1
|
Wu Y, Wu Z, Guo L, Shao J, Xiao H, Yang M, Deng C, Zhang Y, Zhang Z, Zhao Y. Diversity and distribution of a prevalent Microviridae group across the global oceans. Commun Biol 2024; 7:1377. [PMID: 39443614 PMCID: PMC11499846 DOI: 10.1038/s42003-024-07085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Small single-stranded DNA phages of the Microviridae family are diverse and prevalent in oceans. Our understanding of Microviridae phages that infect the ecologically important marine Roseobacter is currently limited, comprising few isolates. Here, we report six roseophages that infect Roseobacter RCA strains. Genomic and phylogenetic analyses revealed that they were new members of the previously identified subfamily Occultatumvirinae. Additionally, 232 marine uncultivated virus genomes (UViGs) affiliated to Occultatumvirinae were obtained from environmental genome datasets. Phylogenomic analysis revealed that marine Occultatumvirinae phages could be further grouped into 11 subgroups. Moreover, meta-omics based read-mapping analysis showed that Occultatumvirinae phages were globally distributed, with two low G + C subgroups showing the most prevalent distribution. Furthermore, one phage in subgroup 2 was found to be extremely ubiquitous. Overall, this study expands our understanding of the diversity and ecology of the Occultatumvirinae microviruses in the ocean and highlights their ecological impacts.
Collapse
Affiliation(s)
- Ying Wu
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuqing Wu
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luyuan Guo
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiabing Shao
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hang Xiao
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunmei Deng
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yahui Zhang
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zefeng Zhang
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Yanlin Zhao
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China.
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
2
|
Mäkelä K, Laanto E, Sundberg LR. Determinants in the phage life cycle: The dynamic nature of ssDNA phage FLiP and host interactions under varying environmental conditions and growth phases. Environ Microbiol 2024; 26:e16670. [PMID: 38952172 DOI: 10.1111/1462-2920.16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/24/2024] [Indexed: 07/03/2024]
Abstract
The influence of environmental factors on the interactions between phages and bacteria, particularly single-stranded DNA (ssDNA) phages, has been largely unexplored. In this study, we used Finnlakevirus FLiP, the first known ssDNA phage species with a lipid membrane, as our model phage. We examined the infectivity of FLiP with three Flavobacterium host strains, B330, B167 and B114. We discovered that FLiP infection is contingent on the host strain and conditions such as temperature and bacterial growth phase. FLiP can infect its hosts across a wide temperature range, but optimal phage replication varies with each host. We uncovered some unique aspects of phage infectivity: FLiP has limited infectivity in liquid-suspended cells, but it improves when cells are surface-attached. Moreover, FLiP infects stationary phase B167 and B114 cells more rapidly and efficiently than exponentially growing cells, a pattern not observed with the B330 host. We also present the first experimental evidence of endolysin function in ssDNA phages. The activity of FLiP's lytic enzymes was found to be condition-dependent. Our findings underscore the importance of studying phage ecology in contexts that are relevant to the environment, as both the host and the surrounding conditions can significantly alter the outcome of phage-host interactions.
Collapse
Affiliation(s)
- Kati Mäkelä
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Elina Laanto
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
3
|
Lopez-Simon J, Vila-Nistal M, Rosenova A, De Corte D, Baltar F, Martinez-Garcia M. Viruses under the Antarctic Ice Shelf are active and potentially involved in global nutrient cycles. Nat Commun 2023; 14:8295. [PMID: 38097581 PMCID: PMC10721903 DOI: 10.1038/s41467-023-44028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses play an important role in the marine ecosystem. However, our comprehension of viruses inhabiting the dark ocean, and in particular, under the Antarctic Ice Shelves, remains limited. Here, we mine single-cell genomic, transcriptomic, and metagenomic data to uncover the viral diversity, biogeography, activity, and their role as metabolic facilitators of microbes beneath the Ross Ice Shelf. This is the largest Antarctic ice shelf with a major impact on global carbon cycle. The viral community found in the cavity under the ice shelf mainly comprises endemic viruses adapted to polar and mesopelagic environments. The low abundance of genes related to lysogenic lifestyle (<3%) does not support a predominance of the Piggyback-the-Winner hypothesis, consistent with a low-productivity habitat. Our results indicate a viral community actively infecting key ammonium and sulfur-oxidizing chemolithoautotrophs (e.g. Nitrosopumilus spp, Thioglobus spp.), supporting a "kill-the-winner" dynamic. Based on genome analysis, these viruses carry specific auxiliary metabolic genes potentially involved in nitrogen, sulfur, and phosphorus acquisition. Altogether, the viruses under Antarctic ice shelves are putatively involved in programming the metabolism of ecologically relevant microbes that maintain primary production in these chemosynthetically-driven ecosystems, which have a major role in global nutrient cycles.
Collapse
Affiliation(s)
- Javier Lopez-Simon
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante, 03690, Spain
| | - Marina Vila-Nistal
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante, 03690, Spain
| | - Aleksandra Rosenova
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante, 03690, Spain
| | - Daniele De Corte
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Ocean Technology and Engineering, National Oceanography Centre, Southampton, UK
| | - Federico Baltar
- Department of Functional & Evolutionary Ecology, University of Vienna, Djerassi-Platz 1, 1030, Vienna, Austria.
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante, 03690, Spain.
- Instituto Multidisciplinar para el Estudio del Medio Ramon Margalef, University of Alicante, San Vicente del Raspeig, Alicante, 03690, Spain.
| |
Collapse
|
4
|
Abstract
Two decades of metagenomic analyses have revealed that in many environments, small (∼5 kb), single-stranded DNA phages of the family Microviridae dominate the virome. Although the emblematic microvirus phiX174 is ubiquitous in the laboratory, most other microviruses, particularly those of the gokushovirus and amoyvirus lineages, have proven to be much more elusive. This puzzling lack of representative isolates has hindered insights into microviral biology. Furthermore, the idiosyncratic size and nature of their genomes have resulted in considerable misjudgments of their actual abundance in nature. Fortunately, recent successes in microvirus isolation and improved metagenomic methodologies can now provide us with more accurate appraisals of their abundance, their hosts, and their interactions. The emerging picture is that phiX174 and its relatives are rather rare and atypical microviruses, and that a tremendous diversity of other microviruses is ready for exploration.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA;
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Kim M, Cha IT, Lee KE, Li M, Park SJ. Pangenome analysis provides insights into the genetic diversity, metabolic versatility, and evolution of the genus Flavobacterium. Microbiol Spectr 2023; 11:e0100323. [PMID: 37594286 PMCID: PMC10655711 DOI: 10.1128/spectrum.01003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Members of the genus Flavobacterium are widely distributed and produce various polysaccharide-degrading enzymes. Many species in the genus have been isolated and characterized. However, few studies have focused on marine isolates or fish pathogens, and in-depth genomic analyses, particularly comparative analyses of isolates from different habitat types, are lacking. Here, we isolated 20 strains of the genus from various environments in South Korea and sequenced their full-length genomes. Combined with published sequence data, we examined genomic traits, evolution, environmental adaptation, and putative metabolic functions in total 187 genomes of isolated species in Flavobacterium categorized as marine, host-associated, and terrestrial including freshwater. A pangenome analysis revealed a correlation between genome size and coding or noncoding density. Flavobacterium spp. had high levels of diversity, allowing for novel gene repertories via recombination events. Defense-related genes only accounted for approximately 3% of predicted genes in all Flavobacterium genomes. While genes involved in metabolic pathways did not differ with respect to isolation source, there was substantial variation in genomic traits; in particular, the abundances of tRNAs and rRNAs were higher in the host-associdated group than in other groups. One genome in the host-associated group contained a Microviridae prophage closely related to an enterobacteria phage. The proteorhodopsin gene was only identified in four terrestrial strains isolated for this study. Furthermore, recombination events clearly influenced genomic diversity and may contribute to the response to environmental stress. These findings shed light on the high genetic variation in Flavobacterium and functional roles in diverse ecosystems as a result of their metabolic versatility. IMPORTANCE The genus Flavobacterium is a diverse group of bacteria that are found in a variety of environments. While most species of this genus are harmless and utilize organic substrates such as proteins and polysaccharides, some members may play a significant role in the cycling for organic substances within their environments. Nevertheless, little is known about the genomic dynamics and/or metabolic capacity of Flavobacterium. Here, we found that Flavobacterium species may have an open pangenome, containing a variety of diverse and novel gene repertoires. Intriguingly, we discovered that one genome (classified into host-associated group) contained a Microviridae prophage closely related to that of enterobacteria. Proteorhodopsin may be expressed under conditions of light or oxygen pressure in some strains isolated for this study. Our findings significantly contribute to the understanding of the members of the genus Flavobacterium diversity exploration and will provide a framework for the way for future ecological characterizations.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, Jeju, South Korea
| | - In-Tae Cha
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Ki-Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju, South Korea
| |
Collapse
|
6
|
Zhang Z, Wu Z, Liu H, Yang M, Wang R, Zhao Y, Chen F. Genomic analysis and characterization of phages infecting the marine Roseobacter CHAB-I-5 lineage reveal a globally distributed and abundant phage genus. Front Microbiol 2023; 14:1164101. [PMID: 37138617 PMCID: PMC10149686 DOI: 10.3389/fmicb.2023.1164101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Marine phages play an important role in marine biogeochemical cycles by regulating the death, physiological metabolism, and evolutionary trajectory of bacteria. The Roseobacter group is an abundant and important heterotrophic bacterial group in the ocean, and plays an important role in carbon, nitrogen, sulfur and phosphorus cycling. The CHAB-I-5 lineage is one of the most dominant Roseobacter lineages, but remains largely uncultured. Phages infecting CHAB-I-5 bacteria have not yet been investigated due to the lack of culturable CHAB-I-5 strains. In this study, we isolated and sequenced two new phages (CRP-901 and CRP-902) infecting the CHAB-I-5 strain FZCC0083. We applied metagenomic data mining, comparative genomics, phylogenetic analysis, and metagenomic read-mapping to investigate the diversity, evolution, taxonomy, and biogeography of the phage group represented by the two phages. The two phages are highly similar, with an average nucleotide identity of 89.17%, and sharing 77% of their open reading frames. We identified several genes involved in DNA replication and metabolism, virion structure, DNA packing, and host lysis from their genomes. Metagenomic mining identified 24 metagenomic viral genomes closely related to CRP-901 and CRP-902. Genomic comparison and phylogenetic analysis demonstrated that these phages are distinct from other known viruses, representing a novel genus-level phage group (CRP-901-type). The CRP-901-type phages do not contain DNA primase and DNA polymerase genes, but possess a novel bifunctional DNA primase-polymerase gene with both primase and polymerase activities. Read-mapping analysis showed that the CRP-901-type phages are widespread across the world's oceans and are most abundant in estuarine and polar waters. Their abundance is generally higher than other known roseophages and even higher than most pelagiphages in the polar region. In summary, this study has greatly expanded our understanding of the genetic diversity, evolution, and distribution of roseophages. Our analysis suggests that the CRP-901-type phage is an important and novel marine phage group that plays important roles in the physiology and ecology of roseobacters.
Collapse
Affiliation(s)
- Zefeng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuqing Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yanlin Zhao,
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
- Feng Chen,
| |
Collapse
|
7
|
Cheng R, Li X, Jiang L, Gong L, Geslin C, Shao Z. Virus diversity and interactions with hosts in deep-sea hydrothermal vents. MICROBIOME 2022; 10:235. [PMID: 36566239 PMCID: PMC9789665 DOI: 10.1186/s40168-022-01441-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The deep sea harbors many viruses, yet their diversity and interactions with hosts in hydrothermal ecosystems are largely unknown. Here, we analyzed the viral composition, distribution, host preference, and metabolic potential in different habitats of global hydrothermal vents, including vent plumes, background seawater, diffuse fluids, and sediments. RESULTS From 34 samples collected at eight vent sites, a total of 4662 viral populations (vOTUs) were recovered from the metagenome assemblies, encompassing diverse phylogenetic groups and defining many novel lineages. Apart from the abundant unclassified viruses, tailed phages are most predominant across the global hydrothermal vents, while single-stranded DNA viruses, including Microviridae and small eukaryotic viruses, also constitute a significant part of the viromes. As revealed by protein-sharing network analysis, hydrothermal vent viruses formed many novel genus-level viral clusters and are highly endemic to specific vent sites and habitat types. Only 11% of the vOTUs can be linked to hosts, which are the key microbial taxa of hydrothermal habitats, such as Gammaproteobacteria and Campylobacterota. Intriguingly, vent viromes share some common metabolic features in that they encode auxiliary genes that are extensively involved in the metabolism of carbohydrates, amino acids, cofactors, and vitamins. Specifically, in plume viruses, various auxiliary genes related to methane, nitrogen, and sulfur metabolism were observed, indicating their contribution to host energy conservation. Moreover, the prevalence of sulfur-relay pathway genes indicated the significant role of vent viruses in stabilizing the tRNA structure, which promotes host adaptation to steep environmental gradients. CONCLUSIONS The deep-sea hydrothermal systems hold untapped viral diversity with novelty. They may affect both vent prokaryotic and eukaryotic communities and modulate host metabolism related to vent adaptability. More explorations are needed to depict global vent virus diversity and its roles in this unique ecosystem. Video Abstract.
Collapse
Affiliation(s)
- Ruolin Cheng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Xiaofeng Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Claire Geslin
- Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280, Plouzané, France
- Sino-French Laboratory of Deep-Sea Microbiology (MICROBSEA-LIA), Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Sino-French Laboratory of Deep-Sea Microbiology (MICROBSEA-LIA), Plouzané, France.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
8
|
Olo Ndela E, Roux S, Henke C, Sczyrba A, Sime Ngando T, Varsani A, Enault F. Reekeekee- and roodoodooviruses, two different Microviridae clades constituted by the smallest DNA phages. Virus Evol 2022; 9:veac123. [PMID: 36694818 PMCID: PMC9865509 DOI: 10.1093/ve/veac123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
Small circular single-stranded DNA viruses of the Microviridae family are both prevalent and diverse in all ecosystems. They usually harbor a genome between 4.3 and 6.3 kb, with a microvirus recently isolated from a marine Alphaproteobacteria being the smallest known genome of a DNA phage (4.248 kb). A subfamily, Amoyvirinae, has been proposed to classify this virus and other related small Alphaproteobacteria-infecting phages. Here, we report the discovery, in meta-omics data sets from various aquatic ecosystems, of sixteen complete microvirus genomes significantly smaller (2.991-3.692 kb) than known ones. Phylogenetic analysis reveals that these sixteen genomes represent two related, yet distinct and diverse, novel groups of microviruses-amoyviruses being their closest known relatives. We propose that these small microviruses are members of two tentatively named subfamilies Reekeekeevirinae and Roodoodoovirinae. As known microvirus genomes encode many overlapping and overprinted genes that are not identified by gene prediction software, we developed a new methodology to identify all genes based on protein conservation, amino acid composition, and selection pressure estimations. Surprisingly, only four to five genes could be identified per genome, with the number of overprinted genes lower than that in phiX174. These small genomes thus tend to have both a lower number of genes and a shorter length for each gene, leaving no place for variable gene regions that could harbor overprinted genes. Even more surprisingly, these two Microviridae groups had specific and different gene content, and major differences in their conserved protein sequences, highlighting that these two related groups of small genome microviruses use very different strategies to fulfill their lifecycle with such a small number of genes. The discovery of these genomes and the detailed prediction and annotation of their genome content expand our understanding of ssDNA phages in nature and are further evidence that these viruses have explored a wide range of possibilities during their long evolution.
Collapse
Affiliation(s)
| | | | - Christian Henke
- Computational Metagenomics, Bielefeld University, Universitätsstraße 27, Bielefeld 30501, Germany,Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Alexander Sczyrba
- Computational Metagenomics, Bielefeld University, Universitätsstraße 27, Bielefeld 30501, Germany,Center for Biotechnology, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Télesphore Sime Ngando
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, Clermont-Ferrand F-63000, France
| | | | | |
Collapse
|
9
|
Locke H, Bidle KD, Thamatrakoln K, Johns CT, Bonachela JA, Ferrell BD, Wommack KE. Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Adv Virus Res 2022; 114:67-146. [PMID: 39492214 DOI: 10.1016/bs.aivir.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus-host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean-the physical, chemical, and biological landscape-influences the likelihood of both virus-host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.
Collapse
Affiliation(s)
- Hannah Locke
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - Kay D Bidle
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | | | - Christopher T Johns
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | - Juan A Bonachela
- Rutgers Univ., Dept. of Ecology, Evolution & Natural Resources, New Brunswick, NJ, United States
| | - Barbra D Ferrell
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - K Eric Wommack
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States.
| |
Collapse
|
10
|
Guo R, Zheng K, Luo L, Liu Y, Shao H, Guo C, He H, Wang H, Sung YY, Mok WJ, Wong LL, Zhang YZ, Liang Y, McMinn A, Wang M. Characterization and Genomic Analysis of ssDNA Vibriophage vB_VpaM_PG19 within Microviridae, Representing a Novel Viral Genus. Microbiol Spectr 2022; 10:e0058522. [PMID: 35862991 PMCID: PMC9431446 DOI: 10.1128/spectrum.00585-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Vibrio parahaemolyticus, a widespread marine bacterium, is responsible for a variety of diseases in marine organisms. Consumption of raw or undercooked seafood contaminated with V. parahaemolyticus is also known to cause acute gastroenteritis in humans. While numerous dsDNA vibriophages have been isolated so far, there have been few studies of vibriophages belonging to the ssDNA Microviridae family. In this study, a novel ssDNA phage, vB_VpaM_PG19 infecting V. parahaemolyticus, with a 5,572 bp ssDNA genome with a G+C content of 41.31% and encoded eight open reading frames, was isolated. Genome-wide phylogenetic analysis of the total phage isolates in the GenBank database revealed that vB_VpaM_PG19 was only related to the recently deposited vibriophage vB_VpP_WS1. The genome-wide average nucleotide homology of the two phages was 89.67%. The phylogenetic tree and network analysis showed that vB_VpaM_PG19 was different from other members of the Microviridae family and might represent a novel viral genus, together with vibriophage vB_VpP_WS1, named Vimicrovirus. One-step growth curves showed that vB_VpaM_PG19 has a short incubation period, suggesting its potential as an antimicrobial agent for pathogenic V. parahaemolyticus. IMPORTANCE Vibriophage vB_VpaM_PG19 was distant from other isolated microviruses in the phylogenetic tree and network analysis and represents a novel microviral genus, named Vimicrovirus. Our report describes the genomic and phylogenetic features of vB_VpaM_PG19 and provides a potential antimicrobial candidate for pathogenic V. parahaemolyticus.
Collapse
Affiliation(s)
- Ruizhe Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lin Luo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, University Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, University Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, University Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Zucker F, Bischoff V, Olo Ndela E, Heyerhoff B, Poehlein A, Freese HM, Roux S, Simon M, Enault F, Moraru C. New Microviridae isolated from Sulfitobacter reveals two cosmopolitan subfamilies of single-stranded DNA phages infecting marine and terrestrial Alphaproteobacteria. Virus Evol 2022; 8:veac070. [PMID: 36533142 PMCID: PMC9753089 DOI: 10.1093/ve/veac070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 07/28/2022] [Indexed: 10/01/2023] Open
Abstract
The Microviridae family represents one of the major clades of single-stranded DNA (ssDNA) phages. Their cultivated members are lytic and infect Proteobacteria, Bacteroidetes, and Chlamydiae. Prophages have been predicted in the genomes from Bacteroidales, Hyphomicrobiales, and Enterobacteriaceae and cluster within the 'Alpavirinae', 'Amoyvirinae', and Gokushovirinae. We have isolated 'Ascunsovirus oldenburgi' ICBM5, a novel phage distantly related to known Microviridae. It infects Sulfitobacter dubius SH24-1b and uses both a lytic and a carrier-state life strategy. Using ICBM5 proteins as a query, we uncovered in publicly available resources sixty-five new Microviridae prophages and episomes in bacterial genomes and retrieved forty-seven environmental viral genomes (EVGs) from various viromes. Genome clustering based on protein content and phylogenetic analysis showed that ICBM5, together with Rhizobium phages, new prophages, episomes, and EVGs cluster within two new phylogenetic clades, here tentatively assigned the rank of subfamily and named 'Tainavirinae' and 'Occultatumvirinae'. They both infect Rhodobacterales. Occultatumviruses also infect Hyphomicrobiales, including nitrogen-fixing endosymbionts from cosmopolitan legumes. A biogeographical assessment showed that tainaviruses and occultatumviruses are spread worldwide, in terrestrial and marine environments. The new phage isolated here sheds light onto new and diverse branches of the Microviridae tree, suggesting that much of the ssDNA phage diversity remains in the dark.
Collapse
Affiliation(s)
- Falk Zucker
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Vera Bischoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Eric Olo Ndela
- Laboratoire Microorganismes: Genome Environment (LMGE), Université Clermont Auvergne, CNRS, 1 Imp. Amélie Murat, Aubière 63170, Frankreich
| | - Benedikt Heyerhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August-University Göttingen, Institute of Microbiology and Genetics, Grisebachstr. 8, Göttingen D-37077, Germany
| | - Heike M Freese
- Leibniz-Institut DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B, Braunschweig D-38124, Germany
| | - Simon Roux
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Francois Enault
- Laboratoire Microorganismes: Genome Environment (LMGE), Université Clermont Auvergne, CNRS, 1 Imp. Amélie Murat, Aubière 63170, Frankreich
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| |
Collapse
|
12
|
Lu H, Xiong W, Li Z, Yan P, Liu R, Liu X. Isolation and characterization of SGF3, a novel Microviridae phage infecting Shigella flexneri. Mol Genet Genomics 2022; 297:935-945. [PMID: 35522301 DOI: 10.1007/s00438-022-01883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/27/2022] [Indexed: 11/24/2022]
Abstract
In the context of widespread bacterial contamination and the endless emergence of antibiotic-resistant bacteria, more effective ways to control pathogen infection are urgently needed. Phages become potential bactericidal agents due to their bactericidal specificity and not easy resistance to bacteria. But an important factor limiting its development is the lack of phage species. Therefore, the isolation of more new phages and studying their biological and genomic characteristics is of great significance for subsequent applications. So, in this study, SGF3, a Microviridae phage, which has shown lytic activity against Shigella flexneri, was isolated, purified, and characterized. Morphological and phylogenetic analyses identified it as a phiX174 species belonging to the Microviridae family. The latent period of phage SGF3 was 20 min, with an average burst size of approximately 7.1. Host spectrum experiments indicated its strong host specificity. Furthermore, the biofilm removal efficiency was increased by 20%-25% when SGF3 was coupled with other phages. In conclusion, the phage SGF3 found in this study was a lytic phage belonging to the Microviral family, and could be added as an auxiliary material in the phage cocktail. Studies of its characteristics and bactericidal properties had enriched the germplasm resources of microphages, provided more potential material in fighting against emerging and existing multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Han Lu
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenbin Xiong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Peihan Yan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
13
|
Abstract
Microviruses encompass an astonishing array of small, single-stranded DNA phages that, due to the surge in metagenomic surveys, are now known to be prevalent in most environments. Current taxonomy concedes the considerable diversity within this lineage to a single family (the Microviridae), which has rendered it difficult to adequately and accurately assess the amount of variation that actually exists within this group. We amassed and curated the largest collection of microviral genomes to date and, through a combination of protein-sharing networks and phylogenetic analysis, discovered at least three meaningful taxonomic levels between the current ranks of family and genus. When considering more than 13,000 microviral genomes from recognized lineages and as-yet-unclassified microviruses in metagenomic samples, microviral diversity is better understood by elevating microviruses to the level of an order that consists of three suborders and at least 19 putative families, each with their respective subfamilies. These revisions enable fine-scale assessment of microviral dynamics: for example, in the human gut, there are considerable differences in the abundances of microviral families both between urban and rural populations and in individuals over time. In addition, our analysis of genome contents and gene exchange shows that microviral families carry no recognizable accessory metabolic genes and rarely, if ever, engage in horizontal gene transfer across microviral families or with their bacterial hosts. These insights bring microviral taxonomy in line with current developments in the taxonomy of other phages and increase the understanding of microvirus biology.
Collapse
|
14
|
Tang K, Wang W, Sun Y, Zhou Y, Wang P, Guo Y, Wang X. Prophage Tracer: precisely tracing prophages in prokaryotic genomes using overlapping split-read alignment. Nucleic Acids Res 2021; 49:e128. [PMID: 34551431 PMCID: PMC8682789 DOI: 10.1093/nar/gkab824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
The life cycle of temperate phages includes a lysogenic cycle stage when the phage integrates into the host genome and becomes a prophage. However, the identification of prophages that are highly divergent from known phages remains challenging. In this study, by taking advantage of the lysis-lysogeny switch of temperate phages, we designed Prophage Tracer, a tool for recognizing active prophages in prokaryotic genomes using short-read sequencing data, independent of phage gene similarity searching. Prophage Tracer uses the criterion of overlapping split-read alignment to recognize discriminative reads that contain bacterial (attB) and phage (attP) att sites representing prophage excision signals. Performance testing showed that Prophage Tracer could predict known prophages with precise boundaries, as well as novel prophages. Two novel prophages, dsDNA and ssDNA, encoding highly divergent major capsid proteins, were identified in coral-associated bacteria. Prophage Tracer is a reliable data mining tool for the identification of novel temperate phages and mobile genetic elements. The code for the Prophage Tracer is publicly available at https://github.com/WangLab-SCSIO/Prophage_Tracer.
Collapse
Affiliation(s)
- Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, 23 Hongda St., Tianjin 300457, China
| | - Yiqing Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Moura de Sousa JA, Pfeifer E, Touchon M, Rocha EPC. Causes and Consequences of Bacteriophage Diversification via Genetic Exchanges across Lifestyles and Bacterial Taxa. Mol Biol Evol 2021; 38:2497-2512. [PMID: 33570565 PMCID: PMC8136500 DOI: 10.1093/molbev/msab044] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacteriophages (phages) evolve rapidly by acquiring genes from other phages. This results in mosaic genomes. Here, we identify numerous genetic transfers between distantly related phages and aim at understanding their frequency, consequences, and the conditions favoring them. Gene flow tends to occur between phages that are enriched for recombinases, transposases, and nonhomologous end joining, suggesting that both homologous and illegitimate recombination contribute to gene flow. Phage family and host phyla are strong barriers to gene exchange, but phage lifestyle is not. Even if we observe four times more recent transfers between temperate phages than between other pairs, there is extensive gene flow between temperate and virulent phages, and between the latter. These predominantly involve virulent phages with large genomes previously classed as low gene flux, and lead to the preferential transfer of genes encoding functions involved in cell energetics, nucleotide metabolism, DNA packaging and injection, and virion assembly. Such exchanges may contribute to the observed twice larger genomes of virulent phages. We used genetic transfers, which occur upon coinfection of a host, to compare phage host range. We found that virulent phages have broader host ranges and can mediate genetic exchanges between narrow host range temperate phages infecting distant bacterial hosts, thus contributing to gene flow between virulent phages, as well as between temperate phages. This gene flow drastically expands the gene repertoires available for phage and bacterial evolution, including the transfer of functional innovations across taxa.
Collapse
Affiliation(s)
| | - Eugen Pfeifer
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| |
Collapse
|
16
|
Kirchberger PC, Martinez ZA, Luker LJ, Ochman H. Defensive hypervariable regions confer superinfection exclusion in microviruses. Proc Natl Acad Sci U S A 2021; 118:e2102786118. [PMID: 34244443 PMCID: PMC8285946 DOI: 10.1073/pnas.2102786118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Single-stranded DNA phages of the family Microviridae have fundamentally different evolutionary origins and dynamics than the more frequently studied double-stranded DNA phages. Despite their small size (around 5 kb), which imposes extreme constraints on genomic innovation, they have adapted to become prominent members of viromes in numerous ecosystems and hold a dominant position among viruses in the human gut. We show that multiple, divergent lineages in the family Microviridae have independently become capable of lysogenizing hosts and have convergently developed hypervariable regions in their DNA pilot protein, which is responsible for injecting the phage genome into the host. By creating microviruses with combinations of genomic segments from different phages and infecting Escherichia coli as a model system, we demonstrate that this hypervariable region confers the ability of temperate Microviridae to prevent DNA injection and infection by other microviruses. The DNA pilot protein is present in most microviruses, but has been recruited repeatedly into this additional role as microviruses altered their lifestyle by evolving the ability to integrate in bacterial genomes, which linked their survival to that of their hosts. Our results emphasize that competition between viruses is a considerable and often overlooked source of selective pressure, and by producing similar evolutionary outcomes in distinct lineages, it underlies the prevalence of hypervariable regions in the genomes of microviruses and perhaps beyond.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Zachary A Martinez
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Landry J Luker
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
17
|
Rihtman B, Puxty RJ, Hapeshi A, Lee YJ, Zhan Y, Michniewski S, Waterfield NR, Chen F, Weigele P, Millard AD, Scanlan DJ, Chen Y. A new family of globally distributed lytic roseophages with unusual deoxythymidine to deoxyuridine substitution. Curr Biol 2021; 31:3199-3206.e4. [PMID: 34033748 PMCID: PMC8323127 DOI: 10.1016/j.cub.2021.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 01/27/2023]
Abstract
Marine bacterial viruses (bacteriophages) are abundant biological entities that are vital for shaping microbial diversity, impacting marine ecosystem function, and driving host evolution.1, 2, 3 The marine roseobacter clade (MRC) is a ubiquitous group of heterotrophic bacteria4,5 that are important in the elemental cycling of various nitrogen, sulfur, carbon, and phosphorus compounds.6, 7, 8, 9, 10 Bacteriophages infecting MRC (roseophages) have thus attracted much attention and more than 30 roseophages have been isolated,11, 12, 13 the majority of which belong to the N4-like group (Podoviridae family) or the Chi-like group (Siphoviridae family), although ssDNA-containing roseophages are also known.14 In our attempts to isolate lytic roseophages, we obtained two new phages (DSS3_VP1 and DSS3_PM1) infecting the model MRC strain Ruegeria pomeroyi DSS-3. Here, we show that not only do these phages have unusual substitution of deoxythymidine with deoxyuridine (dU) in their DNA, but they are also phylogenetically distinct from any currently known double-stranded DNA bacteriophages, supporting the establishment of a novel family (“Naomiviridae”). These dU-containing phages possess DNA that is resistant to the commonly used library preparation method for metagenome sequencing, which may have caused significant underestimation of their presence in the environment. Nevertheless, our analysis of Tara Ocean metagenome datasets suggests that these unusual bacteriophages are of global importance and more diverse than other well-known bacteriophages, e.g., the Podoviridae in the oceans, pointing to an overlooked role for these novel phages in the environment. Two new roseophages isolated from the marine environment They have an unusual deoxythymidine to deoxyuridine substitution in their genomes These dU genomes are resistant to a common method of metagenome library preparation These phages represent a new family and are globally distributed in the oceans
Collapse
Affiliation(s)
- Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Richard J Puxty
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Alexia Hapeshi
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Yan-Jiun Lee
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Yuanchao Zhan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Slawomir Michniewski
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Nicholas R Waterfield
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Peter Weigele
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Andrew D Millard
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
18
|
Genome Sequences of Microviruses Identified in a Sample from a Sewage Treatment Oxidation Pond. Microbiol Resour Announc 2021; 10:10/19/e00373-21. [PMID: 33986100 PMCID: PMC8142586 DOI: 10.1128/mra.00373-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxidation ponds are often used in the treatment of sewage as an aeration step prior to discharge. We identified 99 microvirus genomes from a sample from a sewage oxidation pond. This diverse group of microviruses expands our knowledge of bacteriophages associated with sewage oxidation pond ecosystems. Oxidation ponds are often used in the treatment of sewage as an aeration step prior to discharge. We identified 99 microvirus genomes from a sample from a sewage oxidation pond. This diverse group of microviruses expands our knowledge of bacteriophages associated with sewage oxidation pond ecosystems.
Collapse
|
19
|
Kirchberger PC, Ochman H. Resurrection of a global, metagenomically defined gokushovirus. eLife 2020; 9:e51599. [PMID: 32101162 PMCID: PMC7062461 DOI: 10.7554/elife.51599] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Gokushoviruses are single-stranded, circular DNA bacteriophages found in metagenomic datasets from diverse ecosystems worldwide, including human gut microbiomes. Despite their ubiquity and abundance, little is known about their biology or host range: Isolates are exceedingly rare, known only from three obligate intracellular bacterial genera. By synthesizing circularized phage genomes from prophages embedded in diverse enteric bacteria, we produced gokushoviruses in an experimentally tractable model system, allowing us to investigate their features and biology. We demonstrate that virions can reliably infect and lysogenize hosts by hijacking a conserved chromosome-dimer resolution system. Sequence motifs required for lysogeny are detectable in other metagenomically defined gokushoviruses; however, we show that even partial motifs enable phages to persist cytoplasmically without leading to collapse of their host culture. This ability to employ multiple, disparate survival strategies is likely key to the long-term persistence and global distribution of Gokushovirinae.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Integrative Biology University of TexasAustinUnited States
| | - Howard Ochman
- Department of Integrative Biology University of TexasAustinUnited States
| |
Collapse
|
20
|
Zhan Y, Chen F. Bacteriophages that infect marine roseobacters: genomics and ecology. Environ Microbiol 2019; 21:1885-1895. [DOI: 10.1111/1462-2920.14504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 12/01/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Yuanchao Zhan
- Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental Science Baltimore MD USA
| | - Feng Chen
- Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental Science Baltimore MD USA
| |
Collapse
|