, consistent with the role of nicotine treatment in reducing AGM lung CYP2A protein. This regulation by smoking/nicotine will increase interindividual variation in lung CYP2A levels, which may impact the localized metabolism of inhaled drugs and tobacco smoke procarcinogens. SIGNIFICANCE STATEMENT: CYP2A13 and CYP2A6 are expressed in the lung and may contribute to local procarcinogen activation. Smokers had lower lung CYP2A mRNA levels compared with nonsmokers. Lung CYP2A protein expression was decreased by systemic treatment with nicotine. Decreased lung CYP2A expression may alter smoking-related lung cancer risk and tissue damage from other inhaled toxins. This novel regulatory impact of nicotine, including nicotine found in smoking-cessation nicotine-replacement therapies, may have potential benefits on smoking-related lung cancer risk.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pharmacology and Toxicology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH) (Y.G., S.M., R.F.T.) and Department of Psychiatry (R.F.T.), University of Toronto, Toronto, Ontario, Canada and Department of Psychiatry and Human Genetics, McGill University, Montreal, Quebec, Canada (R.M.P.)
| | - Sharon Miksys
- Department of Pharmacology and Toxicology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH) (Y.G., S.M., R.F.T.) and Department of Psychiatry (R.F.T.), University of Toronto, Toronto, Ontario, Canada and Department of Psychiatry and Human Genetics, McGill University, Montreal, Quebec, Canada (R.M.P.)
| | - Roberta M Palmour
- Department of Pharmacology and Toxicology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH) (Y.G., S.M., R.F.T.) and Department of Psychiatry (R.F.T.), University of Toronto, Toronto, Ontario, Canada and Department of Psychiatry and Human Genetics, McGill University, Montreal, Quebec, Canada (R.M.P.)
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH) (Y.G., S.M., R.F.T.) and Department of Psychiatry (R.F.T.), University of Toronto, Toronto, Ontario, Canada and Department of Psychiatry and Human Genetics, McGill University, Montreal, Quebec, Canada (R.M.P.)
| |
Collapse
|
6
|
Zhang M, Wang C, Chen H, Wang M, Tang X. Effects of peroxiredoxin 1 on nicotine induced apoptosis in mouse tongue. Biotech Histochem 2020; 95:626-633. [PMID: 32362142 DOI: 10.1080/10520295.2020.1749304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Local action of nicotine on oral mucosa contributes to the pathogenesis of precancerous and cancerous lesions. Nicotine participation in the mechanism of apoptosis in normal mucosa has not been established. Peroxiredoxin 1 (Prx1) is a cellular antioxidant that participates in regulating apoptosis. We investigated expression of Prx1 and proteins in apoptosis-related downstream signaling by mitogen-activated protein kinases (MAPKs) in nicotine-treated tongue tissues of wild-type and Prx1 knockout (Prx1±) mice; we also investigated these processes in mouse embryonic fibroblast (MEF) cells in vitro. Nicotine increased the expression of Prx1 mRNA in tongue tissues in vivo. The rate of apoptosis was similar among the nicotine-treated mice, nicotine-treated + Prx1± mice and untreated controls. The expression of p-JNK was greater in Prx1± mice compared to control mice. In MEF cells, nicotine increased the expression of Prx1 and inhibited apoptosis and expression of p-p38 and p-JNK. Prx1 knockdown animals exhibited increased apoptotic rate and expression of p-p38 and p-JNK in MEFs. Nicotine-regulated apoptosis might occur via a Prx1-dependent pathway.
Collapse
Affiliation(s)
- Min Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University , Beijing, China
| | | | - Hui Chen
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University , Beijing, China
| | - Min Wang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University , Beijing, China
| | - Xiaofei Tang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University , Beijing, China
| |
Collapse
|