1
|
Haghbin N, Richter DM, Kharche S, Kim MSM, Welsh DG. Functional bias of contractile control in mouse resistance arteries. Sci Rep 2024; 14:24940. [PMID: 39438518 PMCID: PMC11496727 DOI: 10.1038/s41598-024-75838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Constrictor agonists set arterial tone through two coupling processes, one tied to (electromechanical), the other independent (pharmacomechanical) of, membrane potential (VM). This dual arrangement raises an intriguing question: is the contribution of each mechanism (1) fixed and proportionate, or (2) variable and functionally biased. Examination began in mouse mesenteric arteries with a vasomotor assessment to a classic Gq/11 (phenylephrine) or Gq/11/G12/13 (U46619) agonist, in the absence and presence of nifedipine, to separate among the two coupling mechanisms. Each constrictor elicited a concentration response curve that was attenuated and rightward shifted by nifedipine, findings consistent with functional bias. Electromechanical coupling preceded pharmacomechanical, the latter's importance rising with agonist concentration. In this regard, ensuing contractile and phosphorylation (CPI-17 & MYPT1 (T-855 & T-697)) measures revealed phenylephrine-induced pharmacomechanical coupling was tied to protein kinase C (PKC) activity, while that enabled by U46619 to PKC and Rho-kinase. A complete switch to pharmacomechanical coupling arose when agonist superfusion was replaced by pipet application to a small portion of artery. This switch was predicted, a priori, by a computer model of electromechanical control and supported by additional measures of VM and cytosolic Ca2+. We conclude that the coupling mechanisms driving agonist-induced constriction are variable and functionally biased, their relative importance set in accordance with agonist concentration and manner of application. These findings have important implications to hemodynamic control in health and disease, including hypertension and arterial vasospasm.
Collapse
Affiliation(s)
- Nadia Haghbin
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| | - David M Richter
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Sanjay Kharche
- Department of Medical Biophysics, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Michelle S M Kim
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Donald G Welsh
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
2
|
Huang D, Shang W, Xu M, Wan Q, Zhang J, Tang X, Shen Y, Wang Y, Yu Y. Genome-Wide Methylation Analysis Reveals a KCNK3-Prominent Causal Cascade on Hypertension. Circ Res 2024; 135:e76-e93. [PMID: 38841840 DOI: 10.1161/circresaha.124.324455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Despite advances in understanding hypertension's genetic structure, how noncoding genetic variants influence it remains unclear. Studying their interaction with DNA methylation is crucial to deciphering this complex disease's genetic mechanisms. METHODS We investigated the genetic and epigenetic interplay in hypertension using whole-genome bisulfite sequencing. Methylation profiling in 918 males revealed allele-specific methylation and methylation quantitative trait loci. We engineered rs1275988T/C mutant mice using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9), bred them for homozygosity, and subjected them to a high-salt diet. Telemetry captured their cardiovascular metrics. Protein-DNA interactions were elucidated using DNA pull-downs, mass spectrometry, and Western blots. A wire myograph assessed vascular function, and analysis of the Kcnk3 gene methylation highlighted the mutation's role in hypertension. RESULTS We discovered that DNA methylation-associated genetic effects, especially in non-cytosine-phosphate-guanine (non-CpG) island and noncoding distal regulatory regions, significantly contribute to hypertension predisposition. We identified distinct methylation quantitative trait locus patterns in the hypertensive population and observed that the onset of hypertension is influenced by the transmission of genetic effects through the demethylation process. By evidence-driven prioritization and in vivo experiments, we unearthed rs1275988 in a cell type-specific enhancer as a notable hypertension causal variant, intensifying hypertension through the modulation of local DNA methylation and consequential alterations in Kcnk3 gene expression and vascular remodeling. When exposed to a high-salt diet, mice with the rs1275988C/C genotype exhibited exacerbated hypertension and significant vascular remodeling, underscored by increased aortic wall thickness. The C allele of rs1275988 was associated with elevated DNA methylation levels, driving down the expression of the Kcnk3 gene by attenuating Nr2f2 (nuclear receptor subfamily 2 group F member 2) binding at the enhancer locus. CONCLUSIONS Our research reveals new insights into the complex interplay between genetic variations and DNA methylation in hypertension. We underscore hypomethylation's potential in hypertension onset and identify rs1275988 as a causal variant in vascular remodeling. This work advances our understanding of hypertension's molecular mechanisms and encourages personalized health care strategies.
Collapse
Affiliation(s)
- Dandan Huang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
- School of Food Science and Technology, Jiangnan University, Wuxi, China (D.H.)
| | - Wenlong Shang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| | - Mengtong Xu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| | - Qiangyou Wan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine (Q.W.)
| | - Jin Zhang
- Department of Cardiovascular Medicine, Research Center for Hypertension Management and Prevention in Community, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., X.T., Y.W.)
| | - Xiaofeng Tang
- Department of Cardiovascular Medicine, Research Center for Hypertension Management and Prevention in Community, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., X.T., Y.W.)
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| | - Yan Wang
- Department of Cardiovascular Medicine, Research Center for Hypertension Management and Prevention in Community, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.Z., X.T., Y.W.)
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, China (D.H., W.S., M.X., Y.S., Y.Y.)
| |
Collapse
|
3
|
Ou G, Komura A, Hojo M, Kato R, Ikeda M, Fujisawa M, Xu K, Yoshioka K, Obara K, Tanaka Y. Pharmacological study on the enhancing effects of U46619 on guinea pig urinary bladder smooth muscle contraction induced by acetylcholine and α,β-methylene ATP and the possible involvement of protein kinase C. J Pharmacol Sci 2023; 153:119-129. [PMID: 37770153 DOI: 10.1016/j.jphs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
We examined whether U46619 (a prostanoid TP receptor agonist) could enhance the contractions of guinea pig urinary bladder smooth muscle (UBSM) in response to acetylcholine (ACh) and an ATP analog (α,β-methylene ATP (αβ-MeATP)) through stimulation of the UBSM TP receptor and whether protein kinase C (PKC) is involved. U46619 (10-7 M) markedly enhanced UBSM contractions induced by electrical field stimulation and ACh/αβ-MeATP (3 × 10-6 M each), the potentiation of which was completely suppressed by SQ 29,548 (a TP receptor antagonist, 6 × 10-7 M). PKC inhibitors did not attenuate the ACh-induced contractions enhanced by U46619 although they partly suppressed the U46619-enhanced, αβ-MeATP-induced contractions. While phorbol 12-myristate 13-acetate (PMA, a PKC activator, 10-6 M) did not enhance ACh-induced contractions, it enhanced αβ-MeATP-induced contractions, an effect that was completely suppressed by PKC inhibitors. αβ-MeATP-induced contractions, both with and without U46619 enhancement, were strongly inhibited by diltiazem. U46619/PMA enhanced 50 mM KCl-induced contractions, the potentiation of which was partly/completely attenuated by PKC inhibitors. These findings suggest that U46619 potentiates parasympathetic nerve-associated UBSM contractions by stimulating UBSM TP receptors. PKC-increased Ca2+ influx through voltage-dependent Ca2+ channels may partially play a role in purinergic receptor-mediated UBSM contractions enhanced by TP receptor stimulation.
Collapse
Affiliation(s)
- Guanghan Ou
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Akane Komura
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Misaki Hojo
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Rina Kato
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Masahiro Ikeda
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Miki Fujisawa
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Keyue Xu
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Kento Yoshioka
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Keisuke Obara
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | - Yoshio Tanaka
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
4
|
Ashton AW. Preparing to strike: Acute events in signaling by the serpentine receptor for thromboxane A 2. Pharmacol Ther 2023:108478. [PMID: 37321373 DOI: 10.1016/j.pharmthera.2023.108478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Over the last two decades, awareness of the (patho)physiological roles of thromboxane A2 signaling has been greatly extended. From humble beginnings as a short-lived stimulus that activates platelets and causes vasoconstriction to a dichotomous receptor system involving multiple endogenous ligands capable of modifying tissue homeostasis and disease generation in almost every tissue of the body. Thromboxane A2 receptor (TP) signal transduction is associated with the pathogenesis of cancer, atherosclerosis, heart disease, asthma, and host response to parasitic infection amongst others. The two receptors mediating these cellular responses (TPα and TPβ) are derived from a single gene (TBXA2R) through alternative splicing. Recently, knowledge about the mechanism(s) of signal propagation by the two receptors has undergone a revolution in understanding. Not only have the structural relationships associated with G-protein coupling been established but the modulation of that signaling by post-translational modification to the receptor has come sharply into focus. Moreover, the signaling of the receptor unrelated to G-protein coupling has become a burgeoning field of endeavor with over 70 interacting proteins currently identified. These data are reshaping the concept of TP signaling from a mere guanine nucleotide exchange factors for Gα activation to a nexus for the convergence of diverse and poorly characterized signaling pathways. This review summarizes the advances in understanding in TP signaling, and the potential for new growth in a field that after almost 50 years is finally coming of age.
Collapse
Affiliation(s)
- Anthony W Ashton
- Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Rm 128, 100 E Lancaster Ave, Wynnewood, PA 19096, USA; Division of Perinatal Research, Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia.
| |
Collapse
|
5
|
Morris GE, Denniff MJ, Karamanavi E, Andrews SA, Kostogrys RB, Bountziouka V, Ghaderi‐Najafabadi M, Shamkhi N, McConnell G, Kaiser MA, Carleton L, Schofield C, Kessler T, Rainbow RD, Samani NJ, Webb TR. The integrin ligand SVEP1 regulates GPCR-mediated vasoconstriction via integrins α9β1 and α4β1. Br J Pharmacol 2022; 179:4958-4973. [PMID: 35802072 PMCID: PMC9805129 DOI: 10.1111/bph.15921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Vascular tone is regulated by the relative contractile state of vascular smooth muscle cells (VSMCs). Several integrins directly modulate VSMC contraction by regulating calcium influx through L-type voltage-gated Ca2+ channels (VGCCs). Genetic variants in ITGA9, which encodes the α9 subunit of integrin α9β1, and SVEP1, a ligand for integrin α9β1, associate with elevated blood pressure; however, neither SVEP1 nor integrin α9β1 has reported roles in vasoregulation. We determined whether SVEP1 and integrin α9β1 can regulate VSMC contraction. EXPERIMENTAL APPROACH SVEP1 and integrin binding were confirmed by immunoprecipitation and cell binding assays. Human induced pluripotent stem cell-derived VSMCs were used in in vitro [Ca2+ ]i studies, and aortas from a Svep1+/- knockout mouse model were used in wire myography to measure vessel contraction. KEY RESULTS We confirmed the ligation of SVEP1 to integrin α9β1 and additionally found SVEP1 to directly bind to integrin α4β1. Inhibition of SVEP1, integrin α4β1 or α9β1 significantly enhanced [Ca2+ ]i levels in isolated VSMCs to Gαq/11 -vasoconstrictors. This response was confirmed in whole vessels where a greater contraction to U46619 was seen in vessels from Svep1+/- mice compared to littermate controls or when integrin α4β1 or α9β1 was inhibited. Inhibition studies suggested that this effect was mediated via VGCCs, PKC and Rho A/Rho kinase dependent mechanisms. CONCLUSIONS AND IMPLICATIONS Our studies reveal a novel role for SVEP1 and the integrins α4β1 and α9β1 in reducing VSMC contractility. This could provide an explanation for the genetic associations with blood pressure risk at the SVEP1 and ITGA9 loci.
Collapse
Affiliation(s)
- Gavin E. Morris
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Matthew J. Denniff
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Elisavet Karamanavi
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Sarah A. Andrews
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Renata B. Kostogrys
- Department of Human Nutrition, Faculty of Food TechnologyUniversity of Agriculture in KrakowKrakowPoland
| | - Vasiliki Bountziouka
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Maryam Ghaderi‐Najafabadi
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Noor Shamkhi
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - George McConnell
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Michael A. Kaiser
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | | | | | - Thorsten Kessler
- Department of Cardiology, German Heart Centre MunichTechnical University of MunichMunichGermany,German Centre of Cardiovascular Research (DZHK e. V.), Partner Site Munich Heart AllianceMunichGermany
| | - Richard D. Rainbow
- Department of Cardiovascular and Metabolic Medicine & Liverpool Centre for Cardiovascular ScienceUniversity of LiverpoolLiverpoolUK
| | - Nilesh J. Samani
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Thomas R. Webb
- Department of Cardiovascular SciencesUniversity of Leicester and National Institute for Health Research Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| |
Collapse
|
6
|
Zhang L, Zhou MY, Kuang SJ, Qin XY, Cai YJ, Chen SZ, Li SM, Rao F, Yang H, Deng CY. Differential role of STIM1 in calcium handling in coronary and intrarenal arterial smooth muscles. Eur J Pharmacol 2022; 937:175386. [DOI: 10.1016/j.ejphar.2022.175386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|