1
|
Babińska-Wensierska W, Motyka-Pomagruk A, Mengoni A, diCenzo GC, Lojkowska E. Gene expression analyses on Dickeya solani strains of diverse virulence levels unveil important pathogenicity factors for this species. Sci Rep 2025; 15:14531. [PMID: 40281029 PMCID: PMC12032288 DOI: 10.1038/s41598-025-98321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Dickeya solani causes soft rot and blackleg mainly on potato crops. High pathogenicity of this species results from efficient production of plant cell wall-degrading enzymes, especially pectate lyases, potent root colonization, and fast vascular movement. Despite genomic homogeneity, variations in virulence-related phenotypes suggest differences in the gene expression patterns between diverse strains. Therefore, the methylomes and transcriptomes of two strains (virulent IFB0099 and low virulent IFB0223), differing in tissue maceration capacity and virulence factors production, have been studied. Methylation analysis revealed no significant differences. However, the analysis of transcriptomes, studied under both non-induced and induced by polygalacturonic acid conditions (in order to mimic diverse stages of plant infection process), unveiled higher expression of pectate lyases (pelD, pelE, pelL), pectin esterase (pemA), proteases (prtE, prtD) and Vfm-associated quorum-sensing genes (vfmC, vfmD, vfmE) in IFB0099 strain compared to IFB0223. Additionally, the genes related to the secretion system II (T2SS) (gspJ, nipE) displayed higher induction of expression in IFB0099. Furthermore, IFB0099 showed more elevated expression of genes involved in flagella formation, which coincides with enhanced motility and pathogenicity of this strain compared to IFB0223. To sum up, differential expression analysis of genes important for the virulence of D. solani indicated candidate genes, which might be crucial for the pathogenicity of this species.
Collapse
Affiliation(s)
- Weronika Babińska-Wensierska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 58 Abrahama, Gdansk, 80-307, Poland
- Laboratory of Physical Biochemistry, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, Gdansk, 80-307, Poland
| | - Agata Motyka-Pomagruk
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 58 Abrahama, Gdansk, 80-307, Poland
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 20 Podwale Przedmiejskie, Gdansk, 80-824, Poland
| | - Alessio Mengoni
- Laboratorio di Genetica Microbica, Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence, 50019, Italy
| | - George C diCenzo
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, ON, K7L 3N6, Canada
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 58 Abrahama, Gdansk, 80-307, Poland.
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 20 Podwale Przedmiejskie, Gdansk, 80-824, Poland.
| |
Collapse
|
2
|
Molina A, Sánchez-Vallet A, Jordá L, Carrasco-López C, Rodríguez-Herva JJ, López-Solanilla E. Plant cell walls: source of carbohydrate-based signals in plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102630. [PMID: 39306957 DOI: 10.1016/j.pbi.2024.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 12/06/2024]
Abstract
Plant cell walls are essential elements for disease resistance that pathogens need to overcome to colonise the host. Certain pathogens secrete a large battery of enzymes to hydrolyse plant cell wall polysaccharides, which leads to the release of carbohydrate-based molecules (glycans) that are perceived by plant pattern recognition receptors and activate pattern-triggered immunity and disease resistance. These released glycans are used by colonizing microorganisms as carbon source, chemoattractants to locate entry points at plant surface, and as signals triggering gene expression reprogramming. The release of wall glycans and their perception by plants and microorganisms determines plant-microbial interaction outcome. Here, we summarise and discuss the most recent advances in these less explored aspects of plant-microbe interaction.
Collapse
Affiliation(s)
- Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Cristian Carrasco-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - José Juan Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
3
|
Gahlot DK, Patkowski JB, Fernández de Santaella J, Allsopp LP, Pan Z, Filloux A, Larrouy-Maumus G, Francis MS, Costa TRD. Cpx-signalling in Yersinia pseudotuberculosis modulates Lipid-A remodelling and resistance to last-resort antimicrobials. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:39. [PMID: 39568730 PMCID: PMC11573712 DOI: 10.1038/s44259-024-00059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/03/2024] [Indexed: 11/22/2024]
Abstract
Antibiotic resistance is a global healthcare crisis. Bacteria are highly adaptable and can rapidly acquire mechanisms of resistance towards conventional antibiotics. The permeability barrier conferred by the Gram-negative bacteria cell envelope constitutes a first line of defence against the action of antibiotics. Exposure to extracytoplasmic stresses can negatively affect cell envelope homoeostasis and this causes localised protein misfolding, compromised envelope integrity and impairs barrier function. The CpxA-CpxR two-component regulatory system has evolved to sense extracytoplasmic stresses and to regulate processes that restore homoeostasis of the cell envelope. Hence, controlled Cpx-signalling assists bacteria in adapting, surviving and proliferating in harsh environments, including exposure to antibiotics. Herein, we determined that an intact Cpx-signalling is key to maintaining the Yersinia pseudotuberculosis resistance to colistin and polymyxin B. The susceptibility displayed by Cpx-signalling defective mutants, correlated with cell-envelope deformity and specific modifications of Lipid-A. In vivo transcriptional analysis and in vitro protein-DNA binding studies demonstrated that these modifications were dependent on the direct regulation of Lipid-A biogenesis and modifications of operons by the active phosphorylated CpxR~P isoform. Altogether, our work defines the regulatory mechanism that enables Cpx-signalling to actively control cell envelope remodelling and the permeability of antibiotics in the clinically relevant enteropathogen Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Dharmender K. Gahlot
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jonasz B. Patkowski
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| | | | - Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Zhiqiao Pan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alain Filloux
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
- School of Biological Sciences, Nanyang Technological University Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Matthew S. Francis
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Tiago R. D. Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
4
|
Zhou J, Hu M, Zhang L. Dickeya Diversity and Pathogenic Mechanisms. Annu Rev Microbiol 2024; 78:621-642. [PMID: 39565948 DOI: 10.1146/annurev-micro-041222-012242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The Dickeya genus comprises numerous pathogenic species that cause diseases in various crops, vegetables, and ornamental plants across the globe. The pathogens have become very widespread in recent years, and numerous newly identified Dickeya-associated plant diseases have been reported, which poses an immense threat to agricultural production and is a serious concern internationally. Evidence is accumulating that a diversity of hosts, environmental habitats, and climates seems to shape the abundance of Dickeya species in nature and the differentiation of pathogenic mechanisms. This review summarizes the latest findings on the genome diversity and pathogenic mechanisms of Dickeya spp., with a focus on the intricate virulence regulatory mechanisms mediated by quorum sensing and pathogen-host interkingdom communication systems.
Collapse
Affiliation(s)
- Jianuan Zhou
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Ming Hu
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Lianhui Zhang
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| |
Collapse
|
5
|
Robin B, Dewitte A, Alaimo V, Lecoeur C, Pierre F, Billon G, Sebbane F, Bontemps-Gallo S. The CpxAR signaling system confers a fitness advantage for flea gut colonization by the plague bacillus. J Bacteriol 2024; 206:e0017324. [PMID: 39158280 PMCID: PMC11411919 DOI: 10.1128/jb.00173-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
The adaptation of Yersinia pestis, the flea-borne plague agent, to fluctuating environmental conditions is essential for the successful colonization of the flea vector. A previous comparative transcriptomic analysis showed that the Cpx pathway of Y. pestis is up-regulated in infected fleas. The CpxAR two-component system is a component of the envelope stress response and is critical for maintaining the integrity of the cell. Here, a phenotypic screening revealed a survival defect of the cpxAR mutant to oxidative stress and copper. The measured copper concentration in the digestive tract contents of fed fleas increased fourfold during the digestive process. By direct analysis of phosphorylation of CpxR by a Phos-Tag gel approach, we demonstrated that biologically relevant concentrations of copper triggered the system. Then, a competitive challenge highlighted the role of the CpxAR system in bacterial fitness during flea infection. Lastly, an in vitro sequential exposure to copper and then H2O2 to mimic the flea suggests a model in which, within the insect digestive tract, the CpxAR system would be triggered by copper, establishing an oxidative stress response. IMPORTANCE The bacterium Yersinia pestis is the agent of flea-borne plague. Our knowledge of the mechanisms used by the plague bacillus to infect the flea vector is limited. The up-regulation of the envelope stress response under the control of the Cpx signaling pathway was previously shown in a transcriptomic study. Here, our in vivo and in vitro approaches suggest a model in which Y. pestis uses the CpxAR phosphorelay system to sense and respond to the copper present in the flea gut, thereby optimizing the flea gut colonization. In other words, the system is essential for bacterial fitness in the flea.
Collapse
Affiliation(s)
- Brandon Robin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Amélie Dewitte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Véronique Alaimo
- Univ. Lille, CNRS, UMR 8516 – LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille, France
| | - Cecile Lecoeur
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - François Pierre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Gabriel Billon
- Univ. Lille, CNRS, UMR 8516 – LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille, France
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Sébastien Bontemps-Gallo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
6
|
Wang W, Xia J, Wang Z, Shao Z. Bacterial cell sensing and signaling pathway for external polycyclic aromatic hydrocarbons (PAHs). iScience 2023; 26:107912. [PMID: 37841585 PMCID: PMC10570129 DOI: 10.1016/j.isci.2023.107912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
The mechanism by which a bacterial cell senses external nutrients remains largely unknown. In this study, we identified a bacterial cell sensing system for polycyclic aromatic hydrocarbons (PAHs) in a common marine PAH-using bacterium, Cycloclasticus. It consists of an outer membrane receptor (PahS) and a periplasmic protein (PahP) in combination with a two-component sensing system (TCS) that ensures a rapid response to PAH occurrence by directly controlling serial reactions including chemotactic sensing and movement, PAH uptake and intracellular PAH metabolism. PahS protrudes from the cell and acts as a PAH sensor, transducing the PAH signal across the outer membrane to its periplasmic partner PahP, which in turn transduces the PAH signal across the periplasm to a specialized TCS. This sensing system plays a critical role in sensing and promoting the metabolism of PAHs, which can be scavenged by various hydrocarbon-degrading bacteria.
Collapse
Affiliation(s)
- Wanpeng Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Jingyu Xia
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zining Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| |
Collapse
|
7
|
Cochard C, Caby M, Gruau P, Madec E, Marceau M, Macavei I, Lemoine J, Le Danvic C, Bouchart F, Delrue B, Bontemps-Gallo S, Lacroix JM. Emergence of the Dickeya genus involved duplication of the OmpF porin and the adaptation of the EnvZ-OmpR signaling network. Microbiol Spectr 2023; 11:e0083323. [PMID: 37642428 PMCID: PMC10581057 DOI: 10.1128/spectrum.00833-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
Genome evolution, and more specifically gene duplication, is a key process shaping host-microorganism interaction. The conserved paralogs usually provide an advantage to the bacterium to thrive. If not, these genes become pseudogenes and disappear. Here, we show that during the emergence of the genus Dickeya, the gene encoding the porin OmpF was duplicated. Our results show that the ompF2 expression is deleterious to the virulence of Dickeya dadantii, the agent causing soft rot disease. Interestingly, ompF2 is regulated while ompF is constitutive but activated by the EnvZ-OmpR two-component system. In vitro, acidic pH triggers the system. The pH measured in four eudicotyledons increased from an initial pH of 5.5 to 7 within 8 h post-infection. Then, the pH decreased to 5.5 at 10 h post-infection and until full maceration of the plant tissue. Yet, the production of phenolic acids by the plant's defenses prevents the activation of the EnvZ-OmpR system to avoid the ompF2 expression even though environmental conditions should trigger this system. We highlight that gene duplication in a pathogen is not automatically an advantage for the infectious process and that, there was a need for our model organism to adapt its genetic regulatory networks to conserve these duplicated genes. IMPORTANCE Dickeya species cause various diseases in a wide range of crops and ornamental plants. Understanding the molecular program that allows the bacterium to colonize the plant is key to developing new pest control methods. Unlike other enterobacterial pathogens, Dickeya dadantii, the causal agent of soft rot disease, does not require the EnvZ-OmpR system for virulence. Here, we showed that during the emergence of the genus Dickeya, the gene encoding the porin OmpF was duplicated and that the expression of ompF2 was deleterious for virulence. We revealed that while the EnvZ-OmpR system was activated in vitro by acidic pH and even though the pH was acidic when the plant is colonized, this system was repressed by phenolic acid (generated by the plant's defenses). These results provide a unique- biologically relevant-perspective on the consequence of gene duplication and the adaptive nature of regulatory networks to retain the duplicated gene.
Collapse
Affiliation(s)
- Clémence Cochard
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Marine Caby
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Peggy Gruau
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Edwige Madec
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Michael Marceau
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Iulia Macavei
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Jérôme Lemoine
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Chrystelle Le Danvic
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- R&D Department, ALLICE, Paris, France
| | - Franck Bouchart
- Université Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France
| | - Brigitte Delrue
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Bontemps-Gallo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Marie Lacroix
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
8
|
Escobar-Salom M, Barceló IM, Jordana-Lluch E, Torrens G, Oliver A, Juan C. Bacterial virulence regulation through soluble peptidoglycan fragments sensing and response: knowledge gaps and therapeutic potential. FEMS Microbiol Rev 2023; 47:fuad010. [PMID: 36893807 PMCID: PMC10039701 DOI: 10.1093/femsre/fuad010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Given the growing clinical-epidemiological threat posed by the phenomenon of antibiotic resistance, new therapeutic options are urgently needed, especially against top nosocomial pathogens such as those within the ESKAPE group. In this scenario, research is pushed to explore therapeutic alternatives and, among these, those oriented toward reducing bacterial pathogenic power could pose encouraging options. However, the first step in developing these antivirulence weapons is to find weak points in the bacterial biology to be attacked with the goal of dampening pathogenesis. In this regard, during the last decades some studies have directly/indirectly suggested that certain soluble peptidoglycan-derived fragments display virulence-regulatory capacities, likely through similar mechanisms to those followed to regulate the production of several β-lactamases: binding to specific transcriptional regulators and/or sensing/activation of two-component systems. These data suggest the existence of intra- and also intercellular peptidoglycan-derived signaling capable of impacting bacterial behavior, and hence likely exploitable from the therapeutic perspective. Using the well-known phenomenon of peptidoglycan metabolism-linked β-lactamase regulation as a starting point, we gather and integrate the studies connecting soluble peptidoglycan sensing with fitness/virulence regulation in Gram-negatives, dissecting the gaps in current knowledge that need filling to enable potential therapeutic strategy development, a topic which is also finally discussed.
Collapse
Affiliation(s)
- María Escobar-Salom
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Isabel María Barceló
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
| | - Gabriel Torrens
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University. Försörjningsvägen 2A, SE-901 87 Umeå, Sweden
| | - Antonio Oliver
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Carlos Juan
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
9
|
Lv M, Ye S, Hu M, Xue Y, Liang Z, Zhou X, Zhang L, Zhou J. Two-component system ArcBA modulates cell motility and biofilm formation in Dickeya oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:1033192. [PMID: 36340374 PMCID: PMC9634086 DOI: 10.3389/fpls.2022.1033192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Phytopathogen Dickeya oryzae is a causal agent of rice foot rot disease and the pathogen has an array of virulence factors, such as phytotoxin zeamines, plant cell wall degrading enzymes, cell motility, and biofilms, collectively contributing to the bacterial pathogenesis. In this study, through deletion analysis of predicted regulatory genes in D. oryzae EC1, we identified a two-component system associated with the regulation of bacterial virulence. The two-component system contains a histidine kinase ArcB and a response regulator ArcA, and deletion of their coding genes resulted in changed phenotypes in cell motility, biofilm formation, and bacterial virulence. Electrophoretic mobility shift assay revealed that ArcA bound to the promoters of the bcs operon and bssS, which respectively encode enzymes for the synthesis of celluloses and a biofilm formation regulatory protein. ArcA could also bind to the promoters of three virulence associated transcriptional regulatory genes, i.e., fis, slyA and ohrR. Surprisingly, although these three regulators were shown to modulate the production of cell wall degrading enzymes and zeamines, deletion of arcB and arcA did not seem to affect these phenotypes. Taken together, the findings from this study unveiled a new two-component system associated with the bacterial pathogenesis, which contributes to the virulence of D. oryzae mainly through its action on bacterial motility and biofilm formation.
Collapse
Affiliation(s)
- Mingfa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sixuan Ye
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yang Xue
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Zhibin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Gelalcha BD, Brown SM, Crocker HE, Agga GE, Kerro Dego O. Regulation Mechanisms of Virulence Genes in Enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 2022; 19:598-612. [PMID: 35921067 DOI: 10.1089/fpd.2021.0103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of the most common E. coli pathotypes reported to cause several outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen, and ruminants, especially cattle, are considered important reservoirs for the most common EHEC serotype, E. coli O157:H7. Humans are infected indirectly through the consumption of food (milk, meat, leafy vegetables, and fruits) and water contaminated by animal feces or direct contact with carrier animals or humans. E. coli O157:H7 is one of the most frequently reported causes of foodborne illnesses in developed countries. It employs two essential virulence mechanisms to trigger damage to the host. These are the development of attaching and effacing (AE) phenotypes on the intestinal mucosa of the host and the production of Shiga toxin (Stx) that causes hemorrhagic colitis and hemolytic uremic syndrome. The AE phenotype is controlled by the pathogenicity island, the locus of enterocyte effacement (LEE). The induction of both AE and Stx is under strict and highly complex regulatory mechanisms. Thus, a good understanding of these mechanisms, major proteins expressed, and environmental cues involved in the regulation of the expression of the virulence genes is vital to finding a method to control the colonization of reservoir hosts, especially cattle, and disease development in humans. This review is a concise account of the current state of knowledge of virulence gene regulation in the LEE-positive EHEC.
Collapse
Affiliation(s)
- Benti D Gelalcha
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Selina M Brown
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Hannah E Crocker
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| |
Collapse
|
11
|
Jiang D, Zeng Q, Banerjee B, Lin H, Srok J, Yu M, Yang C. The phytopathogen Dickeya dadantii 3937 cpxR locus gene participates in the regulation of virulence and the global c-di-GMP network. MOLECULAR PLANT PATHOLOGY 2022; 23:1187-1199. [PMID: 35460168 PMCID: PMC9276944 DOI: 10.1111/mpp.13219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/25/2022] [Accepted: 03/19/2022] [Indexed: 05/20/2023]
Abstract
Bacteria use signal transduction systems to sense and respond to their external environment. The two-component system CpxA/CpxR senses misfolded envelope protein stress and responds by up-regulating envelope protein factors and down-regulating virulence factors in several animal pathogens. Dickeya dadantii is a phytopathogen equipped with a type III secretion system (T3SS) for manipulating the host immune response. We found that deletion of cpxR enhanced the expression of the T3SS marker gene hrpA in a designated T3SS-inducing minimal medium (MM). In the ∆cpxR mutant, multiple T3SS and c-di-GMP regulators were also up-regulated. Subsequent analysis revealed that deletion of the phosphodiesterase gene egcpB in ∆cpxR abolished the enhanced T3SS expression. This suggested that CpxR suppresses EGcpB levels, causing low T3SS expression in MM. Furthermore, we found that the ∆cpxR mutant displayed low c-di-GMP phenotypes in biofilm formation and swimming. Increased production of cellular c-di-GMP by in trans expression of the diguanylate cyclase gene gcpA was negated in the ∆cpxR mutant. Here, we propose that CpxA/CpxR regulates T3SS expression by manipulating the c-di-GMP network, in turn modifying the multiple physiological activities involved in the response to environmental stresses in D. dadantii.
Collapse
Affiliation(s)
- Daqing Jiang
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsinUSA
| | - Quan Zeng
- Department of Plant Pathology and EcologyThe Connecticut Agricultural Experiment StationNew HavenConnecticutUSA
| | - Biswarup Banerjee
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsinUSA
| | - Haiping Lin
- School of Forestry and BiotechnologyZhejiang Agricultural and Forestry UniversityHangzhouChina
| | - John Srok
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsinUSA
| | - Manda Yu
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsinUSA
| | - Ching‐Hong Yang
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsinUSA
| |
Collapse
|
12
|
Gahlot DK, Wai SN, Erickson DL, Francis MS. Cpx-signalling facilitates Hms-dependent biofilm formation by Yersinia pseudotuberculosis. NPJ Biofilms Microbiomes 2022; 8:13. [PMID: 35351893 PMCID: PMC8964730 DOI: 10.1038/s41522-022-00281-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Bacteria often reside in sessile communities called biofilms, where they adhere to a variety of surfaces and exist as aggregates in a viscous polymeric matrix. Biofilms are resistant to antimicrobial treatments, and are a major contributor to the persistence and chronicity of many bacterial infections. Herein, we determined that the CpxA-CpxR two-component system influenced the ability of enteropathogenic Yersinia pseudotuberculosis to develop biofilms. Mutant bacteria that accumulated the active CpxR~P isoform failed to form biofilms on plastic or on the surface of the Caenorhabditis elegans nematode. A failure to form biofilms on the worm surface prompted their survival when grown on the lawns of Y. pseudotuberculosis. Exopolysaccharide production by the hms loci is the major driver of biofilms formed by Yersinia. We used a number of molecular genetic approaches to demonstrate that active CpxR~P binds directly to the promoter regulatory elements of the hms loci to activate the repressors of hms expression and to repress the activators of hms expression. Consequently, active Cpx-signalling culminated in a loss of exopolysaccharide production. Hence, the development of Y. pseudotuberculosis biofilms on multiple surfaces is controlled by the Cpx-signalling, and at least in part this occurs through repressive effects on the Hms-dependent exopolysaccharide production.
Collapse
|
13
|
Przepiora T, Figaj D, Bogucka A, Fikowicz-Krosko J, Czajkowski R, Hugouvieux-Cotte-Pattat N, Skorko-Glonek J. The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen Dickeya solani. Int J Mol Sci 2022; 23:ijms23020697. [PMID: 35054882 PMCID: PMC8775594 DOI: 10.3390/ijms23020697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
In bacteria, the DsbA oxidoreductase is a crucial factor responsible for the introduction of disulfide bonds to extracytoplasmic proteins, which include important virulence factors. A lack of proper disulfide bonds frequently leads to instability and/or loss of protein function; therefore, improper disulfide bonding may lead to avirulent phenotypes. The importance of the DsbA function in phytopathogens has not been extensively studied yet. Dickeya solani is a bacterium from the Soft Rot Pectobacteriaceae family which is responsible for very high economic losses mainly in potato. In this work, we constructed a D. solani dsbA mutant and demonstrated that a lack of DsbA caused a loss of virulence. The mutant bacteria showed lower activities of secreted virulence determinants and were unable to develop disease symptoms in a potato plant. The SWATH-MS-based proteomic analysis revealed that the dsbA mutation led to multifaceted effects in the D. solani cells, including not only lower levels of secreted virulence factors, but also the induction of stress responses. Finally, the outer membrane barrier seemed to be disturbed by the mutation. Our results clearly demonstrate that the function played by the DsbA oxidoreductase is crucial for D. solani virulence, and a lack of DsbA significantly disturbs cellular physiology.
Collapse
Affiliation(s)
- Tomasz Przepiora
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.P.); (D.F.)
| | - Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.P.); (D.F.)
| | - Aleksandra Bogucka
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-807 Gdansk, Poland;
| | - Jakub Fikowicz-Krosko
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-807 Gdansk, Poland; (J.F.-K.); (R.C.)
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-807 Gdansk, Poland; (J.F.-K.); (R.C.)
| | - Nicole Hugouvieux-Cotte-Pattat
- Microbiologie Adaptation et Pathogénie, Université Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Campus LyonTech-la Doua Bâtiment André Lwoff 10 rue Raphaël Dubois 69622, F69622 Villeurbanne, France;
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (T.P.); (D.F.)
- Correspondence:
| |
Collapse
|
14
|
Analysis of protein kinases by Phos-tag SDS-PAGE. J Proteomics 2022; 255:104485. [DOI: 10.1016/j.jprot.2022.104485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022]
|
15
|
Hashiguchi Y, Tezuka T, Mouri Y, Konishi K, Fujita A, Hirata A, Ohnishi Y. Regulation of Sporangium Formation, Spore Dormancy, and Sporangium Dehiscence by a Hybrid Sensor Histidine Kinase in Actinoplanes missouriensis: Relationship with the Global Transcriptional Regulator TcrA. J Bacteriol 2020; 202:e00228-20. [PMID: 32839172 PMCID: PMC7549356 DOI: 10.1128/jb.00228-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022] Open
Abstract
The rare actinomycete Actinoplanes missouriensis forms terminal sporangia containing a few hundred flagellated spores. In response to water, the sporangia open and release the spores into external environments. The orphan response regulator TcrA functions as a global transcriptional activator during sporangium formation and dehiscence. Here, we report the characterization of an orphan hybrid histidine kinase, HhkA. Sporangia of an hhkA deletion mutant contained many distorted or ectopically germinated spores and scarcely opened to release the spores under sporangium dehiscence-inducing conditions. These phenotypic changes are quite similar to those observed in a tcrA deletion mutant. Comparative RNA sequencing analysis showed that genes controlled by HhkA mostly overlap TcrA-regulated genes. The direct interaction between HhkA and TcrA was suggested by a bacterial two-hybrid assay, but this was not conclusive. The phosphorylation of TcrA using acetyl phosphate as a phosphate donor markedly enhanced its affinity for the TcrA box sequences in the electrophoretic mobility shift assay. Taking these observations together with other results, we proposed that HhkA and TcrA compose a cognate two-component regulatory system, which controls the transcription of the genes involved in many aspects of morphological development, including sporangium formation, spore dormancy, and sporangium dehiscence in A. missouriensisIMPORTANCEActinoplanes missouriensis goes through complex morphological differentiation, including formation of flagellated spore-containing sporangia, sporangium dehiscence, swimming of zoospores, and germination of zoospores to filamentous growth. Although the orphan response regulator TcrA globally activates many genes required for sporangium formation, spore dormancy, and sporangium dehiscence, its partner histidine kinase remained unknown. Here, we analyzed the function of an orphan hybrid histidine kinase, HhkA, and proposed that HhkA constitutes a cognate two-component regulatory system with TcrA. That HhkA and TcrA homologues are highly conserved among the genus Actinoplanes and several closely related rare actinomycetes indicates that this possible two-component regulatory system is employed for complex morphological development in sporangium- and/or zoospore-forming rare actinomycetes.
Collapse
Affiliation(s)
- Yuichiro Hashiguchi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Mouri
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenji Konishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Azusa Fujita
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aiko Hirata
- Bioimaging Center, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Yan K, Liu T, Duan B, Liu F, Cao M, Peng W, Dai Q, Chen H, Yuan F, Bei W. The CpxAR Two-Component System Contributes to Growth, Stress Resistance, and Virulence of Actinobacillus pleuropneumoniae by Upregulating wecA Transcription. Front Microbiol 2020; 11:1026. [PMID: 32528444 PMCID: PMC7255013 DOI: 10.3389/fmicb.2020.01026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the pathogen of porcine contagious pleuropneumonia. In A. pleuropneumoniae, the CpxAR two-component system is essential for fitness and growth. The O-antigen protrudes from the outer membrane to the exterior of the cell, and the outer membrane serves as a barrier that helps the bacteria to survive in harsh environments. WecA, a undecaprenyl phosphate GlcNAc-1-phosphate transferase, is involved in O-antigen repeating unit biosynthesis. In this study, we investigated the role of CpxAR in the expression of wecA in A. pleuropneumoniae. Our results revealed that CpxR positively regulates wecA expression by directly binding to the putative promoter region of wecA. Wild-type, ΔcpxAR, ΔwecA, and complemented strains were investigated under serum, oxidative, and osmotic stresses. The ΔcpxAR and ΔwecA strains were more susceptible to these stresses than the wild-type, but the complemented strains showed phenotypes similar to those of the wild-type. Mice infected with the ΔcpxAR and ΔwecA strains exhibited lower mortality and bacterial loads in the lung than those infected with the wild-type or complemented strains. This study reveals that the CpxAR two-component system contributes to A. pleuropneumoniae growth, stress resistance, and virulence, by upregulating expression of wecA. Our findings provide new insight into the pathogenesis of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Kang Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Ting Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Benzhen Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Feng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Manman Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qi Dai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qingdao, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Kinoshita-Kikuta E, Kusamoto H, Ono S, Akayama K, Eguchi Y, Igarashi M, Okajima T, Utsumi R, Kinoshita E, Koike T. Quantitative monitoring of His and Asp phosphorylation in a bacterial signaling system by using Phos-tag Magenta/Cyan fluorescent dyes. Electrophoresis 2019; 40:3005-3013. [PMID: 31495938 DOI: 10.1002/elps.201900261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022]
Abstract
In the bacterial signaling mechanisms known as two-component systems (TCSs), signals are generally conveyed by means of a His-Asp phosphorelay. Each system consists of a histidine kinase (HK) and its cognate response regulator. Because of the labile nature of phosphorylated His and Asp residues, few approaches are available that permit a quantitative analysis of their phosphorylation status. Here, we show that the Phos-tag dye technology is suitable for the fluorescent detection of His- and Asp-phosphorylated proteins separated by SDS-PAGE. The dynamics of the His-Asp phosphorelay of recombinant EnvZ-OmpR, a TCS derived from Escherichia coli, were examined by SDS-PAGE followed by simple rapid staining with Phos-tag Magenta fluorescent dye. The technique permitted not only the quantitative monitoring of the autophosphorylation reactions of EnvZ and OmpR in the presence of adenosine triphosphate (ATP) or acetyl phosphate, respectively, but also that of the phosphotransfer reaction from EnvZ to OmpR, which occurs within 1 min in the presence of ATP. Furthermore, we demonstrate profiling of waldiomycin, an HK inhibitor, by using the Phos-tag Cyan gel staining. We believe that the Phos-tag dye technology provides a simple and convenient fluorometric approach for screening of HK inhibitors that have potential as new antimicrobial agents.
Collapse
Affiliation(s)
- Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Kusamoto
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Syogo Ono
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Akayama
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoko Eguchi
- Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | | | - Toshihide Okajima
- Department of Biomolecular Science and Reaction, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Ryutaro Utsumi
- Department of Biomolecular Science and Reaction, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tohru Koike
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Thanikkal EJ, Gahlot DK, Liu J, Fredriksson Sundbom M, Gurung JM, Ruuth K, Francis MK, Obi IR, Thompson KM, Chen S, Dersch P, Francis MS. The Yersinia pseudotuberculosis Cpx envelope stress system contributes to transcriptional activation of rovM. Virulence 2019; 10:37-57. [PMID: 30518290 PMCID: PMC6298763 DOI: 10.1080/21505594.2018.1556151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Gram-negative enteropathogen Yersinia pseudotuberculosis possesses a number of regulatory systems that detect cell envelope damage caused by noxious extracytoplasmic stresses. The CpxA sensor kinase and CpxR response regulator two-component regulatory system is one such pathway. Active Cpx signalling upregulates various factors designed to repair and restore cell envelope integrity. Concomitantly, this pathway also down-regulates key determinants of virulence. In Yersinia, cpxA deletion accumulates high levels of phosphorylated CpxR (CpxR~P). Accumulated CpxR~P directly repressed rovA expression and this limited expression of virulence-associated processes. A second transcriptional regulator, RovM, also negatively regulates rovA expression in response to nutrient stress. Hence, this study aimed to determine if CpxR~P can influence rovA expression through control of RovM levels. We determined that the active CpxR~P isoform bound to the promoter of rovM and directly induced its expression, which naturally associated with a concurrent reduction in rovA expression. Site-directed mutagenesis of the CpxR~P binding sequence in the rovM promoter region desensitised rovM expression to CpxR~P. These data suggest that accumulated CpxR~P inversely manipulates the levels of two global transcriptional regulators, RovA and RovM, and this would be expected to have considerable influence on Yersinia pathophysiology and metabolism.
Collapse
Affiliation(s)
- Edvin J Thanikkal
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Dharmender K Gahlot
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Junfa Liu
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | | | - Jyoti M Gurung
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Kristina Ruuth
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Monika K Francis
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Ikenna R Obi
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Karl M Thompson
- c Department of Microbiology , College of Medicine, Howard University , Washington , DC , USA.,d Interdisciplinary Research Building , Howard University , Washington , DC , USA
| | - Shiyun Chen
- e Key Laboratory of Special Pathogens and Biosafety , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan , China
| | - Petra Dersch
- f Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Matthew S Francis
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| |
Collapse
|
19
|
Mechaly AE, Haouz A, Sassoon N, Buschiazzo A, Betton JM, Alzari PM. Conformational plasticity of the response regulator CpxR, a key player in Gammaproteobacteria virulence and drug-resistance. J Struct Biol 2018; 204:165-171. [DOI: 10.1016/j.jsb.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/27/2023]
|
20
|
Caby M, Bontemps-Gallo S, Gruau P, Delrue B, Madec E, Lacroix JM. The EnvZ-OmpR Two-Component Signaling System Is Inactivated in a Mutant Devoid of Osmoregulated Periplasmic Glucans in Dickeya dadantii. Front Microbiol 2018; 9:2459. [PMID: 30425688 PMCID: PMC6218677 DOI: 10.3389/fmicb.2018.02459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 12/04/2022] Open
Abstract
Osmoregulated periplasmic glucans (OPGs) are general constituents of alpha-, beta-, and gamma-Proteobacteria. This polymer of glucose is required for full virulence of many pathogens including Dickeya dadantii (D. dadantii). The phytopathogenic enterobacterium D. dadantii causes soft-rot disease in a wide range of plants. An OPG-defective mutant is impaired in environment sensing. We previously demonstrated that (i) fluctuation of OPG concentration controlled the activation level of the RcsCDB system, and (ii) RcsCDB along with EnvZ/OmpR controlled the mechanism of OPG succinylation. These previous data lead us to explore whether OPGs are required for other two-component systems. In this study, we demonstrate that inactivation of the EnvZ/OmpR system in an OPG-defective mutant restores full synthesis of pectinase but only partial virulence. Unlike for the RcsCDB system, the EnvZ-OmpR system is not controlled by OPG concentration but requires OPGs for proper activation.
Collapse
Affiliation(s)
- Marine Caby
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Sébastien Bontemps-Gallo
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Peggy Gruau
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | | | - Edwige Madec
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Lille, France
| |
Collapse
|
21
|
Leonard S, Hommais F, Nasser W, Reverchon S. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environ Microbiol 2017; 19:1689-1716. [DOI: 10.1111/1462-2920.13611] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Simon Leonard
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Florence Hommais
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - William Nasser
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Sylvie Reverchon
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| |
Collapse
|
22
|
Reverchon S, Muskhelisvili G, Nasser W. Virulence Program of a Bacterial Plant Pathogen: The Dickeya Model. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:51-92. [PMID: 27571692 DOI: 10.1016/bs.pmbts.2016.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pectinolytic Dickeya spp. are Gram-negative bacteria causing severe disease in a wide range of plant species. Although the Dickeya genus was initially restricted to tropical and subtropical areas, two Dickeya species (D. dianthicola and D. solani) emerged recently in potato cultures in Europe. Soft-rot, the visible symptoms, is caused by plant cell wall degrading enzymes, mainly pectate lyases (Pels) that cleave the pectin polymer. However, an efficient colonization of the host requires many additional elements including early factors (eg, flagella, lipopolysaccharide, and exopolysaccharide) that allow adhesion of the bacteria and intermediate factors involved in adaptation to new growth conditions encountered in the host (eg, oxidative stress, iron starvation, and toxic compounds). To facilitate this adaptation, Dickeya have developed complex regulatory networks ensuring appropriate expression of virulence genes. This review presents recent advances in our understanding of the signals and genetic circuits impacting the expression of virulence determinants. Special attention is paid to integrated control of virulence functions by variations in the superhelical density of chromosomal DNA, and the global and specific regulators, making the regulation of Dickeya virulence an especially attractive model for those interested in relationships between the chromosomal dynamics and gene regulatory networks.
Collapse
Affiliation(s)
- S Reverchon
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France.
| | - G Muskhelisvili
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France
| | - W Nasser
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France
| |
Collapse
|
23
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
24
|
Fine-Tuning of the Cpx Envelope Stress Response Is Required for Cell Wall Homeostasis in Escherichia coli. mBio 2016; 7:e00047-16. [PMID: 26908573 PMCID: PMC4791840 DOI: 10.1128/mbio.00047-16] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The envelope of Gram-negative bacteria is an essential compartment that constitutes a protective and permeability barrier between the cell and its environment. The envelope also hosts the cell wall, a mesh-like structure made of peptidoglycan (PG) that determines cell shape and provides osmotic protection. Since the PG must grow and divide in a cell-cycle-synchronized manner, its synthesis and remodeling are tightly regulated. Here, we discovered that PG homeostasis is intimately linked to the levels of activation of the Cpx system, an envelope stress response system traditionally viewed as being involved in protein quality control in the envelope. We first show that Cpx is activated when PG integrity is challenged and that this activation provides protection to cells exposed to antibiotics inhibiting PG synthesis. By rerouting the outer membrane lipoprotein NlpE, a known Cpx activator, to a different envelope subcompartment, we managed to manipulate Cpx activation levels. We found that Cpx overactivation leads to aberrant cellular morphologies, to an increased sensitivity to β-lactams, and to dramatic division and growth defects, consistent with a loss of PG homeostasis. Remarkably, these phenotypes were largely abrogated by the deletion of ldtD, a Cpx-induced gene involved in noncanonical PG cross-linkage, suggesting that this transpeptidase is an important link between PG homeostasis and the Cpx system. Altogether our data show that fine-tuning of an envelope quality control system constitutes an important layer of regulation of the highly organized cell wall structure. The envelope of Gram-negative bacteria is essential for viability. First, it includes the cell wall, a continuous polymer of peptidoglycan (PG) that determines cell morphology and protects against osmotic stress. Moreover, the envelope constitutes a protective barrier between the cell interior and the environment. Therefore, mechanisms called envelope stress response systems (ESRS) exist to monitor and defend envelope integrity against harmful conditions. Cpx is a major ESRS that detects and manages the accumulation of misfolded proteins in the envelope of Escherichia coli. We found that this protein quality control system also plays a fundamental role in the regulation of PG assembly. Strikingly, the level of Cpx response is critical, as an excessive activation leads to phenotypes associated with a loss of cell wall integrity. Thus, by contributing to PG homeostasis, the Cpx system lies at the crossroads between key processes of bacterial life, including cell shape, growth, division, and antibiotic resistance.
Collapse
|
25
|
De la Cruz MA, Morgan JK, Ares MA, Yáñez-Santos JA, Riordan JT, Girón JA. The Two-Component System CpxRA Negatively Regulates the Locus of Enterocyte Effacement of Enterohemorrhagic Escherichia coli Involving σ(32) and Lon protease. Front Cell Infect Microbiol 2016; 6:11. [PMID: 26904510 PMCID: PMC4742615 DOI: 10.3389/fcimb.2016.00011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/18/2016] [Indexed: 12/05/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a significant cause of serious human gastrointestinal disease worldwide. EHEC strains contain a pathogenicity island called the locus of enterocyte effacement (LEE), which encodes virulence factors responsible for damaging the gut mucosa. The Cpx envelope stress response of E. coli is controlled by a two-component system (TCS) consisting of a sensor histidine kinase (CpxA) and a cytoplasmic response regulator (CpxR). In this study, we investigated the role of CpxRA in the expression of LEE-encoded virulence factors of EHEC. We found that a mutation in cpxA significantly affected adherence of EHEC to human epithelial cells. Analysis of this mutant revealed the presence of high levels of CpxR which repressed transcription of grlA and ler, the main positive virulence regulators of the LEE, and influenced negatively the production of the type 3 secretion system–associated EspABD translocator proteins. It is known that CpxR activates rpoH (Sigma factor 32), which in turns activates transcription of the lon protease gene. We found that transcription levels of ler and grlA were significantly increased in the lon and cpxA lon mutants suggesting that lon is involved in down-regulating LEE genes. In addition, the Galleria mellonella model of infection was used to analyze the effect of the loss of the cpx and lon genes in EHEC's ability to kill the larvae. We found that the cpxA mutant was significantly deficient at killing the larvae however, the cpxA lon mutant which overexpresses LEE genes in vitro, was unable to kill the larvae, suggesting that virulence in the G. mellonella model is T3SS independent and that CpxA modulates virulence through a yet unknown EHEC-specific factor. Our data provides new insights and broadens our scope into the complex regulatory network of the LEE in which the CpxA sensor kinase plays an important role in a cascade involving both global and virulence regulators.
Collapse
Affiliation(s)
- Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI-IMSSMexico City, Mexico; Emerging Pathogens Institute, University of FloridaGainesville, FL, USA
| | - Jason K Morgan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, FL, USA
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI-IMSS Mexico City, Mexico
| | - Jorge A Yáñez-Santos
- Facultad de Estomatología, Benemerita Universidad Autonoma de Puebla Puebla, Mexico
| | - James T Riordan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, FL, USA
| | - Jorge A Girón
- Emerging Pathogens Institute, University of FloridaGainesville, FL, USA; Centro de Deteccion Biomolecular, Benemerita Universidad Autonoma de PueblaPuebla, Mexico
| |
Collapse
|