1
|
Sakuta K, Ito A, Sassa-O'Brien Y, Yoshida T, Fukuhara T, Uematsu S, Komatsu K, Moriyama H. Novel endornaviruses infecting Phytophthora cactorum that attenuate vegetative growth, promote sporangia formation and confer hypervirulence to the host oomycete. J Gen Virol 2025; 106. [PMID: 40310668 DOI: 10.1099/jgv.0.002099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Two novel endornaviruses were found in Phytophthora cactorum isolated from black lesions on Boehmeria nivea var. nipononivea plants in a Japanese forest. These two endornaviruses were named Phytophthora cactorum alphaendornavirus 4 (PcAEV4) and Phytophthora cactorum alphaendornavirus 5 (PcAEV5) and have site-specific nick structures in their positive RNA strands, which are hallmarks of alphaendornaviruses. Ribavirin and cycloheximide treatment of the protoplasts effectively cured the host oomycete (strain Kara1) of the viruses. The resultant virus-free strain (Kara1-C) displayed abundant mycelial growth with less zoosporangia formation as compared to the Kara1 strain. Remarkably, the Kara1-C strain exhibited a reduced ability to form black lesions on B. nivea leaves, suggesting that the presence of PcAEV4 and PcAEV5 in the Kara1 strain led to enhanced virulence in host plants. Under osmotic pressure and cell wall synthesis inhibition, the Kara1 strain exhibited less growth inhibition compared with the Kara1-C strain. In contrast, the Kara1 strain showed more growth inhibition in the presence of membrane-permeable surfactant compared with the Kara1-C strain, indicating that the two endornaviruses can alter the susceptibility of the host oomycete to abiotic stresses. Co-localization and cell fractionation analyses showed that PcAEV4 and PcAEV5 localized to intracellular membranes, particularly the endoplasmic reticulum membrane fraction. Furthermore, infection with these two endornaviruses was found to affect the host's response to exogenous sterols, which enhanced vegetative growth and zoosporangia formation, as well as virulence of the host oomycete. These results provide insights into the effects of endornavirus infection in Phytophthora spp. and also highlight the usefulness of protoplast-based methods in advancing Phytophthora virus studies.
Collapse
Affiliation(s)
- Kohei Sakuta
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Aori Ito
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yukiko Sassa-O'Brien
- Laboratory of Veterinary Infectious Disease, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomohiro Yoshida
- Field Science Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Toshiyuki Fukuhara
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Seiji Uematsu
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
2
|
Yang H, Zhang X, Yan Z, Wang Y, Wang Q, Lu B, Chen J, Wu X. Diversity and Function of Strawberry Endophytic Bacterial Communities Associated with Host Genotype and Niche. Curr Microbiol 2025; 82:244. [PMID: 40237826 PMCID: PMC12003465 DOI: 10.1007/s00284-025-04223-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Strawberry (Fragaria × ananassa) is the most widely cultivated small berries in the world. They are not only delicious, juicy, and nutritious, but also have important economic value. However, current research on endophytic bacteria related to strawberry is limited. This work provides a comprehensive description of the composition and diversity of bacterial communities in three niches (root, stem, and leaf) of three strawberry cultivars (White Elves, Tokun, and Akihime). This study indicated that the diversity and composition of strawberry bacterial communities differ significantly between the belowground niche (roots) and aboveground compartments (stems and leaves). The bacterial diversity and richness varied between niches for all three cultivars; and it significantly decreased from root to stem to leaf. The richness and alpha diversity of Akihime bacterial community were significantly lower than that of White Elves in the stems and leaves. Beneficial bacterial genera, such as Ochrobacter, Bradyrhizobium, Sphingomonas, and Pseudolobrys, were more abundant in White Elves and Tokun than in Akihime, especially in roots and stems. The results of this study provide an important reference for discovering new species or genetic variations to improve host fitness and stress tolerance. Further research is needed to uncover the interactions between plants and endophytic bacteria, as well as the potential for extracting bioactive compounds from these bacteria.
Collapse
Affiliation(s)
- Hongjun Yang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang, 212400, Jiangsu, China
| | - Xu Zhang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China.
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang, 212400, Jiangsu, China.
| | - Zhiming Yan
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang, 212400, Jiangsu, China
| | - Yuanhua Wang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang, 212400, Jiangsu, China
| | - Quanzhi Wang
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang, 212400, Jiangsu, China
| | - Bei Lu
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
- Jiangsu Engineering and Technology Center for Modern Horticulture, Zhenjiang, 212400, Jiangsu, China
| | - Jiajia Chen
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
| | - Xiao Wu
- College of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, 212400, Jiangsu, China
| |
Collapse
|
3
|
Wang YR, Su JE, Yang ZJ, Zhong J, Li XG, Chen Y, Zhu JZ. A pooled mycoviral resource in a strain of Rhizoctonia solani are regulators of fungal virulence. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106042. [PMID: 39277369 DOI: 10.1016/j.pestbp.2024.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 09/17/2024]
Abstract
Rhizoctonia solani is a widespread and devastating soil-borne plant fungal pathogen that causes diseases, including rice sheath blight, which are difficult to control. Some mycoviruses are potential biocontrol agents for the control of fungal diseases. In order to investigate the factors that influence the virulence of R. solani and search for mycoviruses with the potential for biocontrol of R. solani, a rice-infecting R. solani strain, ZJXD1-1, was isolated and confirmed to contain eight mycoviruses via dsRNA extraction and high-throughput sequencing. The identified mycoviruses belong to families of Endornaviridae (RsEV11 and RsEV12) and Mitoviridae (RsMV125 to RsMV129), and an unclassified Toti-like clade (RsTLV1). The C39 domain in RsEV12, which shares a close evolutionary relationship with bacteria, is observed for the first time in a mycovirus. Strains with different virus combinations were obtained through viral horizontal transfer, and pathogenicity test deduced that the Endornaviruses RsEV11 and RsEV12, and Mitovirus RsMV129 might potentially enhance the pathogenicity of R. solani, while RsMV125 might reduce the virulence or interfere with the function of other Mitoviruses. Furthermore, virus curing via protoplast regeneration and viral horizontal transfer demonstrated that RsMV129 is the causal agent of R. solani hypervirulence. Overall, our study provided the resource pool of viruses that may contribute to the discovery of new biocontrol agents against R. solani and enhance our understanding of the pathogenesis of R. solani regulated by mycoviruses.
Collapse
Affiliation(s)
- Ya Rong Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China; Key Laboratory of Grassland Ecosystem of Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jia En Su
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Zhi Juan Yang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Xiao Gang Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan Province 650021, PR China.
| | - Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province 410128, PR China.
| |
Collapse
|
4
|
Forgia M, Daghino S, Chiapello M, Ciuffo M, Turina M. New clades of viruses infecting the obligatory biotroph Bremia lactucae representing distinct evolutionary trajectory for viruses infecting oomycetes. Virus Evol 2024; 10:veae003. [PMID: 38361818 PMCID: PMC10868552 DOI: 10.1093/ve/veae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Recent advances in high throughput sequencing (HTS) approaches allowed a broad exploration of viromes from different fungal hosts, unveiling a great diversity of mycoviruses with interesting evolutionary features. The word mycovirus historically applies also to viruses infecting oomycetes but most studies are on viruses infecting fungi, with less mycoviruses found and characterized in oomycetes, particularly in the obligatory biotrophs. We, here, describe the first virome associated to Bremia lactucae, the causal agent of lettuce downy mildew, which is an important biotrophic pathogen for lettuce production and a model system for the molecular aspects of the plant-oomycetes interactions. Among the identified viruses, we could detect (1) two new negative sense ssRNA viruses related to the yueviruses, (2) the first example of permuted RdRp in a virus infecting fungi/oomycetes, (3) a new group of bipartite dsRNA viruses showing evidence of recent bi-segmentation and concomitantly, a possible duplication event bringing a bipartite genome to tripartite, (4) a first representative of a clade of viruses with evidence of recombination between distantly related viruses, (5) a new open reading frame (ORF)an virus encoding for an RdRp with low homology to known RNA viruses, and (6) a new virus, belonging to riboviria but not conserved enough to provide a conclusive phylogenetic placement that shows evidence of a recombination event between a kitrinoviricota-like and a pisuviricota-like sequence. The results obtained show a great diversity of viruses and evolutionary mechanisms previously unreported for oomycetes-infecting viruses, supporting the existence of a large diversity of oomycetes-specific viral clades ancestral of many fungal and insect virus clades.
Collapse
Affiliation(s)
| | - Stefania Daghino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
| | - Marina Ciuffo
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada Delle Cacce 73, Torino 10135, Italy
- Institute for Sustainable Plant Protection, National Research Council of Italy, Via Branze 39, Brescia 25123, Italy
| |
Collapse
|
5
|
Poimala A, Vainio E. Discovery and Identification of Viruses Infecting Oomycetes. Methods Mol Biol 2024; 2732:45-65. [PMID: 38060117 DOI: 10.1007/978-1-0716-3515-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
This chapter describes protocols suitable for the detection and identification of RNA viruses infecting oomycetes (so-called water molds of Kingdom Heterokonta, Stramenopila), focusing on species of Phytophthora and exemplified by P. fragariae. The protocol includes laboratory procedures for oomycete cultivation and total RNA extraction from harvested mycelia, followed by instructions on suitable parameters given for sequencing companies on ribosomal RNA depletion, cDNA library preparation, and total RNA-sequencing (RNA-Seq). We also describe the bioinformatics steps needed for de novo assembly of raw reads into contigs, removal of host-associated contigs, and virus identification by database searches, as well as host validation by RT-PCR. All steps are described using an exemplar RNA-Seq library containing a yet undescribed fusagravirus hosted by a P. fragariae isolate.
Collapse
Affiliation(s)
- Anna Poimala
- Natural Resources Institute Finland (Luke), Helsinki, Finland.
| | - Eeva Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
6
|
Adamczyk S, Latvala S, Poimala A, Adamczyk B, Hytönen T, Pennanen T. Diterpenes and triterpenes show potential as biocides against pathogenic fungi and oomycetes: a screening study. Biotechnol Lett 2023; 45:1555-1563. [PMID: 37910278 PMCID: PMC10635980 DOI: 10.1007/s10529-023-03438-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVES The aim was to screen di- and triterpenes as potential biocides against fungal pathogens (Alternaria sp., Fusarium avenaceum, F. sambucinum, Botrytis cinerea, Botryotina fuckeliana, Mycocentrospora acerina, Cylindrocarpon sp.) and oomycetes (Phytophthora cactorum, P. fragariae). Results We measured the antifungal activity of terpenes by estimating the growth area, ergosterol content and level of lipid peroxidation. Fungi and oomycetes were grown on solid media in Petri dishes. As a positive control, we used a common synthetic fungicide, fosetyl-Al. Di- and triterpenes showed promising potential as biocides against most of the studied species. The responses of fungi and oomycetes were dependent on the specific type of terpenes and identity of the fungi. Compared to synthetic fungicide, terpenes were equally effective as antifungal agents and even more effective for some species, especially for oomycetes. The terpene mode of action includes inhibition of ergosterol synthesis and increased lipid peroxidation. Conclusions Di- and triterpenes, natural compounds that are very abundant in northern countries, are excellent candidates for biocides.
Collapse
Affiliation(s)
- Sylwia Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland.
| | - Satu Latvala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Anna Poimala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Bartosz Adamczyk
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Tuija Hytönen
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Taina Pennanen
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| |
Collapse
|
7
|
Sakuta K, Uchida K, Fukuhara T, Komatsu K, Okada R, Moriyama H. Successful full-length genomic cloning and characterization of site-specific nick structures of Phytophthora endornaviruses 2 and 3 in yeast, Saccharomyces cerevisiae. Front Microbiol 2023; 14:1243068. [PMID: 37771702 PMCID: PMC10523305 DOI: 10.3389/fmicb.2023.1243068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Two endornaviruses, Phytophthora endornavirus 2 (PEV2) and Phytophthora endornavirus 3 (PEV3), have been discovered in pathogens targeting asparagus. In this study, we analyzed the nick structure in the RNA genomes of PEV2 and PEV3 in the host oomycetes. Northern blot hybridization using positive and negative strand-specific RNA probes targeting the 5' and 3' regions of PEV2 and PEV3 RNA genomes revealed approximately 1.0 kilobase (kb) RNA fragments located in the 5' regions of the two genomes. 3' RACE analysis determined that the size of the RNA fragments were 958 nucleotides (nt) for PEV2 and 968 nt for PEV3. We have successfully constructed full-length cDNA clones of the entire RNA genomes of PEV2 and PEV3 using a homologous recombination system in the yeast, Saccharomyces cerevisiae. These full-length cDNA sequences were ligated downstream of a constitutive expression promoter (TDH3) or a galactose-inducing promoter (GAL1) in the shuttle vector to enable the production of the full-length RNA transcripts of PEV2 and PEV3 in yeast cells. Interestingly, a 1.0 kb RNA fragment from the PEV3 positive-strand transcript was also detected with a 5'-region RNA probe, indicating that site-specific cleavage also occurred in yeast cells. Further, when PEV2 or PEV3 mRNA was overexpressed under the GAL1 promoter, yeast cell growth was suppressed. A fusion protein combining EGFP to the N-terminus of the full-length PEV2 ORF or C-terminus of the full-length PEV3 ORF was expressed, and allowed PEV2 and PEV3 ORFs to be successfully visualized in yeast cells. Expression of the fusion protein also revealed presence of heterogeneous bodies in the cells.
Collapse
Affiliation(s)
- Kohei Sakuta
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Keiko Uchida
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Toshiyuki Fukuhara
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryo Okada
- Horticultural Research Institute, Agricultural Center, Kasama, Ibaraki, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
8
|
Jia J, Chen X, Wang X, Liu X, Zhang N, Zhang B, Chang Y, Mu F. Molecular characterization of a novel ambiguivirus isolated from the phytopathogenic fungus Setosphaeria turcica. Arch Virol 2023; 168:199. [PMID: 37400663 DOI: 10.1007/s00705-023-05829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
In this study, a novel single-stranded RNA virus was isolated from the plant-pathogenic fungus Setosphaeria turcica strain TG2, and the virus was named "Setosphaeria turcica ambiguivirus 2" (StAV2). The complete nucleotide sequence of the StAV2 genome was determined using RT-PCR and RLM-RACE. The StAV2 genome comprises 3,000 nucleotides with a G+C content of 57.77%. StAV2 contains two in-frame open reading frames (ORFs) with the potential to produce an ORF1-ORF2 fusion protein via a stop codon readthrough mechanism. ORF1 encodes a hypothetical protein (HP) of unknown function. The ORF2-encoded protein shows a high degree of sequence similarity to the RNA-dependent RNA polymerases (RdRps) of ambiguiviruses. BLASTp searches showed that the StAV2 HP and RdRp share the highest amino acid sequence identity (46.38% and 69.23%, respectively) with the corresponding proteins of a virus identified as "Riboviria sp." isolated from a soil sample. Multiple sequence alignments and phylogenetic analysis based on the amino acid sequences of the RdRp revealed that StAV2 is a new member of the proposed family "Ambiguiviridae".
Collapse
Affiliation(s)
- Jichun Jia
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xu Chen
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xue Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xu Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Nuo Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Baojun Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yindong Chang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Fan Mu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
9
|
Raco M, Jung T, Horta Jung M, Chi NM, Botella L, Suzuki N. Sequence and phylogenetic analysis of a novel alphaendornavirus, the first virus described from the oomycete plant pathogen Phytophthora heveae. Arch Virol 2023; 168:158. [PMID: 37166518 PMCID: PMC10175314 DOI: 10.1007/s00705-023-05786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
Here, we report the discovery and complete genome sequence of a novel virus, designated as "Phytophthora heveae alphaendornavirus 1" (PhAEV1), from a single isolate of the plant pathogenic oomycete Phytophthora heveae (kingdom Stramenipila) isolated from a tropical evergreen lowland rainforest in northern Vietnam. PhAEV1 was detected by both cellulose affinity chromatography of dsRNA and high-throughput sequencing of total RNA, and its presence and sequence were confirmed by RT-PCR and Sanger sequencing. The PhAEV1 genome, 12,820 nucleotides (nt) in length, was predicted to encode a single large polyprotein with the catalytic core domain of viral (superfamily 1) RNA helicase (HEL, amino acid [aa] positions 1,287-1,531), glycosyltransferase (GT, aa positions ca. 2,800-3,125), and RNA-directed RNA polymerase (RdRp, aa positions 3,875-4,112). PhAEV1 is the most similar to Phytophthora cactorum alphaendornavirus 3, sharing 39.4% and 39.1% nt and aa sequence identity, respectively. In addition to the first 5'-terminal AUG codon, three additional in-frame methionine codons were found in close proximity (nt 14-16, 96-98, and 176-178), suggesting potential additional translation initiation sites. Conserved RdRp motifs (A-E) similar to those detected in related endornaviruses were identified in PhAEV1, as well as in several previously described alphaendornaviruses from other Phytophthora species in which these motifs had not been identified previously. Phylogenetic analysis showed that PhAEV1 clusters with members of the genus Alphaendornavirus in the family Endornaviridae and is basal to two other alphaendornaviruses described from another oomycete, Phytophthora cactorum. PhAEV1 is the first virus reported in P. heveae.
Collapse
Grants
- CZ.02.1.01/0.0/0.0/15_003/0000453 European Regional Development Fund, project Phytophthora Research Centre
- LDF_VP_2021047 Specific University Research Fund of the Faculty of Forestry and Wood Technology, Mendel University in Brno
- KAKENHI 21H05035 Grants in Aid for the Scientific Research (S), Research on the Innovative Areas, and Grants in Aid for JSPS, from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 21K18222 Grants in Aid for the Scientific Research (S), Research on the Innovative Areas, and Grants in Aid for JSPS, from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 16H06436 Grants in Aid for the Scientific Research (S), Research on the Innovative Areas, and Grants in Aid for JSPS, from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 16H06429 Grants in Aid for the Scientific Research (S), Research on the Innovative Areas, and Grants in Aid for JSPS, from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 16K21723 Grants in Aid for the Scientific Research (S), Research on the Innovative Areas, and Grants in Aid for JSPS, from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
Collapse
Affiliation(s)
- Milica Raco
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic, Zemědělská 3, 613 00.
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic, Zemědělská 3, 613 00
| | - Marilia Horta Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic, Zemědělská 3, 613 00
| | - Nguyen Minh Chi
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Hanoi, 10000, Vietnam
| | - Leticia Botella
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic, Zemědělská 3, 613 00
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 7100046, Japan, Chuo 2-20-1
| |
Collapse
|
10
|
Huang H, Hua X, Pang X, Zhang Z, Ren J, Cheng J, Fu Y, Xiao X, Lin Y, Chen T, Li B, Liu H, Jiang D, Xie J. Discovery and Characterization of Putative Glycoprotein-Encoding Mycoviruses in the Bunyavirales. J Virol 2023; 97:e0138122. [PMID: 36625579 PMCID: PMC9888262 DOI: 10.1128/jvi.01381-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023] Open
Abstract
Although segmented negative-sense RNA viruses (SNSRVs) have been frequently discovered in various fungi, most SNSRVs reported only the large segments. In this study, we investigated the diversity of the mycoviruses in the phytopathogenic fungus Fusarium asiaticum using the metatranscriptomic technique. We identified 17 fungal single-stranded RNA (ssRNA) viruses including nine viruses within Mitoviridae, one each in Narnaviridae, Botourmiaviridae, Hypoviridae, Fusariviridae, and Narliviridae, two in Mymonaviridae, and one trisegmented virus temporarily named Fusarium asiaticum mycobunyavirus 1 (FaMBV1). The FaMBV1 genome comprises three RNA segments, large (L), medium (M), and small (S) with 6,468, 2,639, and 1,420 nucleotides, respectively. These L, M, and S segments putatively encode the L protein, glycoprotein, and nucleocapsid, respectively. Phylogenetic analysis based on the L protein showed that FaMBV1 is phylogenetically clustered with Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2) and Sclerotinia sclerotiorum negative-stranded RNA virus 5 (SsNSRV5) but distantly related to the members of the family Phenuiviridae. FaMBV1 could be vertically transmitted by asexual spores with lower efficiency (16.7%, 2/42). Comparison between FaMBV1-free and -infected fungal strains revealed that FaMBV1 has little effect on hyphal growth, pathogenicity, and conidium production, and its M segment is dispensable for viral replication and lost during subculture and asexual conidiation. The M and S segments of AtNSRV2 and SsNSRV5 were found using bioinformatics methods, indicating that the two fungal NSRVs harbor trisegmented genomes. Our results provide a new example of the existence and evolution of the segmented negative-sense RNA viruses in fungi. IMPORTANCE Fungal segmented negative-sense RNA viruses (SNSRVs) have been frequently found. Only the large segment encoding RNA-dependent RNA polymerase (RdRp) has been reported in most fungal SNSRVs, except for a few fungal SNSRVs reported to encode nucleocapsids, nonstructural proteins, or movement proteins. Virome analysis of the Fusarium spp. that cause Fusarium head blight discovered a novel virus, Fusarium asiaticum mycobunyavirus 1 (FaMBV1), representing a novel lineage of the family Phenuiviridae. FaMBV1 harbors a trisegmented genome that putatively encodes RdRp, glycoproteins, and nucleocapsids. The putative glycoprotein was first described in fungal SNSRVs and shared homology with glycoprotein of animal phenuivirus but was dispensable for its replication in F. asiaticum. Two other trisegmented fungal SNSRVs that also encode glycoproteins were discovered, implying that three-segment bunyavirus infections may be common in fungi. These findings provide new insights into the ecology and evolution of SNSRVs, particularly those infecting fungi.
Collapse
Affiliation(s)
- Huang Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiangmin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xidan Pang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Zhongmei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jingyi Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
11
|
Ayllón MA, Vainio EJ. Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle. Adv Virus Res 2023; 115:1-86. [PMID: 37173063 DOI: 10.1016/bs.aivir.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.
Collapse
Affiliation(s)
- María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain; Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
12
|
Poimala A, Raco M, Haikonen T, Černý M, Parikka P, Hantula J, Vainio EJ. Bunyaviruses Affect Growth, Sporulation, and Elicitin Production in Phytophthora cactorum. Viruses 2022; 14:v14122596. [PMID: 36560602 PMCID: PMC9788385 DOI: 10.3390/v14122596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Phytophthora cactorum is an important oomycetous plant pathogen with numerous host plant species, including garden strawberry (Fragaria × ananassa) and silver birch (Betula pendula). P. cactorum also hosts mycoviruses, but their phenotypic effects on the host oomycete have not been studied earlier. In the present study, we tested polyethylene glycol (PEG)-induced water stress for virus curing and created an isogenic virus-free isolate for testing viral effects in pair with the original isolate. Phytophthora cactorum bunya-like viruses 1 and 2 (PcBV1 & 2) significantly reduced hyphal growth of the P. cactorum host isolate, as well as sporangia production and size. Transcriptomic and proteomic analyses revealed an increase in the production of elicitins due to bunyavirus infection. However, the presence of bunyaviruses did not seem to alter the pathogenicity of P. cactorum. Virus transmission through anastomosis was unsuccessful in vitro.
Collapse
Affiliation(s)
- Anna Poimala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
- Correspondence: ; Tel.: +358-29-5322173
| | - Milica Raco
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Tuuli Haikonen
- Natural Resources Institute Finland, Toivonlinnantie 518, FI-21500 Piikkiö, Finland
| | - Martin Černý
- Phytophthora Research Centre, Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Päivi Parikka
- Natural Resources Institute Finland, Humppilantie 18, FI-31600 Jokioinen, Finland
| | - Jarkko Hantula
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
13
|
Botella L, Jung MH, Rost M, Jung T. Natural Populations from the Phytophthora palustris Complex Show a High Diversity and Abundance of ssRNA and dsRNA Viruses. J Fungi (Basel) 2022; 8:1118. [PMID: 36354885 PMCID: PMC9698713 DOI: 10.3390/jof8111118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
We explored the virome of the "Phytophthora palustris complex", a group of aquatic specialists geographically limited to Southeast and East Asia, the native origin of many destructive invasive forest Phytophthora spp. Based on high-throughput sequencing (RNAseq) of 112 isolates of "P. palustris" collected from rivers, mangroves, and ponds, and natural forests in subtropical and tropical areas in Indonesia, Taiwan, and Japan, 52 putative viruses were identified, which, to varying degrees, were phylogenetically related to the families Botybirnaviridae, Narnaviridae, Tombusviridae, and Totiviridae, and the order Bunyavirales. The prevalence of all viruses in their hosts was investigated and confirmed by RT-PCR. The rich virus composition, high abundance, and distribution discovered in our study indicate that viruses are naturally infecting taxa from the "P. palustris complex" in their natural niche, and that they are predominant members of the host cellular environment. Certain Indonesian localities are the viruses' hotspots and particular "P. palustris" isolates show complex multiviral infections. This study defines the first bi-segmented bunya-like virus together with the first tombus-like and botybirna-like viruses in the genus Phytophthora and provides insights into the spread and evolution of RNA viruses in the natural populations of an oomycete species.
Collapse
Affiliation(s)
- Leticia Botella
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
- Department of Genetics and Agrobiotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Marília Horta Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Michael Rost
- Department of Genetics and Agrobiotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| |
Collapse
|
14
|
Raco M, Vainio EJ, Sutela S, Eichmeier A, Hakalová E, Jung T, Botella L. High Diversity of Novel Viruses in the Tree Pathogen Phytophthora castaneae Revealed by High-Throughput Sequencing of Total and Small RNA. Front Microbiol 2022; 13:911474. [PMID: 35783401 PMCID: PMC9244493 DOI: 10.3389/fmicb.2022.911474] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Abstract
Phytophthora castaneae, an oomycete pathogen causing root and trunk rot of different tree species in Asia, was shown to harbor a rich diversity of novel viruses from different families. Four P. castaneae isolates collected from Chamaecyparis hodginsii in a semi-natural montane forest site in Vietnam were investigated for viral presence by traditional and next-generation sequencing (NGS) techniques, i.e., double-stranded RNA (dsRNA) extraction and high-throughput sequencing (HTS) of small RNAs (sRNAs) and total RNA. Genome organization, sequence similarity, and phylogenetic analyses indicated that the viruses were related to members of the order Bunyavirales and families Endornaviridae, Megabirnaviridae, Narnaviridae, Totiviridae, and the proposed family "Fusagraviridae." The study describes six novel viruses: Phytophthora castaneae RNA virus 1-5 (PcaRV1-5) and Phytophthora castaneae negative-stranded RNA virus 1 (PcaNSRV1). All six viruses were detected by sRNA sequencing, which demonstrates an active RNA interference (RNAi) system targeting viruses in P. castaneae. To our knowledge, this is the first report of viruses in P. castaneae and the whole Phytophthora major Clade 5, as well as of the activity of an RNAi mechanism targeting viral genomes among Clade 5 species. PcaRV1 is the first megabirnavirus described in oomycetes and the genus Phytophthora.
Collapse
Affiliation(s)
- Milica Raco
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Eeva J. Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Suvi Sutela
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Aleš Eichmeier
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Brno, Czechia
| | - Eliška Hakalová
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Brno, Czechia
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Leticia Botella
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
15
|
Fukunishi M, Sasai S, Tojo M, Mochizuki T. Novel Fusari- and Toti-like Viruses, with Probable Different Origins, in the Plant Pathogenic Oomycete Globisporangiumultimum. Viruses 2021; 13:1931. [PMID: 34696361 PMCID: PMC8538416 DOI: 10.3390/v13101931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 01/01/2023] Open
Abstract
To further classify the oomycete viruses that have been discovered in recent years, we investigated virus infection in the plant-parasitic oomycete Globisporangium ultimum in Japan. Double-stranded RNA detection, high-throughput sequencing, and RT-PCR revealed that the G. ultimum isolate UOP226 contained two viruses related to fusarivirus and totivirus, named Pythium ultimum RNA virus 1 (PuRV1) and Pythium ultimum RNA virus 2 (PuRV2), respectively. Phylogenetic analysis of the deduced amino acid sequence of the RNA-dependent RNA polymerase (RdRp) showed that fusari-like PuRV1 belonged to a different phylogenetic group than Plasmopara viticola lesion-associated fusari virus (PvlaFV) 1-3 from oomycete Plasmopara viticola. Codon usage bias of the PuRV1 RdRp gene was more similar to those of fungi than Globisporangium and Phytophthora, suggesting that the PuRV1 ancestor horizontally transmitted to G. ultimum ancestor from fungi. Phylogenetic analysis of the deduced amino acid sequence of the RdRp of toti-like PuRV2 showed a monophyletic group with the other toti-like oomycete viruses from Globisporangium, Phytophthora, and Pl. viticola. However, the nucleotide sequences of toti-like oomycete viruses were not so homologous, suggesting the possibility of convergent evolution of toti-like oomycete viruses.
Collapse
Affiliation(s)
- Miki Fukunishi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Shinsaku Sasai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Motoaki Tojo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Tomofumi Mochizuki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
16
|
Rumbou A, Vainio EJ, Büttner C. Towards the Forest Virome: High-Throughput Sequencing Drastically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems. Microorganisms 2021; 9:microorganisms9081730. [PMID: 34442809 PMCID: PMC8399312 DOI: 10.3390/microorganisms9081730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Thanks to the development of HTS technologies, a vast amount of genetic information on the virosphere of temperate forests has been gained in the last seven years. To estimate the qualitative/quantitative impact of HTS on forest virology, we have summarized viruses affecting major tree/shrub species and their fungal associates, including fungal plant pathogens, mutualists and saprotrophs. The contribution of HTS methods is extremely significant for forest virology. Reviewed data on viral presence in holobionts allowed us a first attempt to address the role of virome in holobionts. Forest health is dependent on the variability of microorganisms interacting with the host tree/holobiont; symbiotic microbiota and pathogens engage in a permanent interplay, which influences the host. Through virus–virus interplays synergistic or antagonistic relations may evolve, which may drastically affect the health of the holobiont. Novel insights of these interplays may allow practical applications for forest plant protection based on endophytes and mycovirus biocontrol agents. The current analysis is conceived in light of the prospect that novel viruses may initiate an emergent infectious disease and that measures for the avoidance of future outbreaks in forests should be considered.
Collapse
Affiliation(s)
- Artemis Rumbou
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany;
- Correspondence:
| | - Eeva J. Vainio
- Natural Resources Institute Finland, Forest Health and Biodiversity, Latokartanonkaari 9, 00790 Helsinki, Finland;
| | - Carmen Büttner
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany;
| |
Collapse
|