1
|
Liang J, Wang S, Kou S, Chen C, Zhang W, Nie C. Clostridium butyricum Prevents Diarrhea Incidence in Weaned Piglets Induced by Escherichia coli K88 through Rectal Bacteria-Host Metabolic Cross-Talk. Animals (Basel) 2024; 14:2287. [PMID: 39199821 PMCID: PMC11350811 DOI: 10.3390/ani14162287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to evaluate the effects of Clostridium butyricum (C. butyricum) on the prevention of the diarrhea rates and growth performances of weaned piglets induced by Escherichia coli K88 (E. coli K88). Twenty-four weaned piglets (6.92 ± 0.11 kg) were randomly assigned to one of three treatment groups for a period of 21 days. Each group consisted of eight pigs, with each pig being housed in an individual pen. Group I received the control diet along with normal saline, Group II received the control diet along with E. coli K88, and Group III received the control diet supplemented with 5 × 108 CFU/kg of C. butyricum and E. coli K88. We examined alterations in rectal microbiota and metabolites, analyzed the incidence of diarrhea, and investigated the interactions between microbiota and metabolites through the application of Illumina MiSeq sequencing and liquid chromatography-mass spectrometry. The results showed that, from days 14 to 21, the diarrhea incidence in Group III decreased significantly by 83.29% compared to Group II (p < 0.05). Over the entire experimental duration, the average daily feed intake of Group III decreased significantly by 11.13% compared to Group I (p < 0.05), while the diarrhea incidence in Group III decreased by 71.46% compared to Group II (p < 0.05). The predominant microbial flora in the rectum consisted of Firmicutes (57.32%), Bacteroidetes (41.03%), and Proteobacteria (0.66%). Administering E. coli K88 orally can elevate the relative abundance of Megasphaera (p < 0.05). Conversely, the supplementation of C. butyricum in the diet reduced the relative abundance of Megasphaera (p < 0.05), while increasing the relative abundance of unclassified_f_Lachnospiraceae (p < 0.05). Rectal metabolomics analysis revealed that supplementing C. butyricum in the feed significantly altered the amino acids and fatty acids of the piglets infected with E. coli K88 (p < 0.05). The correlation analysis showed that the occurrence of diarrhea was inversely related to adipic acid (p < 0.05) and positively associated with (5-hydroxyindol-3-YL) acetic acid and L-aspartic acid (p < 0.05). Prevotella_1 exhibited a negative correlation with octadecanoic acid (p < 0.05). Prevotellaceae_UCG-005 showed a negative correlation with (5-hydroxyindol-3-YL) acetic acid (p < 0.05). The findings from this research study aid in probiotic development and the enhancement of healthy growth in weaned piglets.
Collapse
Affiliation(s)
- Jing Liang
- College of Life Science, Yulin University, Yulin 719000, China; (J.L.); (S.W.)
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Sihu Wang
- College of Life Science, Yulin University, Yulin 719000, China; (J.L.); (S.W.)
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Shasha Kou
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; (S.K.); (C.C.)
| |
Collapse
|
2
|
Park JW, Kim JH, Kim SE, Jung JH, Jang MK, Park SH, Lee MS, Kim HS, Suk KT, Kim DJ. Primary Biliary Cholangitis and Primary Sclerosing Cholangitis: Current Knowledge of Pathogenesis and Therapeutics. Biomedicines 2022; 10:biomedicines10061288. [PMID: 35740310 PMCID: PMC9220082 DOI: 10.3390/biomedicines10061288] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023] Open
Abstract
Cholangiopathies encompass various biliary diseases affecting the biliary epithelium, resulting in cholestasis, inflammation, fibrosis, and ultimately liver cirrhosis. Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are the most important progressive cholangiopathies in adults. Much research has broadened the scope of disease biology to genetic risk, epigenetic changes, dysregulated mucosal immunity, altered biliary epithelial cell function, and dysbiosis, all of which interact and arise in the context of ill-defined environmental triggers. An in-depth understanding of the molecular pathogenesis of these cholestatic diseases will help clinicians better prevent and treat diseases. In this review, we focus on the main underlying mechanisms of disease initiation and progression, and novel targeted therapeutics beyond currently approved treatments.
Collapse
Affiliation(s)
- Ji-Won Park
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Jung-Hee Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Jang Han Jung
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Sang-Hoon Park
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
| | - Myung-Seok Lee
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
| | - Hyoung-Su Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
- Correspondence: ; Tel.: +82-33-240-5646
| |
Collapse
|
3
|
Fecal 1H-NMR Metabolomics: A Comparison of Sample Preparation Methods for NMR and Novel in Silico Baseline Correction. Metabolites 2022; 12:metabo12020148. [PMID: 35208222 PMCID: PMC8875708 DOI: 10.3390/metabo12020148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Analysis of enteric microbiota function indirectly through the fecal metabolome has the potential to be an informative diagnostic tool. However, metabolomic analysis of feces is hampered by high concentrations of macromolecules such as proteins, fats, and fiber in samples. Three methods—ultrafiltration (UF), Bligh–Dyer (BD), and no extraction (samples added directly to buffer, vortexed, and centrifuged)—were tested on multiple rat (n = 10) and chicken (n = 8) fecal samples to ascertain whether the methods worked equally well across species and individuals. An in silico baseline correction method was evaluated to determine if an algorithm could produce spectra similar to those obtained via UF. For both rat and chicken feces, UF removed all macromolecules and produced no baseline distortion among samples. By contrast, the BD and no extraction methods did not remove all the macromolecules and produced baseline distortions. The application of in silico baseline correction produced spectra comparable to UF spectra. In the case of no extraction, more intense peaks were produced. This suggests that baseline correction may be a cost-effective method for metabolomic analyses of fecal samples and an alternative to UF. UF was the most versatile and efficient extraction method; however, BD and no extraction followed by baseline correction can produce comparable results.
Collapse
|
4
|
Checcucci A, Trevisi P, Luise D, Modesto M, Blasioli S, Braschi I, Mattarelli P. Exploring the Animal Waste Resistome: The Spread of Antimicrobial Resistance Genes Through the Use of Livestock Manure. Front Microbiol 2020; 11:1416. [PMID: 32793126 PMCID: PMC7387501 DOI: 10.3389/fmicb.2020.01416] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance is a public health problem of growing concern. Animal manure application to soil is considered to be a main cause of the propagation and dissemination of antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the soil-water system. In recent decades, studies on the impact of antibiotic-contaminated manure on soil microbiomes have increased exponentially, in particular for taxonomical diversity and ARGs’ diffusion. Antibiotic resistance genes are often located on mobile genetic elements (MGEs). Horizontal transfer of MGEs toward a broad range of bacteria (pathogens and human commensals included) has been identified as the main cause for their persistence and dissemination. Chemical and bio-sanitizing treatments reduce the antibiotic load and ARB. Nevertheless, effects of these treatments on the persistence of resistance genes must be carefully considered. This review analyzed the most recent research on antibiotic and ARG environmental dissemination conveyed by livestock waste. Strategies to control ARG dissemination and antibiotic persistence were reviewed with the aim to identify methods for monitoring DNA transferability and environmental conditions promoting such diffusion.
Collapse
Affiliation(s)
- Alice Checcucci
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Monica Modesto
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Sonia Blasioli
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Ilaria Braschi
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Wang W, Wang Y, Hao X, Duan Y, Meng Z, An X, Qi J. Dietary fermented soybean meal replacement alleviates diarrhea in weaned piglets challenged with enterotoxigenic Escherichia coli K88 by modulating inflammatory cytokine levels and cecal microbiota composition. BMC Vet Res 2020; 16:245. [PMID: 32664940 PMCID: PMC7362456 DOI: 10.1186/s12917-020-02466-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Impaired gut microbiota leads to pathogenic bacteria infection, pro-inflammatory response and post-weaning diarrhea. Enterotoxigenic Escherichia coli (ETEC) K88 is a major cause of post-weaning diarrhea in weaned piglets. Fermented soybean meal (FSBM) could relieve diarrhea, alleviate inflammatory response, and modulate gut microbiota of weaned piglets. We used ETEC K88-challenged weaned piglet model to investigate the effects of FSBM on the growth performance, inflammatory response and cecal microbiota. Twenty-four crossbred piglets (6.8 ± 0.5 kg; 21 ± 2 days of age) were allotted into 2 treatment fed the diets with or without FSBM (6% at the expense of soybean meal). Six weaned piglets in each diet treatment were challenged by ETEC K88 (1 × 109 CFU/piglets) on day 15. The experimental period lasted for 20 days. RESULTS The ETEC K88 challenge decreased (p < 0.05) fecal consistency and plasma interleukin-10 (IL-10) concentration, while increased (p < 0.05) average daily feed intake (ADFI) and plasma tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin 6 (IL-6) concentrations. After ETEC K88 challenge, dietary FSBM replacement increased (p < 0.05) final body weight (BW), average daily gain (ADG), ADFI, and fecal consistency, but decreased feed conversion ratio (FCR). The plasma IL-10 concentration of weaned piglets fed FSBM was higher (p < 0.05), while IL-1β, IL-6 and TNF-α concentrations were lower (p < 0.05). Dietary FSBM replacement attenuated the increase of plasma TNF-α concentration and the decrease of ADG induced by ETEC K88 challenge (p < 0.05). High-throughput sequencing of 16S rRNA gene V4 region of cecal microbiota revealed that ETEC K88 challenge increased (p < 0.05) Campylobacter relative abundance on genus level. Dietary FSBM replacement resulted in higher (p < 0.05) relative abundances of Bacteroidetes and Prevotellaceae_NK3B31_group, and lower (p < 0.05) relative abundances of Proteobacteria and Actinobacillus. Furthermore, dietary FSBM replacement relieved the increase of Escherichia-Shigella relative abundance in weaned piglets challenged by ETEC K88 (p < 0.05). CONCLUSIONS Dietary FSBM replacement improved growth performance and alleviated the diarrhea of weaned piglets challenged with ETEC K88, which could be due to modulation of cecal microbiota composition and down-regulation of inflammatory cytokines production.
Collapse
Affiliation(s)
- Wenwen Wang
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, 010018, Hohhot, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, China.
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, 010018, Hohhot, China.
| | - Xiran Hao
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, 010018, Hohhot, China
| | - Yuanxiao Duan
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, 010018, Hohhot, China
| | - Ziqi Meng
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, 010018, Hohhot, China
| | - Xiaoping An
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, 010018, Hohhot, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, 010018, Hohhot, China.
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, 010018, Hohhot, China.
| |
Collapse
|
6
|
Ai X, Hu M, Wang Z, Zhang W, Li J, Yang H, Lin J, Xing B. Recent Advances of Membrane-Cloaked Nanoplatforms for Biomedical Applications. Bioconjug Chem 2018; 29:838-851. [PMID: 29509403 DOI: 10.1021/acs.bioconjchem.8b00103] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In terms of the extremely small size and large specific surface area, nanomaterials often exhibit unusual physical and chemical properties, which have recently attracted considerable attention in bionanotechnology and nanomedicine. Currently, the extensive usage of nanotechnology in medicine holds great potential for precise diagnosis and effective therapeutics of various human diseases in clinical practice. However, a detailed understanding regarding how nanomedicine interacts with the intricate environment in complex living systems remains a pressing and challenging goal. Inspired by the diversified membrane structures and functions of natural prototypes, research activities on biomimetic and bioinspired membranes, especially for those cloaking nanosized platforms, have increased exponentially. By taking advantage of the flexible synthesis and multiple functionality of nanomaterials, a variety of unique nanostructures including inorganic nanocrystals and organic polymers have been widely devised to substantially integrate with intrinsic biomoieties such as lipids, glycans, and even cell and bacteria membrane components, which endow these abiotic nanomaterials with specific biological functionalities for the purpose of detailed investigation of the complicated interactions and activities of nanomedicine in living bodies, including their immune response activation, phagocytosis escape, and subsequent clearance from vascular system. In this review, we summarize the strategies established recently for the development of biomimetic membrane-cloaked nanoplatforms derived from inherent host cells (e.g., erythrocytes, leukocytes, platelets, and exosomes) and invasive pathogens (e.g., bacteria and viruses), mainly attributed to their versatile membrane properties in biological fluids. Meanwhile, the promising biomedical applications based on nanoplatforms inspired by diverse moieties, such as selective drug delivery in targeted sites and effective vaccine development for disease prevention, have also been outlined. Finally, the potential challenges and future prospects of the biomimetic membrane-cloaked nanoplatforms are also discussed.
Collapse
Affiliation(s)
- Xiangzhao Ai
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371
| | - Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371
| | - Zhimin Wang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371
| | - Wenmin Zhang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371.,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Juan Li
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Huanghao Yang
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , 130022 , China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences , Nanyang Technological University , Singapore , 637371.,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
7
|
Lv LX, Fang DQ, Shi D, Chen DY, Yan R, Zhu YX, Chen YF, Shao L, Guo FF, Wu WR, Li A, Shi HY, Jiang XW, Jiang HY, Xiao YH, Zheng SS, Li LJ. Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis. Environ Microbiol 2017; 18:2272-86. [PMID: 27243236 DOI: 10.1111/1462-2920.13401] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 02/22/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
Abstract
We selected 42 early-stage primary biliary cirrhosis (PBC) patients and 30 healthy controls (HC). Metagenomic sequencing of the 16S rRNA gene was used to characterize the fecal microbiome. UPLC-MS/MS assaying of small molecules was used to characterize the metabolomes of the serum, urine and feces. Liquid chip assaying of serum cytokines was used to characterize the immune profiles. The gut of PBC patients were depleted of some potentially beneficial bacteria, such as Acidobacteria, Lachnobacterium sp., Bacteroides eggerthii and Ruminococcus bromii, but were enriched in some bacterial taxa containing opportunistic pathogens, such as γ-Proteobacteria, Enterobacteriaceae, Neisseriaceae, Spirochaetaceae, Veillonella, Streptococcus, Klebsiella, Actinobacillus pleuropneumoniae, Anaeroglobus geminatus, Enterobacter asburiae, Haemophilus parainfluenzae, Megasphaera micronuciformis and Paraprevotella clara. Several altered gut bacterial taxa exhibited potential interactions with PBC through their associations with altered metabolism, immunity and liver function indicators, such as those of Klebsiella with IL-2A and Neisseriaceae with urinary indoleacrylate. Many gut bacteria, such as some members of Bacteroides, were altered in their associations with the immunity and metabolism of PBC patients, although their relative abundances were unchanged. Consequently, the gut microbiome is altered and may be critical for the onset or development of PBC by interacting with metabolism and immunity.
Collapse
Affiliation(s)
- Long-Xian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Dai-Qiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - De-Ying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yi-Xin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yan-Fei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Li Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Fei-Fei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Wen-Rui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Ang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Hai-Yan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Xia-Wei Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Hui-Yong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yong-Hong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Shu-Sen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| |
Collapse
|
8
|
Simeoni U, Berger B, Junick J, Blaut M, Pecquet S, Rezzonico E, Grathwohl D, Sprenger N, Brüssow H, Szajewska H, Bartoli J, Brevaut‐Malaty V, Borszewska‐Kornacka M, Feleszko W, François P, Gire C, Leclaire M, Maurin J, Schmidt S, Skórka A, Squizzaro C, Verdot J. Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk‐derived oligosaccharides and
B
ifidobacterium animalis
subsp.
lactis
CNCM I
‐3446. Environ Microbiol 2016; 18:2185-95. [DOI: 10.1111/1462-2920.13144] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/03/2015] [Accepted: 11/19/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Umberto Simeoni
- Pédiatrie (PED) Centre Hospitalier Universitaire Vaudois Lausanne Switzerland
| | | | - Jana Junick
- Gastrointestinal Microbiology German Institute of Human Nutrition Postdam‐Rehbrücke Nuthetal Germany
| | - Michael Blaut
- Gastrointestinal Microbiology German Institute of Human Nutrition Postdam‐Rehbrücke Nuthetal Germany
| | - Sophie Pecquet
- Nestlé Nutrition Clinical Development Unit Nestec Ltd Vevey Switzerland
| | | | | | | | | | - Hania Szajewska
- Department of Paediatrics Medical University of Warsaw Warsaw Poland
| | | | | | | | - W. Feleszko
- Department of Paediatrics Medical University of Warsaw Warsaw Poland
| | | | - C. Gire
- Hôpital Nord Marseille France
| | | | | | | | - A. Skórka
- Department of Paediatrics Medical University of Warsaw Warsaw Poland
| | | | | | | |
Collapse
|