1
|
Alexyuk PG, Bogoyavlenskiy AP, Moldakhanov YS, Akanova KS, Manakbayeva AN, Kerimov T, Berezin VE, Alexyuk MS. Genomic and Drug Resistance Profile of Bovine Multidrug-Resistant Escherichia coli Isolated in Kazakhstan. Pathogens 2025; 14:90. [PMID: 39861051 PMCID: PMC11768201 DOI: 10.3390/pathogens14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
While studying the prevalence and profile of antibiotic resistance among E. coli isolated from the feces of calves with signs of colibacillosis, a strain with a wide spectrum of drug resistance was isolated. Whole-genome sequencing, followed by bioinformatic processing and the annotation of genes of this strain, showed that the genome has a total length of 4,803,482 bp and contains 4986 genes, including 122 RNA genes. A total of 31% of the genes are functionally significant and represent 26 functional groups. Additionally, 55 antibiotic resistance genes were revealed. A phenotypic drug-resistance study was performed according to CASFM and CLSI guidelines, which showed that the investigated strain was resistant to eight antibacterial drugs of different classes, including colistin. This is the first report on the AMR profile of an E. coli isolate obtained from a sick calf with evidence of escherichiosis in Kazakhstan. The provided information on the genome will be valuable in studying the evolution and development of antibiotic-resistant forms of E. coli and increase our knowledge of pathogenicity. It may also be a source for future comparative studies of the virulence and drug resistance of E. coli isolates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Madina S. Alexyuk
- Research and Production Center for Microbiology and Virology, Almaty 050010, Kazakhstan; (P.G.A.); (A.P.B.)
| |
Collapse
|
2
|
Hu JC, Han M, Yan RY, Hua MM, Li J, Shen H, Cao XL. Mobile genetic elements contributing to horizontal gene transfer of blaNDM among Escherichia coli in the community setting. Microb Pathog 2024; 196:106996. [PMID: 39368562 DOI: 10.1016/j.micpath.2024.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVE To investigate the distribution of carbapenem-resistant Enterobacterales (CRE) in the community and to describe the genomic characteristics. METHODS CRE screened from fecal samples in healthy people at the health examination center of a tertiary hospital in China underwent Whole genome sequencing (WGS) to analyze genotypic characteristics of CRE. The flanking DNA sequence of blaNDM-5 and mcr1.1 genes were analyzed by Gcluster software. RESULTS A total of 7187 fecal samples were screened, and CRE carriage was detected in 0.4 % of the sampled population. In total, 30 Escherichia coli, one Citrobacter freundii and one Klebsiella aerogene were screened. The 30 carbapenem-resistant Escherichia coli (CREC) isolates displayed slight resistance to amikacin (13.3 %) and aztreonam (20.0 %). All the CRE isolates contained blaNDM, and blaNDM-5 (84.4 %) was the most common one. B1 (n = 11) and A (n = 7) were predominant phylogroups. Furthermore, 34 distinct plasmid replicons, 67 different VFs, 22 distinct STs, 17 different FimH types, 26 O:H serotypes as well as 74 MGEs including 61 insertion sequences and 13 transposons were identified. The flanking DNA sequence analysis of blaNDM-5 and mcr1.1 genes indicates the key role of horizontal transfer of blaNDM-5 in the CRE development evidenced by diverse STs and phylogenetic tree. CONCLUSION E. coli was the most predominant CRE isolates in community setting, and blaNDM (blaNDM-5) was the main CHβL encoding genes. The high prevalence of ARGs was associated with high resistance to commonly used antimicrobials. Besides, the genetic diversity of these isolates suggested the key role of blaNDM horizontal transfer in the CRE development. Thus, active screening of blaNDM in communities is particularly important for the prevention and control of CRE.
Collapse
Affiliation(s)
- Jin-Cao Hu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Mei Han
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China; Nanjing Field Epidemiology Training Program, Nanjing Municipal Center for Disease Control and Prevention, China
| | - Ru-Yu Yan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, China
| | - Miao-Miao Hua
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Jia Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| | - Xiao-Li Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| |
Collapse
|
3
|
Wu J, Liu C, Wang R, Yan S, Chen B, Zhu X. Enhanced bacterial adhesion force by rifampicin resistance promotes microbial colonization on PE plastic compared to non-resistant biofilm formation. WATER RESEARCH 2023; 242:120319. [PMID: 37441870 DOI: 10.1016/j.watres.2023.120319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The microbial biofilm formed on plastics, is ubiquitous in the environment. However, the effects of antibiotic resistance on the development of the biofilm on plastics, especially with regard to initial cell attachment, remain unclear. In this study, we investigated the initial bacterial adhesion and subsequent biofilm growth of a rifampin (Rif) resistant E. coli (RRE) and a normal gram-positive B. subtilis on a typical plastic (polyethylene, PE). The experiments were conducted in different antibiotic solutions, including Rif, sulfamethoxazole (SMX), and kanamycin (KM), with concentrations ranging from 1 to 1000 μg/L to simulate different aquatic environments. The AFM-based single-cell adhesion force determination revealed that Rif resistance strengthened the adhesion force of RRE to PE in the environment rich in Rif rather than SMX and KM. The enhanced adhesion force may be due to the higher secretion of extracellular polymeric substances (EPS), particularly proteins, by RRE in the presence of Rif compared to the other two antibiotics. In addition, the higher ATP level of RRE would facilitate the initial adhesion and subsequent biofilm growth. Transcriptome analysis of RRE separately cultured in Rif and SMX environments demonstrated a clear correlation between the expression of Rif resistance and the augmented bacterial adhesion and cellular activity. Biofilm biomass analysis confirmed the promotion effect of Rif resistance on biofilm growth when compared to non-resistant biofilms, establishing a novel association with the augmentation of microbial adhesion force. Our study highlights concerns related to the dissemination of antibiotic resistance during microbial colonization on plastic that may arise from antibiotic resistance.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rui Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Saitao Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Alteri CJ, Rios-Sarabia N, De la Cruz MA, González-y-Merchand JA, Soria-Bustos J, Maldonado-Bernal C, Cedillo ML, Yáñez-Santos JA, Martínez-Laguna Y, Torres J, Friedman RL, Girón JA, Ares MA. The Flp type IV pilus operon of Mycobacterium tuberculosis is expressed upon interaction with macrophages and alveolar epithelial cells. Front Cell Infect Microbiol 2022; 12:916247. [PMID: 36204636 PMCID: PMC9531140 DOI: 10.3389/fcimb.2022.916247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The genome of Mycobacterium tuberculosis (Mtb) harbors the genetic machinery for assembly of the Fimbrial low-molecular-weight protein (Flp) type IV pilus. Presumably, the Flp pilus is essential for pathogenesis. However, it remains unclear whether the pili genes are transcribed in culture or during infection of host cells. This study aimed to shed light on the expression of the Flp pili-assembly genes (tadZ, tadA, tadB, tadC, flp, tadE, and tadF) in Mtb growing under different growth conditions (exponential phase, stationary phase, and dormancy NRP1 and NRP2 phases induced by hypoxia), during biofilm formation, and in contact with macrophages and alveolar epithelial cells. We found that expression of tad/flp genes was significantly higher in the stationary phase than in exponential or NRP1 or NRP2 phases suggesting that the bacteria do not require type IV pili during dormancy. Elevated gene expression levels were recorded when the bacilli were in contact for 4 h with macrophages or epithelial cells, compared to mycobacteria propagated alone in the cultured medium. An antibody raised against a 12-mer peptide derived from the Flp pilin subunit detected the presence of Flp pili on intra- and extracellular bacteria infecting eukaryotic cells. Altogether, these are compelling data showing that the Flp pili genes are expressed during the interaction of Mtb with host cells and highlight a role for Flp pili in colonization and invasion of the host, subsequently promoting bacterial survival during dormancy.
Collapse
Affiliation(s)
- Christopher J. Alteri
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Nora Rios-Sarabia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge A. González-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Soria-Bustos
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - María L. Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge A. Yáñez-Santos
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Richard L. Friedman
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Miguel A. Ares, ; Jorge A. Girón,
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Miguel A. Ares, ; Jorge A. Girón,
| |
Collapse
|