1
|
Wu BQ, Wang J, Liu Y, Yang BJ, Li HY, Zhao CX, Qiu GZ. Biocompatibility Research of Magnetosomes Synthesized by Acidithiobacillus ferrooxidans. Int J Mol Sci 2025; 26:4278. [PMID: 40362514 PMCID: PMC12072573 DOI: 10.3390/ijms26094278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Magnetosomes are magnetic nanocrystals synthesized by bacteria that have important application value in biomedicine. Therefore, it is very important to evaluate their biocompatibility. It has been reported that the extremophilic acidophilic bacterium Acidithiobacillus ferrooxidans, which is aerobic, can synthesize intracellular Fe3O4 magnetosomes. In this paper, we performed a comprehensive and systematic evaluation of the biocompatibility of magnetosomes with an average particle size of 53.66 nm from Acidithiobacillus ferrooxidans, including pharmacokinetics, degradation pathways, acute systemic toxicity, cytotoxicity, genotoxicity, blood index and immunotoxicity. The phase composition of the magnetosomes was identified as Fe3O4 through XRD and HRTEM analyses. Biocompatibility evaluation results showed that magnetosomes metabolized rapidly in rats and degraded thoroughly in major organs, with almost no residue. When the injection concentration was low (40 mg/kg, 60 mg/kg), magnetosomes would not cause pathological changes in the major organs of mice, basically. At the same time, magnetosomes had low cytotoxicity, genotoxicity, immunotoxicity and hemolysis rate, which proved that the magnetosomes synthesized by Acidithiobacillus ferrooxidans are magnetic nanomaterials with good biocompatibility. This research provides an important theoretical basis for the large-scale application of bacterial magnetosomes as functional magnetic nanomaterials.
Collapse
Affiliation(s)
- Bai-Qiang Wu
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; (B.-Q.W.); (B.-J.Y.); (H.-Y.L.); (C.-X.Z.); (G.-Z.Q.)
- Key Lab of Bio-Hydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Jun Wang
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; (B.-Q.W.); (B.-J.Y.); (H.-Y.L.); (C.-X.Z.); (G.-Z.Q.)
- Key Lab of Bio-Hydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Yang Liu
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; (B.-Q.W.); (B.-J.Y.); (H.-Y.L.); (C.-X.Z.); (G.-Z.Q.)
- Key Lab of Bio-Hydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Bao-Jun Yang
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; (B.-Q.W.); (B.-J.Y.); (H.-Y.L.); (C.-X.Z.); (G.-Z.Q.)
- Key Lab of Bio-Hydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Hui-Ying Li
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; (B.-Q.W.); (B.-J.Y.); (H.-Y.L.); (C.-X.Z.); (G.-Z.Q.)
- Key Lab of Bio-Hydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Chun-Xiao Zhao
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; (B.-Q.W.); (B.-J.Y.); (H.-Y.L.); (C.-X.Z.); (G.-Z.Q.)
- Key Lab of Bio-Hydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Guan-Zhou Qiu
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China; (B.-Q.W.); (B.-J.Y.); (H.-Y.L.); (C.-X.Z.); (G.-Z.Q.)
- Key Lab of Bio-Hydrometallurgy of Ministry of Education, Changsha 410083, China
| |
Collapse
|
2
|
Satarzadeh N, Shakibaie M, Forootanfar H, Amirheidari B. Purification, Characterization, and Assessment of Anticancer Activity of Iron Oxide Nanoparticles Biosynthesized by Novel Thermophilic Bacillus tequilensis ASFS1. J Basic Microbiol 2024; 64:e2400153. [PMID: 38922993 DOI: 10.1002/jobm.202400153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
Magnetic nanoparticles (MNPs), particularly iron oxide nanoparticles (IONPs), are a fascinating group of nanoparticles that have been considerably investigated for biomedical applications because of their superparamagnetic properties, biodegradable nature, and biocompatibility. A novel Gram-positive moderately thermophilic bacterial strain, namely Bacillus tequilensis ASFS.1, was isolated and identified. This strain is capable of producing superparamagnetic Fe3O4 nanoparticles and exhibiting magnetotaxis behavior. This strain swimming behavior was investigated under static and dynamic environments, where it behaved very much similar to the magnetotaxis in magnetotactic bacteria. This study is the first report of a bacterium from the Bacillaceae family that has the potential to intracellular biosynthesis of IONPs. MNPs were separated by a magnetic and reproducible method which was designed for the first time for this study. In addition, UV-visible spectrophotometer, Fourier-transform infrared spectroscopy, vibrating sample magnetometer, field emission scanning electron microscopy (FESEM), X-ray diffraction, and thermal gravimetric analysis were utilized to characterize the bio-fabricated magnetite nanoparticles. Analysis of the particle size distribution pattern of the biogenic MNPs by FESEM imaging revealed the size range of 10-100 nm with the size range of 10-40 nm MNPs being the most frequent particles. VSM analysis demonstrated that biogenic MNPs displayed superparamagnetic properties with a high saturation magnetization value of 184 emu/g. After 24 h treatment of 3T3, U87, A549, MCF-7, and HT-29 cell lines with the biogenic MNPs, IC50 values were measured to be 339, 641, 582, 149, and 184 μg mL-1, respectively. This study presents the novel strain ASFS.1 capable of magnetotaxis by the aid of its magnetite nanoparticles and paving information on isolation, characterization, and in vitro cytotoxicity of its MNPs. The MNPs showed promising potential for biomedical applications, obviously subject to additional studies.
Collapse
Affiliation(s)
- Naghmeh Satarzadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Shakibaie
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Alsharedeh R, Alshraiedeh N, Aljabali AA, Tambuwala MM. Magnetosomes as Potential Nanocarriers for Cancer Treatment. Curr Drug Deliv 2024; 21:1073-1081. [PMID: 37340750 DOI: 10.2174/1567201820666230619155528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Magnetotactic bacteria (MTBs) and their organelles, magnetosomes, are intriguing options that might fulfill the criteria of using bacterial magnetosomes (BMs). The ferromagnetic crystals contained in BMs can condition the magnetotaxis of MTBs, which is common in water storage facilities. This review provides an overview of the feasibility of using MTBs and BMs as nanocarriers in cancer treatment. More evidence suggests that MTBs and BMs can be used as natural nanocarriers for conventional anticancer medicines, antibodies, vaccine DNA, and siRNA. In addition to improving the stability of chemotherapeutics, their usage as transporters opens the possibilities for the targeted delivery of single ligands or combinations of ligands to malignant tumors. Magnetosome magnetite crystals are different from chemically made magnetite nanoparticles (NPs) because they are strong single-magnetic domains that stay magnetized even at room temperature. They also have a narrow size range and a uniform crystal morphology. These chemical and physical properties are essential for their usage in biotechnology and nanomedicine. Bioremediation, cell separation, DNA or antigen regeneration, therapeutic agents, enzyme immobilization, magnetic hyperthermia, and contrast enhancement of magnetic resonance are just a few examples of the many uses for magnetite-producing MTB, magnetite magnetosomes, and magnetosome magnetite crystals. From 2004 to 2022, data mining of the Scopus and Web of Science databases showed that most research using magnetite from MTB was carried out for biological reasons, such as in magnetic hyperthermia and drug delivery.
Collapse
Affiliation(s)
- Rawan Alsharedeh
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Nid'a Alshraiedeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Alaa A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
4
|
Zhang R, Liu P, Wang Y, Roberts AP, Bai J, Liu Y, Zhu K, Du Z, Chen G, Pan Y, Li J. Phylogenetics and biomineralization of a novel magnetotactic Gammaproteobacterium from a freshwater lake in Beijing, China. FEMS Microbiol Ecol 2023; 99:fiad150. [PMID: 37974050 DOI: 10.1093/femsec/fiad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Magnetotactic bacteria (MTB) have the remarkable capability of producing intracellularly membrane-enveloped magnetic nanocrystals (i.e. magnetosomes) and swimming along geomagnetic field lines. Despite more than 50 years of research, bacterial diversity and magnetosome biomineralization within MTB are relatively less known in the Gammaproteobacteria class than other groups. This is incompatible with the status of Gammaproteobacteria as the most diverse class of gram-negative bacteria with a number of ecologically important bacteria. Here, we identify a novel MTB strain YYHR-1 affiliated with the Gammaproteobacteria class of the Pseudomonadota phylum from a freshwater lake. In YYHR-1, most magnetosome crystals are organized into a long chain aligned along the cell long axis; unusually, a few small superparamagnetic crystals are located at the side of the chain, off the main chain axis. Micromagnetic simulations indicate that magnetostatic interactions among adjacent crystals within a chain reduce the Gibbs energy to enhance chain stability. Genomic analysis suggests that duplication of magnetosome gene clusters may result in off-chain magnetosomes formation. By integrating available genomic data from Gammaproteobacteria, the phylogenetic position of MTB in this class is reassigned here. Our new findings expand knowledge about MTB diversity and magnetosome biomineralization, and deepen understanding of the phylogenetics of the Gammaproteobacteria.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Marine College, Shandong University, Weihai 264209, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqin Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Marine College, Shandong University, Weihai 264209, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongjun Du
- Marine College, Shandong University, Weihai 264209, China
| | - Guanjun Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Liu P, Zheng Y, Zhang R, Bai J, Zhu K, Benzerara K, Menguy N, Zhao X, Roberts AP, Pan Y, Li J. Key gene networks that control magnetosome biomineralization in magnetotactic bacteria. Natl Sci Rev 2022; 10:nwac238. [PMID: 36654913 PMCID: PMC9840458 DOI: 10.1093/nsr/nwac238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 01/21/2023] Open
Abstract
Magnetotactic bacteria (MTB) are a group of phylogenetically and morphologically diverse prokaryotes that have the capability of sensing Earth's magnetic field via nanocrystals of magnetic iron minerals. These crystals are enclosed within intracellular membranes or organelles known as magnetosomes and enable a sensing function known as magnetotaxis. Although MTB were discovered over half a century ago, the study of the magnetosome biogenesis and organization remains limited to a few cultured MTB strains. Here, we present an integrative genomic and phenomic analysis to investigate the genetic basis of magnetosome biomineralization in both cultured and uncultured strains from phylogenetically diverse MTB groups. The magnetosome gene contents/networks of strains are correlated with magnetic particle morphology and chain configuration. We propose a general model for gene networks that control/regulate magnetosome biogenesis and chain assembly in MTB systems.
Collapse
Affiliation(s)
| | | | - Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris 75005, France
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris 75005, France
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
6
|
Zimina TM, Sitkov NO, Gareev KG, Fedorov V, Grouzdev D, Koziaeva V, Gao H, Combs SE, Shevtsov M. Biosensors and Drug Delivery in Oncotheranostics Using Inorganic Synthetic and Biogenic Magnetic Nanoparticles. BIOSENSORS 2022; 12:789. [PMID: 36290927 PMCID: PMC9599632 DOI: 10.3390/bios12100789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
Magnetic nanocarriers have attracted attention in translational oncology due to their ability to be employed both for tumor diagnostics and therapy. This review summarizes data on applications of synthetic and biogenic magnetic nanoparticles (MNPs) in oncological theranostics and related areas. The basics of both types of MNPs including synthesis approaches, structure, and physicochemical properties are discussed. The properties of synthetic MNPs and biogenic MNPs are compared with regard to their antitumor therapeutic efficiency, diagnostic potential, biocompatibility, and cellular toxicity. The comparative analysis demonstrates that both synthetic and biogenic MNPs could be efficiently used for cancer theranostics, including biosensorics and drug delivery. At the same time, reduced toxicity of biogenic particles was noted, which makes them advantageous for in vivo applications, such as drug delivery, or MRI imaging of tumors. Adaptability to surface modification based on natural biochemical processes is also noted, as well as good compatibility with tumor cells and proliferation in them. Advances in the bionanotechnology field should lead to the implementation of MNPs in clinical trials.
Collapse
Affiliation(s)
- Tatiana M. Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Nikita O. Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Kamil G. Gareev
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Denis Grouzdev
- SciBear OU, Tartu mnt 67/1-13b, Kesklinna Linnaosa, 10115 Tallinn, Estonia
| | - Veronika Koziaeva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, 119071 Moscow, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- National Center for Neurosurgery, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
7
|
Chen S, Yu M, Zhang W, He K, Pan H, Cui K, Zhao Y, Zhang XH, Xiao T, Zhang W, Wu LF. Metagenomic and Microscopic Analysis of Magnetotactic Bacteria in Tangyin Hydrothermal Field of Okinawa Trough. Front Microbiol 2022; 13:887136. [PMID: 35756025 PMCID: PMC9226615 DOI: 10.3389/fmicb.2022.887136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) have been found in a wide variety of marine habitats, ranging from intertidal sediments to deep-sea seamounts. Deep-sea hydrothermal fields are rich in metal sulfides, which are suitable areas for the growth of MTB. However, MTB in hydrothermal fields have never been reported. Here, the presence of MTB in sediments from the Tangyin hydrothermal field was analyzed by 16S rRNA gene amplicon analysis, metagenomics, and transmission electron microscopy. Sequencing 16S rRNA gene yielded a total of 709 MTB sequences belonging to 20 OTUs, affiliated with Desulfobacterota, Alphaproteobacteria, and Nitrospirae. Three shapes of magnetofossil were identified by transmission electron microscopy: elongated-prismatic, bullet-shaped, and cuboctahedron. All of these structures were composed of Fe3O4. A total of 121 sequences were found to be homologous to the published MTB magnetosome-function-related genes, and relevant domains were identified. Further analysis revealed that diverse MTB are present in the Tangyin hydrothermal field, and that multicellular magnetotactic prokaryote (MMPs) might be the dominant MTB.
Collapse
Affiliation(s)
- Si Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Min Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Kuang He
- Key Lab of Submarine Geosciences and Prospecting Techniques, Frontiers Science Center for Deep Ocean Multispheres and Earth System, MOE and College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Kaixuan Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yicong Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiao-Hua Zhang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China.,Aix Marseille University, CNRS, LCB, Marseille, France
| |
Collapse
|
8
|
Li J, Liu P, Menguy N, Benzerara K, Bai J, Zhao X, Leroy E, Zhang C, Zhang H, Liu J, Zhang R, Zhu K, Roberts AP, Pan Y. Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: strategy for culture-independent study. Environ Microbiol 2022; 24:5019-5038. [PMID: 35726890 DOI: 10.1111/1462-2920.16109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022]
Abstract
Magnetotactic bacteria (MTB) biomineralize intracellular magnetic nanocrystals and swim along geomagnetic field lines. While few axenic MTB cultures exist, living cells can be separated magnetically from natural environments for analysis. The bacterial universal 27F/1492R primer pair has been used widely to amplify nearly full-length 16S rRNA genes and to provide phylogenetic portraits of MTB communities. However, incomplete coverage and amplification biases inevitably prevent detection of some phylogenetically specific or non-abundant MTB. Here, we propose a new formulation of the upstream 390F primer that we combined with the downstream 1492R primer to specifically amplify 1,100-bp 16S rRNA gene sequences of sulfate-reducing MTB in freshwater sediments from Lake Weiyanghu, Xi'an, northwestern China. With correlative fluorescence in situ hybridization and scanning/transmission electron microscopy, three novel MTB strains (WYHR-2, WYHR-3, and WYHR-4) from the Desulfobacterota phylum were identified phylogenetically and structurally at the single cell level. Strain WYHR-2 produces bullet-shaped magnetosome magnetite, while the other two strains produce both cubic/prismatic greigite and bullet-shaped magnetite. Our results expand knowledge of bacterial diversity and magnetosome biomineralization of sulfate-reducing MTB. We also propose a general strategy for identifying and characterizing uncultured MTB from natural environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Eric Leroy
- ICMPE, University Paris East, UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais Cedex, France
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Heng Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Keilei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Goswami P, He K, Li J, Pan Y, Roberts AP, Lin W. Magnetotactic bacteria and magnetofossils: ecology, evolution and environmental implications. NPJ Biofilms Microbiomes 2022; 8:43. [PMID: 35650214 PMCID: PMC9160268 DOI: 10.1038/s41522-022-00304-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a group of phylogenetically diverse and morphologically varied microorganisms with a magnetoresponsive capability called magnetotaxis or microbial magnetoreception. MTB are a distinctive constituent of the microbiome of aquatic ecosystems because they use Earth's magnetic field to align themselves in a north or south facing direction and efficiently navigate to their favored microenvironments. They have been identified worldwide from diverse aquatic and waterlogged microbiomes, including freshwater, saline, brackish and marine ecosystems, and some extreme environments. MTB play important roles in the biogeochemical cycling of iron, sulphur, phosphorus, carbon and nitrogen in nature and have been recognized from in vitro cultures to sequester heavy metals like selenium, cadmium, and tellurium, which makes them prospective candidate organisms for aquatic pollution bioremediation. The role of MTB in environmental systems is not limited to their lifespan; after death, fossil magnetosomal magnetic nanoparticles (known as magnetofossils) are a promising proxy for recording paleoenvironmental change and geomagnetic field history. Here, we summarize the ecology, evolution, and environmental function of MTB and the paleoenvironmental implications of magnetofossils in light of recent discoveries.
Collapse
Affiliation(s)
- Pranami Goswami
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- Research School of Earth Sciences, Australian National University, ACT, Canberra, ACT, 2601, Australia
| | - Kuang He
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Submarine Geosciences and Prospecting Techniques, MoE and College of Marine Geosciences, Ocean University of China, 266100, Qingdao, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, ACT, Canberra, ACT, 2601, Australia.
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China.
| |
Collapse
|
10
|
Li J, Liu P, Menguy N, Zhang X, Wang J, Benzerara K, Feng L, Sun L, Zheng Y, Meng F, Gu L, Leroy E, Hao J, Chu X, Pan Y. Intracellular silicification by early-branching magnetotactic bacteria. SCIENCE ADVANCES 2022; 8:eabn6045. [PMID: 35559677 PMCID: PMC9106300 DOI: 10.1126/sciadv.abn6045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/31/2022] [Indexed: 06/13/2023]
Abstract
Biosilicification-the formation of biological structures composed of silica-has a wide distribution among eukaryotes; it plays a major role in global biogeochemical cycles, and has driven the decline of dissolved silicon in the oceans through geological time. While it has long been thought that eukaryotes are the only organisms appreciably affecting the biogeochemical cycling of Si, the recent discoveries of silica transporter genes and marked silicon accumulation in bacteria suggest that prokaryotes may play an underappreciated role in the Si cycle, particularly in ancient times. Here, we report a previously unidentified magnetotactic bacterium that forms intracellular, amorphous silica globules. This bacterium, phylogenetically affiliated with the phylum Nitrospirota, belongs to a deep-branching group of magnetotactic bacteria that also forms intracellular magnetite magnetosomes and sulfur inclusions. This contribution reveals intracellularly controlled silicification within prokaryotes and suggests a previously unrecognized influence on the biogeochemical Si cycle that was operational during early Earth history.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 75005 Paris, France
| | - Xingliang Zhang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments and Department of Geology, Northwest University, Xi’an 710069, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 75005 Paris, France
| | - Lianjun Feng
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Sun
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Yue Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Eric Leroy
- ICMPE, University Paris East, UMR 7182, CNRS, 2-8 Rue Henri Dunant, Thiais, Cedex 94320, France
| | - Jialong Hao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelei Chu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
A Novel Magnetotactic Alphaproteobacterium Producing Intracellular Magnetite and Calcium-Bearing Minerals. Appl Environ Microbiol 2021; 87:e0155621. [PMID: 34756060 DOI: 10.1128/aem.01556-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Magnetotactic bacteria (MTB) are prokaryotes that form intracellular magnetite (Fe3O4) or greigite (Fe3S4) nanocrystals with tailored sizes, often in chain configurations. Such magnetic particles are each surrounded by a lipid bilayer membrane, called a magnetosome, and provide a model system for studying the formation and function of specialized internal structures in prokaryotes. Using fluorescence-coupled scanning electron microscopy, we identified a novel magnetotactic spirillum, XQGS-1, from freshwater Xingqinggong Lake, Xi'an City, Shaanxi Province, China. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain XQGS-1 represents a novel genus of the Alphaproteobacteria class in the Proteobacteria phylum. Transmission electron microscopy analyses reveal that strain XQGS-1 forms on average 17 ± 3 magnetite magnetosome particles with an ideal truncated octahedral morphology, with an average length and width of 88.3 ± 11.7 nm and 83.3 ± 11.0 nm, respectively. They are tightly organized into a single chain along the cell long axis close to the concave side of the cell. Intrachain magnetic interactions likely result in these large equidimensional magnetite crystals behaving as magnetically stable single-domain particles that enable bacterial magnetotaxis. Combined structural and chemical analyses demonstrate that XQGS-1 cells also biomineralize intracellular amorphous calcium phosphate (2 to 3 granules per cell; 90.5- ± 19.3-nm average size) and weakly crystalline calcium carbonate (2 to 3 granules per cell; 100.4- ± 21.4-nm average size) in addition to magnetite. Our results expand the taxonomic diversity of MTB and provide evidence for intracellular calcium phosphate biomineralization in MTB. IMPORTANCE Biomineralization is a widespread process in eukaryotes that form shells, teeth, or bones. It also occurs commonly in prokaryotes, resulting in more than 60 known minerals formed by different bacteria under wide-ranging conditions. Among them, magnetotactic bacteria (MTB) are remarkable because they might represent the earliest organisms that biomineralize intracellular magnetic iron minerals (i.e., magnetite [Fe3O4] or greigite [Fe3S4]). Here, we report a novel magnetotactic spirillum (XQGS-1) that is phylogenetically affiliated with the Alphaproteobacteria class. In addition to magnetite crystals, XQGS-1 cells form intracellular submicrometer calcium carbonate and calcium phosphate granules. This finding supports the view that MTB are also an important microbial group for intracellular calcium carbonate and calcium phosphate biomineralization.
Collapse
|
12
|
The Effect of Salt-Tolerant Antagonistic Bacteria CZ-6 on the Rhizosphere Microbial Community of Winter Jujube ( Ziziphus jujuba Mill. "Dongzao") in Saline-Alkali Land. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5171086. [PMID: 34611527 PMCID: PMC8487612 DOI: 10.1155/2021/5171086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023]
Abstract
As the main economic crop cultivated in the Yellow River Delta, winter jujube contains various nutrients. However, soil salinization and fungal diseases have affected the yield and quality of winter jujube. In order to use plant growth-promoting rhizobacteria (PGPR) to reduce these damages, the antagonistic bacteria CZ-6 isolated from the rhizosphere of wheat in saline soil was selected for experiment. Gene sequencing analysis identified CZ-6 as Bacillus amyloliquefaciens. In order to understand the salt tolerant and disease-resistant effects of CZ-6 strain, determination of related indicators of salt tolerance, pathogen antagonistic tests, and anti-fungal mechanism analyses was carried out. A pot experiment was conducted to evaluate the effect of CZ-6 inoculation on the rhizosphere microbial community of winter jujube. The salt tolerance test showed that CZ-6 strain can survive in a medium with a NaCl concentration of 10% and produces indole acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase. Studies on the inhibition mechanism of pathogenic fungi show that CZ-6 can secrete cellulase, protease, and xylanase. Gas chromatography-mass spectrometry (GC-MS) analysis showed that CZ-6 can release volatile organic compounds (VOCs), including 2-heptanone and 2-nonanone. In addition, the strain can colonize the rhizosphere and migrate to the roots, stems, and leaves of winter jujube, which is essential for plant growth or defense against pathogens. Illumina MiSeq sequencing data indicated that, compared to the control, the abundance of salt-tolerant bacteria Tausonia in the CZ-6 strain treatment group was significantly increased, while the richness of Chaetomium and Gibberella pathogens was significantly reduced. Our research shows that CZ-6 has the potential as a biological control agent in saline soil. Plant damage and economic losses caused by pathogenic fungi and salt stress are expected to be alleviated by the addition of salt-tolerant antagonistic bacteria.
Collapse
|