1
|
Xie T, Zhang Z, Feng M, Kong L. Current study on Pyrroloquinoline quinone (PQQ) therapeutic role in neurodegenerative diseases. Mol Biol Rep 2025; 52:397. [PMID: 40234255 DOI: 10.1007/s11033-025-10491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Pyrroloquinoline quinone (PQQ) is a naturally occurring redox-active compound with potent antioxidant, mitochondrial-enhancing, and neuroprotective properties. Originally identified as a cofactor in bacterial enzymes, PQQ has garnered significant interest for its potential therapeutic role in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). It has reported that PQQ exerts its effects through several key molecular mechanisms, including the activation of antioxidant pathways via Nrf2/ARE signaling, enhancement of mitochondrial biogenesis and function through AMPK/PGC-1α, and the regulation of inflammatory processes through NF-κB inhibition. By improving cellular energy metabolism, reducing oxidative stress, and promoting neuronal survival, PQQ offers a multifaceted approach to counteracting the pathophysiological factors underlying neurodegeneration. Our review focusing on current study of PQQ on its enhancing neuroplasticity, and protecting neurons from damage induced by oxidative stress, mitochondrial dysfunction, and inflammation. Further we reviewed the significant signaling pathways that involved PQQ neuroprotective mechanisms, positioning it as a novel candidate for future therapeutic strategies targeting these debilitating conditions.
Collapse
Affiliation(s)
- Tao Xie
- Department of Spine Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Medical College, Yan'an University, Yan'an City, Shaanxi, China
| | - Zhen Zhang
- Department of Spine Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Mingzhe Feng
- Department of Spine Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lingbo Kong
- Department of Spine Surgery, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
2
|
Yang L, Wu X, Bian S, Zhao D, Fang S, Yuan H. SIRT6-mediated vascular smooth muscle cells senescence participates in the pathogenesis of abdominal aortic aneurysm. Atherosclerosis 2024; 392:117483. [PMID: 38490134 DOI: 10.1016/j.atherosclerosis.2024.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND AND AIMS In this study, we carried out a clinical sample study, and in vivo and in vitro studies to evaluate the effect of SIRT6 and SIRT6-mediated vascular smooth muscle senescence on the development of abdominal aortic aneurysm (AAA). METHOD AND RESULTS AAA specimen showed an increased P16, P21 level and a decreased SIRT6 level compared with control aorta. Time curve study of Ang II infusion AAA model showed similar P16, P21 and SIRT6 changes at the early phase of AAA induction. The in vivo overexpression of SIRT6 significantly prevented AAA formation in Ang II infusion model. The expression of P16 and P21 was significantly reduced after SIRT6 overexpression. SIRT6 overexpression also attenuated chronic inflammation and neo-angiogenesis in Ang II infusion model. The overexpression of SIRT6 could attenuate premature senescence, inflammatory response and neo-angiogenesis in human aortic smooth muscle cells (HASMC) under Ang II stimulation. CONCLUSIONS SIRT6 overexpression could limit AAA formation via attenuation of vascular smooth muscle senescence, chronic inflammation and neovascularity.
Collapse
MESH Headings
- Aged
- Animals
- Humans
- Male
- Middle Aged
- Angiotensin II
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Cells, Cultured
- Cellular Senescence/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Disease Models, Animal
- Inflammation
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Sirtuins/metabolism
- Sirtuins/genetics
Collapse
Affiliation(s)
- Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Shuai Bian
- Department of Invasive Therapy, Anqing Municipal Hospital (Anqing Hospital Affiliated to Anhui Medical University), Anqing, China
| | - Dongfang Zhao
- Jinan Third Hospital of Jining Medical University, Jinan, China
| | - Sheng Fang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
3
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
4
|
Yang L, Ye Q, Zhang X, Li K, Liang X, Wang M, Shi L, Luo S, Zhang Q, Zhang X. Pyrroloquinoline quinone extends Caenorhabditis elegans' longevity through the insulin/IGF1 signaling pathway-mediated activation of autophagy. Food Funct 2021; 12:11319-11330. [PMID: 34647561 DOI: 10.1039/d1fo02128a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aging is the leading cause of human morbidity and death worldwide. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound that has strong anti-oxidant capacity. Beneficial effects of PQQ on lifespan have been discovered in the model organism Caenorhabditis elegans (C. elegans), yet the underlying mechanisms remain unclear. In the current study, we hypothesized that the longevity-extending effect of PQQ may be linked to autophagy and insulin/IGF1 signaling (IIS) in C. elegans. Our data demonstrate that PQQ at a concentration of 1 mM maximally extended the mean life of C. elegans by 33.1%. PQQ increased locomotion and anti-stress ability, and reduced fat accumulation and reactive oxygen species (ROS) levels. There was no significant lifespan extension in PQQ-treated daf-16, daf-2, and bec-1 mutants, suggesting that these IIS- and autophagy-related genes may mediate the anti-aging effects of the PQQ. Furthermore, PQQ raised mRNA expression and the nuclear localization of the pivotal transcription factor daf-16, and then activated its downstream targets sod-3, clt-1, and hsp16.2. Enhanced activity of the autophagy pathway was also observed in PQQ-fed C. elegans, as evidenced by increased expression of the key autophagy genes including lgg-1, and bec-1, and also by an increase in the GFP::LGG-1 puncta. Inactivation of the IIS pathway-related genes daf-2 or daf-16 by RNAi partially blocked the increase in autophagy activity caused by PQQ treatment, suggesting that autophagy may be regulated by IIS. This study demonstrates that anti-aging properties of PQQ, in the C. elegans model, may be mediated via the IIS pathway and autophagy.
Collapse
Affiliation(s)
- Liu Yang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Qi Ye
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xuguang Zhang
- Science and Technology Centre, By-Health Co. Ltd, Guangzhou, China
| | - Ke Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoshan Liang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Meng Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Linran Shi
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Suhui Luo
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China.,Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
5
|
Koppula S, Akther M, Haque ME, Kopalli SR. Potential Nutrients from Natural and Synthetic Sources Targeting Inflammaging-A Review of Literature, Clinical Data and Patents. Nutrients 2021; 13:nu13114058. [PMID: 34836313 PMCID: PMC8617641 DOI: 10.3390/nu13114058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammaging, the steady development of the inflammatory state over age is an attributable characteristic of aging that potentiates the initiation of pathogenesis in many age-related disorders (ARDs) including neurodegenerative diseases, arthritis, cancer, atherosclerosis, type 2 diabetes, and osteoporosis. Inflammaging is characterized by subclinical chronic, low grade, steady inflammatory states and is considered a crucial underlying cause behind the high mortality and morbidity rate associated with ARDs. Although a coherent set of studies detailed the underlying pathomechanisms of inflammaging, the potential benefits from non-toxic nutrients from natural and synthetic sources in modulating or delaying inflammaging processes was not discussed. In this review, the available literature and recent updates of natural and synthetic nutrients that help in controlling inflammaging process was explored. Also, we discussed the clinical trial reports and patent claims on potential nutrients demonstrating therapeutic benefits in controlling inflammaging and inflammation-associated ARDs.
Collapse
Affiliation(s)
- Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Mahbuba Akther
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27381, Korea;
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea
- Correspondence: ; Tel.: +82-2-6935-2619
| |
Collapse
|