1
|
Yang Y, Wang Y, Shi J. Aerobic biofilm systems outperform anaerobic and anoxic regimes in 2,4-dimethylphenol degradation: Microbial synergy and metabolic mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125408. [PMID: 40245737 DOI: 10.1016/j.jenvman.2025.125408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
The efficient biodegradation of 2,4-dimethylphenol (2,4-DMP), a toxic and recalcitrant phenolic pollutant, remains a critical challenge in wastewater treatment, with ongoing debate regarding the optimal dissolved oxygen (DO) regime for biofilm-based systems. To resolve this, four biofilm reactors-anaerobic (R1), anoxic (R2), microaerobic (R3), and aerobic (R4)-were operated under a DO gradient (0.3-8.0 mg/L). When influent 2,4-DMP concentrations increased from 25 to 300 mg/L, removal efficiencies declined significantly in R1-R3 (9.0 %, 44.8 %, and 58.8 %, respectively), whereas R4 maintained 100 % removal regardless of loading. Rapid degradation occurred within 8-16 h in R4, correlating with DO consumption from 8.0 to 5.0 mg/L. Aerobic conditions eliminated dependence on extracellular polymeric substances (EPS) for pollutant sequestration, as complete mineralization negated intermediate accumulation. Microbial analysis revealed Zoogloea (18.92 % abundance), Prosthecobacter, and Ferruginibacter as keystone aerobic bacteria, encoding aromatic ring-hydroxylating dioxygenases (RHDs) for 2,4-DMP hydroxylation and β-ketoadipate pathway activation. Concurrently, fungal genera Cutaneotrichosporon (74.50 %) and Kalenjinia were enriched in R4, contributing laccase-mediated ring cleavage. Synergy between bacterial oxidative pathways and fungal ligninolytic systems enabled sustained COD removal (95.54 %) without biofilm destabilization. These findings conclusively demonstrate aerobic biofilms' superiority in 2,4-DMP treatment, driven by metabolic completeness, energy-efficient respiration, and cross-kingdom functional partitioning.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yarui Wang
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
2
|
Barberoux V, Anzil A, Meinertzhagen L, Nguyen-Dinh T, Servais P, George IF. Spatio-temporal dynamics of bacterial community composition in a Western European watershed, the Meuse River watershed. FEMS Microbiol Ecol 2025; 101:fiaf022. [PMID: 40042978 PMCID: PMC11916896 DOI: 10.1093/femsec/fiaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
This study aimed to identify factors influencing bacterial diversity in the Meuse River watershed by analyzing 42 locations sampled in spring and summer 2019, combined with biweekly sampling of one mid-stream location for a year. Bacterial community composition (BCC) was assessed in the small (SF; <5 µm) and large fractions (LF; ≥5 µm,), alongside physico-chemical parameters. LF consistently exhibited greater alpha diversity than SF. During the spatial campaigns, alpha diversity increased downstream in spring with high discharge, and BCC differed significantly between headwaters and the main river. Along this axis, several genera, Flavobacterium, Limnohabitans, and Aquirufa stood out as indicators of good water quality. Rhodoferax, another taxon indicative of good water quality, prevailed in the headwaters and during winter. In contrast, two cyanobacteria genera indicators of poor river quality, Microcystis PCC 7914 and Cyanobium PCC 6307, peaked in summer. BCC in spring and summer temporal samples aligned with spatial ones, while winter and autumn samples had distinct BCC. Finally, season, temperature, and distance from river mouth were the main driving parameters of beta diversity, outweighing the effect of fraction size on the BCC. These findings reinforce the notion that local conditions exert significant influence on bacterial communities in rivers.
Collapse
Affiliation(s)
- Valentin Barberoux
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
- Laboratory of Marine Biology, Faculty of Sciences, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Adriana Anzil
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Loïc Meinertzhagen
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Thanh Nguyen-Dinh
- Greening Laboratory, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Pierre Servais
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Isabelle F George
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
| |
Collapse
|
3
|
Pitt A, Lienbacher S, Schmidt J, Neumann-Schaal M, Wolf J, Oren A, Reichl S, Hahn MW. Aquirufa esocilacus sp. nov., Aquirufa originis sp. nov., Aquirufa avitistagni, and Aquirufa echingensis sp. nov. discovered in small freshwater habitats in Austria during a citizen science project. Arch Microbiol 2025; 207:71. [PMID: 39998640 PMCID: PMC11861422 DOI: 10.1007/s00203-025-04275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Within a citizen science project, 112 freshwater habitats in Austria were sampled to get bacterial cultures belonging to the genus Aquirufa using a strategy for targeted isolation. We focused on these bacteria because they are widespread and represent typical freshwater bacteria and, furthermore, the typic red pigmentation facilitates preselection. Among the 113 obtained Aquirufa strains were HETE-83DT, KTFRIE-69FT, OSTEICH-129VT and PLAD-142S6KT, originating from small ponds and a creek. Phylogenetic reconstructions with 16S rRNA gene sequences and genome-based analyses with amino acid sequences of 501 core genes showed that all four strains belonged to the A. antheringensis branch of the genus Aquirufa. Calculation of whole-genome average nucleotide identity values and digital DNA-DNA hybridization values revealed that they represent in each case a new species. The genome sizes of the four strains were between 2.5 and 2.8 Mbp and the G + C values were between 41.4 and 41.8%. Like all type strains of the genus Aquirufa, cells were rod-shaped, and liquid cultures and colonies on agar plates were red-pigmented, likely due to carotenoids. All strains except OSTEICH-129VT showed gliding motility on soft agar plates. All strains grew aerobically but only PLAD-142S6KT could grow weakly under anaerobic conditions. We propose here to establish the names Aquirufa esocilacus sp. nov. for strain HETE-83DT (= DSM 118087T = JCM 37094T), Aquirufa originis sp. nov. for KTFRIE-69FT (= DSM 117798T = JCM 37095T), Aquirufa avitistagni for OSTEICH-129VT (= DSM 118088T = JCM 37100T) and Aquirufa echingensis sp. nov. for PLAD-142S6KT (= DSM 117799T = JCM 37096T).
Collapse
Affiliation(s)
- Alexandra Pitt
- Research Department for Limnology, Universität Innsbruck, Mondsee, 5310, Mondsee, Austria.
| | - Stefan Lienbacher
- Research Department for Limnology, Universität Innsbruck, Mondsee, 5310, Mondsee, Austria
| | - Johanna Schmidt
- Research Department for Limnology, Universität Innsbruck, Mondsee, 5310, Mondsee, Austria
| | - Meina Neumann-Schaal
- Metabolomics and Services, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Jacqueline Wolf
- Metabolomics and Services, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel
| | - Sophia Reichl
- Research Department for Limnology, Universität Innsbruck, Mondsee, 5310, Mondsee, Austria
| | - Martin W Hahn
- Research Department for Limnology, Universität Innsbruck, Mondsee, 5310, Mondsee, Austria
| |
Collapse
|
4
|
Foucault P, Halary S, Duval C, Goto M, Marie B, Hamlaoui S, Jardillier L, Lamy D, Lance E, Raimbault E, Allouti F, Troussellier M, Bernard C, Leloup J, Duperron S. A summer in the greater Paris: trophic status of peri-urban lakes shapes prokaryotic community structure and functional potential. ENVIRONMENTAL MICROBIOME 2025; 20:24. [PMID: 39962619 PMCID: PMC11834611 DOI: 10.1186/s40793-025-00681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
With more than 12 million inhabitants, the Greater Paris offers a "natural laboratory" to explore the effects of eutrophication on freshwater lake's microbiomes within a relative restricted area (~ 70 km radius). Here, a 4-months survey was carried out during summertime to monitor planktonic microbial communities of nine lakes located around Paris (Île-de-France, France) of comparable morphologies, yet distinct trophic statuses from mesotrophic to hypereutrophic. By thus minimizing the confounding factors, we investigated how trophic status could influence prokaryotic community structures (16S rRNA gene sequencing) and functions (shotgun metagenomics). These freshwater lakes harbored highly distinct and diverse prokaryotic communities, and their trophic status appears as the main driver explaining both differences in community structure and functional potential. Although their gene pool was quite stable and shared among lakes, taxonomical and functional changes were correlated. According to trophic status, differences in phosphorus metabolism-related genes were highlighted among the relevant functions involved in the biogeochemical cycles. Overall, hypereutrophic lakes microbiomes displayed the highest contrast and heterogeneity over time, suggesting a specific microbial regime shift compared to eutrophic and mesotrophic lakes.
Collapse
Affiliation(s)
- Pierre Foucault
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, UMR 7618 CNRS-INRA-IRD-Univ. Paris Cité-UPEC, Paris, France
| | - Sébastien Halary
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Charlotte Duval
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Midoli Goto
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
- Marine Biodiversity, Exploitation & Conservation (MARBEC), Univ. Montpellier-CNRS- Ifremer-IRD, Montpellier, France
| | - Benjamin Marie
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Sahima Hamlaoui
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Ludwig Jardillier
- Université Paris-Saclay, UMR 8079 Univ. Paris-Saclay-CNRS-AgroParisTech, Unité d'Écologie Systématique et Évolution (ESE), Gif-sur-Yvette, France
| | - Dominique Lamy
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, UMR 7618 CNRS-INRA-IRD-Univ. Paris Cité-UPEC, Paris, France
| | - Emilie Lance
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
- Université de Reims, UMR-I 02, Stress environnementaux et biosurveillance des milieux aquatiques (SEBIO), Reims, France
| | - Emmanuelle Raimbault
- Institut de Physique du Globe de Paris, UMR 7154, Univ. Paris Cité-CNRS, Paris, France
| | - Fayçal Allouti
- Muséum National d'Histoire Naturelle, UAR 7200 MNHN, Acquisition et Analyses de Données pour l'Histoire naturelle (2AD), Paris, France
| | - Marc Troussellier
- Marine Biodiversity, Exploitation & Conservation (MARBEC), Univ. Montpellier-CNRS- Ifremer-IRD, Montpellier, France
| | - Cécile Bernard
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France
| | - Julie Leloup
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), Sorbonne Université, UMR 7618 CNRS-INRA-IRD-Univ. Paris Cité-UPEC, Paris, France.
| | - Sébastien Duperron
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes (MCAM), Paris, France.
| |
Collapse
|
5
|
Fakhraldeen SA, Madhusoodhanan R, Habibi N, Al-Haddad S, Alagarsamy S, Habeebullah SFK, Al-Zakri WM, Thuslim F, Fernandes L, Al-Yamani F, Al-Said T. Shotgun metagenomics reveals the interplay between microbiome diversity and environmental gradients in the first marine protected area in the northern Arabian Gulf. Front Microbiol 2025; 15:1479542. [PMID: 39850127 PMCID: PMC11755137 DOI: 10.3389/fmicb.2024.1479542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction The northwest Arabian Gulf encounters significant anthropogenic pressures, including nutrient enrichment from coastal development and effluent discharge. Methods This study presents the first shotgun metagenomics-based characterization of microbial communities in Kuwaiti waters of the northwest Arabian Gulf, focusing on Kuwait's first Marine Protected Area (MPA) in Sulaibikhat Bay, a vital nursery ground for commercially important fish. Results Analysis revealed significantly higher microbial diversity within the MPA compared to adjacent waters, with Rhodobacteraceae (27.8%) and Flavobacteriaceae (15.3%) being dominant. Elevated inorganic phosphorus, nitrogen, and salinity were key factors driving this diversity. Multivariate analysis highlighted phosphate as a critical component affecting the MPA microbial community structure, particularly for the families Microbacteriaceae, Flavobacteriaceae, and Rhodobacteraceae. Discussion This study underscores the ecological importance of MPAs and highlights the impact of nutrient enrichment and other environmental stressors on microbial diversity, emphasizing the need to reduce nutrient influx to mitigate eutrophication and enhance marine ecosystem resilience in stressed environments.
Collapse
Affiliation(s)
- Saja A. Fakhraldeen
- Ecosystem-Based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Rakhesh Madhusoodhanan
- Ecosystem-Based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Nazima Habibi
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Sakinah Al-Haddad
- Ecosystem-Based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Surendraraj Alagarsamy
- Ecosystem-Based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Sabeena F. K. Habeebullah
- Ecosystem-Based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Walid M. Al-Zakri
- Ecosystem-Based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Fathima Thuslim
- Ecosystem-Based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Loreta Fernandes
- Ecosystem-Based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Faiza Al-Yamani
- Ecosystem-Based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Turki Al-Said
- Ecosystem-Based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| |
Collapse
|
6
|
Rohwer RR, Kirkpatrick M, Garcia SL, Kellom M, McMahon KD, Baker BJ. Two decades of bacterial ecology and evolution in a freshwater lake. Nat Microbiol 2025; 10:246-257. [PMID: 39753668 DOI: 10.1038/s41564-024-01888-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/14/2024] [Indexed: 01/12/2025]
Abstract
Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent. By tracking strain composition via single nucleotide variants, we identified cyclical seasonal patterns in 80% and decadal shifts in 20% of species. In the dominant freshwater family Nanopelagicaceae, environmental extremes coincided with shifts in strain composition and positive selection of amino acid and nucleic acid metabolism genes. These genes identify organic nitrogen compounds as potential drivers of freshwater responses to global change. Seasonal and long-term strain dynamics could be regarded as ecological processes or, equivalently, as evolutionary change. Rather than as distinct interacting processes, we propose a conceptualization of ecology and evolution as a continuum to better describe change in microbial communities.
Collapse
Affiliation(s)
- Robin R Rohwer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
| | - Mark Kirkpatrick
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sarahi L Garcia
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Science for Life Laboratory, Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Matthew Kellom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Brett J Baker
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
- Department of Marine Science, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
You M, Yang W. Environmental Changes Driving Shifts in the Structure and Functional Properties of the Symbiotic Microbiota of Daphnia. Microorganisms 2024; 12:2492. [PMID: 39770695 PMCID: PMC11728151 DOI: 10.3390/microorganisms12122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Symbiotic microbiota significantly influence the development, physiology, and behavior of their hosts, and therefore, they are widely studied. However, very few studies have investigated the changes in symbiotic microbiota across generations. Daphnia magna originating from the Qinghai-Tibetan Plateau were cultured through seven generations in our laboratory, and the symbiotic microbiota of D. magna were sequenced using a 16S rRNA amplicon to analyze changes in the structure and functional properties of the symbiotic microbiota of D. magna from a harsh environment to an ideal environment. We detected substantial changes in the symbiotic microbiota of D. magna across generations. For example, the genus Nevskia, a member of the gamma-subclass Proteobacteria, had the highest abundance in the first generation (G1), followed by a decrease in abundance in the fourth (G4) and seventh (G7) generations. The gene functions of the microbiota in different generations of D. magna also changed significantly. The fourth generation was mainly rich in fatty acyl-CoA synthase, acetyl-CoA acyltransferase, phosphoglycerol phosphatase, etc. The seventh generation was mainly rich in osmotic enzyme protein and ATP-binding protein of the ABC transport system. This study confirms that the alterations in the structure and functional properties of the symbiotic microbiota of D. magna under changing environments are typical responses of D. magna to environmental changes.
Collapse
Affiliation(s)
| | - Wenwu Yang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai 200438, China;
| |
Collapse
|
8
|
Gómez-Martínez D, Selvin MA, Nilsson AK, Carmona E, Ngou JS, Kristiansson E, Nilsson RH, Corcoll N. Environmental concentrations of the fungicide tebuconazole alter microbial biodiversity and trigger biofilm-released transformation products. CHEMOSPHERE 2024; 369:143854. [PMID: 39615850 DOI: 10.1016/j.chemosphere.2024.143854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/13/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Freshwater microbial communities are integral components of riverine biodiversity. The ecological effects of toxic chemical pollutants, such as fungicides (e.g., tebuconazole), on microbial abundance and diversity are needed for risk assessment and regulation. The emergence of RNA metabarcoding approaches allow us to describe at unprecedented resolution the microbial diversity of the active part of a microbial community. Our study assesses the ecotoxicological impact of chronic and acute tebuconazole exposures on fungal, bacterial, and algal biomass and biodiversity of aquatic fungi and bacteria in stream biofilms using an RNA metabarcoding approach. In addition, the study uses HPLC-MS to evaluate the capability of biofilms to metabolize tebuconazole. Natural biofilm communities from a Swedish stream were exposed chronically (24 days) and acutely (96 h) to environmental concentrations of tebuconazole (10 and 100 μg/L) in microcosms conditions. The diversity and community structure of fungi and bacteria was assessed by ITS2 and 16S cDNA amplicon-sequencing, respectively. Biofilms chronically exposed to tebuconazole produced and released unidentified transformation products into the water column, suggesting a biotransformation capability following 24 days of uninterrupted exposure. The fungal biomass markedly decreased by a biomass loss of 40% when chronically exposed to 10 μg/L, and 60% when chronically exposed to 100 μg/L. Bacterial and algal biomass remained comparable with the controls in all tebuconazole treatments. Fungal and bacterial alpha diversity metrics were not significantly impacted, although a decreasing trend in fungal richness was observed with the treatments. However, beta diversity was significantly impacted in both fungal and bacterial compartments. Chronic exposures resulted in a shift in community composition, where taxa potentially more tolerant to tebuconazole (i.e. Lecanoromycetes) replaced more sensitive taxa (i.e. Malasseziomycetes). This study indicates that tebuconazole at environmental concentrations might pose a risk to freshwater systems, mainly due to its high toxicity to fungi.
Collapse
Affiliation(s)
- Daniela Gómez-Martínez
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; Department of Biological and Environmental Sciences, Centre for Future Chemical Risk Assessment and Management Strategies (FRAM) and Gothenburg Global Biodiversity Center (GGBC), University of Gothenburg, Gothenburg, Sweden.
| | - Mary A Selvin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Anders K Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Eric Carmona
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany.
| | - Judith Sorel Ngou
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden; Department of Biological and Environmental Sciences, Centre for Future Chemical Risk Assessment and Management Strategies (FRAM) and Gothenburg Global Biodiversity Center (GGBC), University of Gothenburg, Gothenburg, Sweden.
| | - R Henrik Nilsson
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Center, University of Gothenburg, Gothenburg, Sweden.
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, Centre for Future Chemical Risk Assessment and Management Strategies (FRAM) and Gothenburg Global Biodiversity Center (GGBC), University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
9
|
Vettorazzo S, Boscaini A, Cerasino L, Salmaso N. From small water bodies to lakes: Exploring the diversity of freshwater bacteria in an Alpine Biosphere Reserve. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176495. [PMID: 39341249 DOI: 10.1016/j.scitotenv.2024.176495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Small water bodies, although supporting high biodiversity, are often understudied in the Alpine region. In this work, we characterized the planktic and benthic bacterial communities, as well as the water chemistry, of a wide physiographic range of 19 freshwater bodies within an Alpine Biosphere Reserve, including ponds, pasture ponds, peat bogs, shallow lakes, and lakes. We collected both water and surface sediment samples, followed by metabarcoding analysis based on the V3-V4 regions of the 16S rRNA gene. We investigated the changes in biodiversity and the distribution of unique and shared amplicon sequence variants (ASVs) between water (11,829 ASVs) and surface sediment (19,145 ASVs) habitats, as well as across different freshwater typologies. The majority of ASVs (78 %) were unique to a single sample, highlighting the variability and uniqueness of bacterial communities in such freshwater bodies. Most freshwater environments showed higher α-diversity in sediment samples (median, 1469 ASVs) compared to water (468 ASVs). We found that water and sediment habitats harboured unique bacterial communities with significant differences in their taxonomic compositions. Benthic bacteria were associated with several biogeochemical and degradative processes occurring in the sediments, with no notable differences among freshwater typologies and with phylogenetically and ecologically similar species. Conversely, planktic communities showed greater heterogeneity: small water bodies and peat bogs were characterized by higher relative abundances of Patescibacteria (up to 33 %), while lakes and shallow lakes were dominated by Actinobacteriota (up to 36 %). Cyanobacteria (426 ASVs) were generally distributed at low abundances in both water and sediment habitats. Overall, our results provided essential insights into the bacterial ecology of understudied environments such as ponds and pasture ponds and highlighted the importance of further exploring their rich pelagic and benthic bacterial biodiversity.
Collapse
Affiliation(s)
- Sara Vettorazzo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Leonardo Cerasino
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
10
|
Vuillemin A, Ruiz-Blas F, Yang S, Bartholomäus A, Henny C, Kallmeyer J. Taxonomic and functional partitioning of Chloroflexota populations under ferruginous conditions at and below the sediment-water interface. FEMS Microbiol Ecol 2024; 100:fiae140. [PMID: 39384533 DOI: 10.1093/femsec/fiae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/30/2024] [Accepted: 10/08/2024] [Indexed: 10/11/2024] Open
Abstract
The adaptation of the phylum Chloroflexota to various geochemical conditions is thought to have originated in primitive microbial ecosystems, involving hydrogenotrophic energy conservation under ferruginous anoxia. Oligotrophic deep waters displaying anoxic ferruginous conditions, such as those of Lake Towuti, and their sediments may thus constitute a preferential ecological niche for investigating metabolic versatility in modern Chloroflexota. Combining pore water geochemistry, cell counts, sulfate reduction rates, and 16S rRNA genes with in-depth analysis of metagenome-assembled genomes, we show that Chloroflexota benefit from cross-feeding on metabolites derived from canonical respiration chains and fermentation. Detailing their genetic contents, we provide molecular evidence that Anaerolineae have metabolic potential to use unconventional electron acceptors, different cytochromes, and multiple redox metalloproteins to cope with oxygen fluctuations, and thereby effectively colonizing the ferruginous sediment-water interface. In sediments, Dehalococcoidia evolved to be acetogens, scavenging fatty acids, haloacids, and aromatic acids, apparently bypassing specific steps in carbon assimilation pathways to perform energy-conserving secondary fermentations combined with CO2 fixation via the Wood-Ljungdahl pathway. Our study highlights the partitioning of Chloroflexota populations according to alternative electron acceptors and donors available at the sediment-water interface and below. Chloroflexota would have developed analogous primeval features due to oxygen fluctuations in ancient ferruginous ecosystems.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Fatima Ruiz-Blas
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Alexander Bartholomäus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Cynthia Henny
- Research Center for Limnology and Water Resources, National Research and Innovation Agency (BRIN), Cibinong, 16911 Jawa Barat, Indonesia
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| |
Collapse
|
11
|
Lennert KJ, Borsodi AK, Anda D, Krett G, Kós PB, Engloner AI. The effect of urbanization on planktonic and biofilm bacterial communities in different water bodies of the Danube River in Hungary. Sci Rep 2024; 14:23881. [PMID: 39396077 PMCID: PMC11470945 DOI: 10.1038/s41598-024-75863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024] Open
Abstract
Freshwaters play an essential role in providing ecosystem services worldwide, however, the water quality of different water bodies is strongly influenced by human activities such as urbanization, industry and agriculture. In this study, water and biofilm samples were collected from the main channel of the Danube River upstream and downstream of a metropolitan, from a regulated side arm within an urbanized area, and from two differently separated oxbow lakes located in nature conservation areas. The taxonomic diversity of bacterial communities was revealed by 16S rRNA gene-based amplicon sequencing using Illumina MiSeq platform. The results showed that all samples were dominated by phyla Pseudomonadota, Actinobacteriota and Bacteroidota. The bacterial community structures, however, clearly differentiated according to planktonic and epilithic or epiphytic habitats, as well as by riverine body types (main channel, side arm, oxbow lakes). The taxonomic diversity of biofilm communities was higher than that of planktonic ones in all studied habitats. Human impacts were mainly reflected in the slowly changing biofilm composition compared to the planktonic ones. Genera with pollution tolerance and/or degradation potential, such as Acinetobacter, Pseudomonas and Shewanella were mainly detected in biofilm communities of the highly urbanized section of the river side arm.
Collapse
Affiliation(s)
- Kinga J Lennert
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary
| | - Dóra Anda
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary
| | - Gergely Krett
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | - Péter B Kós
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Attila I Engloner
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary.
- National Laboratory for Water Science and Water Security, HUN-REN Centre for Ecological Research, Budapest, Hungary.
| |
Collapse
|
12
|
Park H, Bulzu PA, Shabarova T, Kavagutti VS, Ghai R, Kasalický V, Jezberová J. Uncovering the genomic basis of symbiotic interactions and niche adaptations in freshwater picocyanobacteria. MICROBIOME 2024; 12:150. [PMID: 39127705 DOI: 10.1186/s40168-024-01867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Picocyanobacteria from the genera Prochlorococcus, Synechococcus, and Cyanobium are the most widespread photosynthetic organisms in aquatic ecosystems. However, their freshwater populations remain poorly explored, due to uneven and insufficient sampling across diverse inland waterbodies. RESULTS In this study, we present 170 high-quality genomes of freshwater picocyanobacteria from non-axenic cultures collected across Central Europe. In addition, we recovered 33 genomes of their potential symbiotic partners affiliated with four genera, Pseudomonas, Mesorhizobium, Acidovorax, and Hydrogenophaga. The genomic basis of symbiotic interactions involved heterotrophs benefiting from picocyanobacteria-derived nutrients while providing detoxification of ROS. The global abundance patterns of picocyanobacteria revealed ecologically significant ecotypes, associated with trophic status, temperature, and pH as key environmental factors. The adaptation of picocyanobacteria in (hyper-)eutrophic waterbodies could be attributed to their colonial lifestyles and CRISPR-Cas systems. The prevailing CRISPR-Cas subtypes in picocyanobacteria were I-G and I-E, which appear to have been acquired through horizontal gene transfer from other bacterial phyla. CONCLUSIONS Our findings provide novel insights into the population diversity, ecology, and evolutionary strategies of the most widespread photoautotrophs within freshwater ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Hongjae Park
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Paul-Adrian Bulzu
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tanja Shabarova
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Vinicius S Kavagutti
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jitka Jezberová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
13
|
Serra Moncadas L, Hofer C, Bulzu PA, Pernthaler J, Andrei AS. Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis. Nat Commun 2024; 15:3421. [PMID: 38653968 PMCID: PMC11039613 DOI: 10.1038/s41467-024-47767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
The emergence of bacterial species is rooted in their inherent potential for continuous evolution and adaptation to an ever-changing ecological landscape. The adaptive capacity of most species frequently resides within the repertoire of genes encoding the secreted proteome (SP), as it serves as a primary interface used to regulate survival/reproduction strategies. Here, by applying evolutionary genomics approaches to metagenomics data, we show that abundant freshwater bacteria exhibit biphasic adaptation states linked to the eco-evolutionary processes governing their genome sizes. While species with average to large genomes adhere to the dominant paradigm of evolution through niche adaptation by reducing the evolutionary pressure on their SPs (via the augmentation of functionally redundant genes that buffer mutational fitness loss) and increasing the phylogenetic distance of recombination events, most of the genome-reduced species exhibit a nonconforming state. In contrast, their SPs reflect a combination of low functional redundancy and high selection pressure, resulting in significantly higher levels of conservation and invariance. Our findings indicate that although niche adaptation is the principal mechanism driving speciation, freshwater genome-reduced bacteria often experience extended periods of adaptive stasis. Understanding the adaptive state of microbial species will lead to a better comprehension of their spatiotemporal dynamics, biogeography, and resilience to global change.
Collapse
Affiliation(s)
- Lucas Serra Moncadas
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Cyrill Hofer
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Adrian-Stefan Andrei
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland.
| |
Collapse
|
14
|
Pitt A, Lienbacher S, Schmidt J, Neumann-Schaal M, Wolf J, Hahn MW. Description of a new freshwater bacterium Aquirufa regiilacus sp. nov., classification of the genera Aquirufa, Arundinibacter, Sandaracinomonas, and Tellurirhabdus to the family Spirosomataceae, classification of the genus Chryseotalea to the family Fulvivirgaceae and Litoribacter to the family Cyclobacteriaceae, as well as classification of Litoribacter alkaliphilus as a later heterotypic synonym of Litoribacter ruber. Arch Microbiol 2024; 206:79. [PMID: 38280955 PMCID: PMC10821818 DOI: 10.1007/s00203-023-03801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/29/2024]
Abstract
Strains LEOWEIH-7CT and LEPPI-3A were isolated from the Leopoldskroner Weiher, a lake located in the city of Salzburg, Austria. 16S rRNA gene similarities and phylogenetic reconstructions with 16S rRNA gene sequences as well as based on genome sequences revealed that the new strains belong to the A. antheringensis branch of the genus Aquirufa. Calculated whole-genome average nucleotide identity (gANI) and digital DNA-DNA hybridization (dDDH) values with the closely related type strains showed that the two strains represent a single new species. The strains grew aerobically and chemoorganotrophically, and the cells were rod shaped, on average 0.8 µm long and 0.3 µm wide, red pigmented and motile by gliding. The genome size of both strains was 2.6 Mbp and the G+C value was 41.9%. The genomes comprised genes predicted for the complete light-harvesting rhodopsin system and various carotenoids. We proposed to establish the name Aquirufa regiilacus sp. nov. for strain LEOWEIH-7CT (=DSM 116390T = JCM 36347T) as the type strain. Strain LEPPI-3A (=DSM 116391 = JCM 36348) also belongs to this new species. The calculated genome-based phylogenetic tree revealed that Aquirufa and some other genera currently allocated in the family Cytophagaceae need a reclassification. Aquirufa, Arundinibacter, Sandaracinomonas, and Tellurirhabdus should be designated to the family Spirosomataceae, the genus Chryseotalea to the family Fulvivirgaceae, and the genus Litoribacter to the family Cyclobacteriaceae. Furthermore, based on calculated gANI and dDDH values, Litoribacter alkaliphilus should be reclassified as a later heterotypic synonym of Litoribacter ruber.
Collapse
Affiliation(s)
- Alexandra Pitt
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310, Mondsee, Austria.
| | - Stefan Lienbacher
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310, Mondsee, Austria
| | - Johanna Schmidt
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310, Mondsee, Austria
| | - Meina Neumann-Schaal
- Chemical Analytics and Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Jacqueline Wolf
- Chemical Analytics and Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Martin W Hahn
- Research Department for Limnology, Universität Innsbruck, Mondseestrasse 9, 5310, Mondsee, Austria
| |
Collapse
|
15
|
Layoun P, López-Pérez M, Haro-Moreno JM, Haber M, Thrash JC, Henson MW, Kavagutti VS, Ghai R, Salcher MM. Flexible genomic island conservation across freshwater and marine Methylophilaceae. THE ISME JOURNAL 2024; 18:wrad036. [PMID: 38365254 PMCID: PMC10872708 DOI: 10.1093/ismejo/wrad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
The evolutionary trajectory of Methylophilaceae includes habitat transitions from freshwater sediments to freshwater and marine pelagial that resulted in genome reduction (genome-streamlining) of the pelagic taxa. However, the extent of genetic similarities in the genomic structure and microdiversity of the two genome-streamlined pelagic lineages (freshwater "Ca. Methylopumilus" and the marine OM43 lineage) has so far never been compared. Here, we analyzed complete genomes of 91 "Ca. Methylopumilus" strains isolated from 14 lakes in Central Europe and 12 coastal marine OM43 strains. The two lineages showed a remarkable niche differentiation with clear species-specific differences in habitat preference and seasonal distribution. On the other hand, we observed a synteny preservation in their genomes by having similar locations and types of flexible genomic islands (fGIs). Three main fGIs were identified: a replacement fGI acting as phage defense, an additive fGI harboring metabolic and resistance-related functions, and a tycheposon containing nitrogen-, thiamine-, and heme-related functions. The fGIs differed in relative abundances in metagenomic datasets suggesting different levels of variability ranging from strain-specific to population-level adaptations. Moreover, variations in one gene seemed to be responsible for different growth at low substrate concentrations and a potential biogeographic separation within one species. Our study provides a first insight into genomic microdiversity of closely related taxa within the family Methylophilaceae and revealed remarkably similar dynamics involving mobile genetic elements and recombination between freshwater and marine family members.
Collapse
Affiliation(s)
- Paul Layoun
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain
| | - Jose M Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain
| | - Markus Haber
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| | - J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael W Henson
- Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Vinicius Silva Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
16
|
Wong HL, Bulzu PA, Ghai R, Chiriac MC, Salcher MM. Ubiquitous genome streamlined Acidobacteriota in freshwater environments. ISME COMMUNICATIONS 2024; 4:ycae124. [PMID: 39544963 PMCID: PMC11561045 DOI: 10.1093/ismeco/ycae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/30/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Acidobacteriota are abundant in soil, peatlands, and sediments, but their ecology in freshwater environments remains understudied. UBA12189, an Acidobacteriota genus, is an uncultivated, genome-streamlined lineage with a small genome size found in aquatic environments where detailed genomic analyses are lacking. Here, we analyzed 66 MAGs of UBA12189 (including one complete genome) from freshwater lakes and rivers in Europe, North America, and Asia. UBA12189 has small genome sizes (<1.4 Mbp), low GC content, and a highly diverse pangenome. In freshwater lakes, this bacterial lineage is abundant from the surface waters (epilimnion) down to a 300-m depth (hypolimnion). UBA12189 appears to be free-living from CARD-FISH analysis. When compared to other genome-streamlined bacteria such as Nanopelagicales and Methylopumilus, genome reduction has caused UBA12189 to have a more limited metabolic repertoire in carbon, sulfur, and nitrogen metabolisms, limited numbers of membrane transporters, as well as a higher degree of auxotrophy for various amino acids, vitamins, and reduced sulfur. Despite having reduced genomes, UBA12189 encodes proteorhodopsin, complete biosynthesis pathways for heme and vitamin K2, cbb3-type cytochrome c oxidases, and heme-requiring enzymes. These genes may give a selective advantage during the genome streamlining process. We propose the new genus Acidiparvus, with two new species named "A. lacustris" and "A. fluvialis". Acidiparvus is the first described genome-streamlined lineage under the phylum Acidobacteriota, which is a free-living, slow-growing scavenger in freshwater environments.
Collapse
Affiliation(s)
- Hon Lun Wong
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
| | - Maria-Cecilia Chiriac
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 37005 České Budějovice, Czech Republic
| |
Collapse
|
17
|
Feng X, Xing P. Genomics of Yoonia sp. Isolates (Family Roseobacteraceae) from Lake Zhangnai on the Tibetan Plateau. Microorganisms 2023; 11:2817. [PMID: 38004828 PMCID: PMC10673129 DOI: 10.3390/microorganisms11112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the genomic differentiation between marine and non-marine aquatic microbes remains a compelling question in ecology. While previous research has identified several lacustrine lineages within the predominantly marine Roseobacteraceae family, limited genomic data have constrained our understanding of their ecological adaptation mechanisms. In this study, we isolated four novel Yoonia strains from a brackish lake on the Tibetan Plateau. These strains have diverged from their marine counterparts within the same genus, indicating a recent habitat transition event from marine to non-marine environments. Metabolic comparisons and ancestral genomic reconstructions in a phylogenetic framework reveal metabolic shifts in salinity adaptation, compound transport, aromatics degradation, DNA repair, and restriction systems. These findings not only corroborate the metabolic changes commonly observed in other non-marine Roseobacters but also unveil unique adaptations, likely reflecting the localized metabolic changes in responses to Tibetan Plateau environments. Collectively, our study expands the known genomic diversity of non-marine Roseobacteraceae lineages and enhances our understanding of microbial adaptations to lacustrine ecosystems.
Collapse
Affiliation(s)
- Xiaoyuan Feng
- Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518000, China;
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
18
|
Zadjelovic V, Wright RJ, Borsetto C, Quartey J, Cairns TN, Langille MGI, Wellington EMH, Christie-Oleza JA. Microbial hitchhikers harbouring antimicrobial-resistance genes in the riverine plastisphere. MICROBIOME 2023; 11:225. [PMID: 37908022 PMCID: PMC10619285 DOI: 10.1186/s40168-023-01662-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND The widespread nature of plastic pollution has given rise to wide scientific and social concern regarding the capacity of these materials to serve as vectors for pathogenic bacteria and reservoirs for Antimicrobial Resistance Genes (ARG). In- and ex-situ incubations were used to characterise the riverine plastisphere taxonomically and functionally in order to determine whether antibiotics within the water influenced the ARG profiles in these microbiomes and how these compared to those on natural surfaces such as wood and their planktonic counterparts. RESULTS We show that plastics support a taxonomically distinct microbiome containing potential pathogens and ARGs. While the plastisphere was similar to those biofilms that grew on wood, they were distinct from the surrounding water microbiome. Hence, whilst potential opportunistic pathogens (i.e. Pseudomonas aeruginosa, Acinetobacter and Aeromonas) and ARG subtypes (i.e. those that confer resistance to macrolides/lincosamides, rifamycin, sulfonamides, disinfecting agents and glycopeptides) were predominant in all surface-related microbiomes, especially on weathered plastics, a completely different set of potential pathogens (i.e. Escherichia, Salmonella, Klebsiella and Streptococcus) and ARGs (i.e. aminoglycosides, tetracycline, aminocoumarin, fluoroquinolones, nitroimidazole, oxazolidinone and fosfomycin) dominated in the planktonic compartment. Our genome-centric analysis allowed the assembly of 215 Metagenome Assembled Genomes (MAGs), linking ARGs and other virulence-related genes to their host. Interestingly, a MAG belonging to Escherichia -that clearly predominated in water- harboured more ARGs and virulence factors than any other MAG, emphasising the potential virulent nature of these pathogenic-related groups. Finally, ex-situ incubations using environmentally-relevant concentrations of antibiotics increased the prevalence of their corresponding ARGs, but different riverine compartments -including plastispheres- were affected differently by each antibiotic. CONCLUSIONS Our results provide insights into the capacity of the riverine plastisphere to harbour a distinct set of potentially pathogenic bacteria and function as a reservoir of ARGs. The environmental impact that plastics pose if they act as a reservoir for either pathogenic bacteria or ARGs is aggravated by the persistence of plastics in the environment due to their recalcitrance and buoyancy. Nevertheless, the high similarities with microbiomes growing on natural co-occurring materials and even more worrisome microbiome observed in the surrounding water highlights the urgent need to integrate the analysis of all environmental compartments when assessing risks and exposure to pathogens and ARGs in anthropogenically-impacted ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Vinko Zadjelovic
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Present address: Centro de Bioinnovación de Antofagasta (CBIA), Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, 1271155, Antofagasta, Chile.
| | - Robyn J Wright
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jeannelle Quartey
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Tyler N Cairns
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Morgan G I Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | - Joseph A Christie-Oleza
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Biology, University of the Balearic Islands, 07122, Palma, Spain.
| |
Collapse
|
19
|
Chen L, Wang C, Su J. Understanding the Effect of Different Glucose Concentrations in the Oligotrophic Bacterium Bacillus subtilis BS-G1 through Transcriptomics Analysis. Microorganisms 2023; 11:2401. [PMID: 37894061 PMCID: PMC10609351 DOI: 10.3390/microorganisms11102401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Glucose is an important carbon source for microbial growth, and its content in infertile soils is essential for the growth of bacteria. Since the mechanism of oligotrophic bacterium adaptation in barren soils is unclear, this research employed RNA-seq technology to examine the impact of glucose concentration on the oligotrophic bacterium B. subtilis BS-G1 in soil affected by desertification. A global transcriptome analysis (RNA-Seq) revealed that the significantly differentially expressed genes (DEGs) histidine metabolism, glutamate synthesis, the HIF-1 signaling pathway, sporulation, and the TCA cycle pathway of B. subtilis BS-G1 were significantly enriched with a 0.015 g/L glucose concentration (L group), compared to a 10 g/L glucose concentration (H group). The DEGs amino acid system, two-component system, metal ion transport, and nitrogen metabolism system of B. subtilis BS-G1 were significantly enriched in the 5 g/L glucose concentration (M group), compared with the H group. In addition, the present study identified the regulation pattern and key genes under a low-glucose environment (7 mRNAs and 16 sRNAs). This study primarily investigates the variances in the regulatory pathways of the oligotrophic B. subtilis BS-G1, which holds substantial importance in comprehending the mechanism underlying the limited sugar tolerance of oligotrophic bacteria.
Collapse
Affiliation(s)
- Liping Chen
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Chenglong Wang
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jianyu Su
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
20
|
Mujakić I, Cabello-Yeves PJ, Villena-Alemany C, Piwosz K, Rodriguez-Valera F, Picazo A, Camacho A, Koblížek M. Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota. Microbiol Spectr 2023; 11:e0111223. [PMID: 37732776 PMCID: PMC10581226 DOI: 10.1128/spectrum.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023] Open
Abstract
Gemmatimonadota is a diverse bacterial phylum commonly found in environments such as soils, rhizospheres, fresh waters, and sediments. So far, the phylum contains just six cultured species (five of them sequenced), which limits our understanding of their diversity and metabolism. Therefore, we analyzed over 400 metagenome-assembled genomes (MAGs) and 5 culture-derived genomes representing Gemmatimonadota from various aquatic environments, hydrothermal vents, sediments, soils, and host-associated (with marine sponges and coral) species. The principal coordinate analysis based on the presence/absence of genes in Gemmatimonadota genomes and phylogenomic analysis documented that marine and host-associated Gemmatimonadota were the most distant from freshwater and wastewater species. A smaller genome size and coding sequences (CDS) number reduction were observed in marine MAGs, pointing to an oligotrophic environmental adaptation. Several metabolic pathways are restricted to specific environments. For example, genes for anoxygenic phototrophy were found only in freshwater, wastewater, and soda lake sediment genomes. There were several genomes from soda lake sediments and wastewater containing type IC/ID ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Various genomes from wastewater harbored bacterial type II RuBisCO, whereas RuBisCO-like protein was found in genomes from fresh waters, soil, host-associated, and marine sediments. Gemmatimonadota does not contain nitrogen fixation genes; however, the nosZ gene, involved in the reduction of N2O, was present in genomes from most environments, missing only in marine water and host-associated Gemmatimonadota. The presented data suggest that Gemmatimonadota evolved as an organotrophic species relying on aerobic respiration and then remodeled its genome inventory when adapting to particular environments. IMPORTANCE Gemmatimonadota is a rarely studied bacterial phylum consisting of a handful of cultured species. Recent culture-independent studies documented that these organisms are distributed in many environments, including soil, marine, fresh, and waste waters. However, due to the lack of cultured species, information about their metabolic potential and environmental role is scarce. Therefore, we collected Gemmatimonadota metagenome-assembled genomes (MAGs) from different habitats and performed a systematic analysis of their genomic characteristics and metabolic potential. Our results show how Gemmatimonadota have adapted their genomes to different environments.
Collapse
Affiliation(s)
- Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Pedro J. Cabello-Yeves
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
21
|
Abstract
Related groups of microbes are widely distributed across Earth's habitats, implying numerous dispersal and adaptation events over evolutionary time. However, relatively little is known about the characteristics and mechanisms of these habitat transitions, particularly for populations that reside in animal microbiomes. Here, we review the literature concerning habitat transitions among a variety of bacterial and archaeal lineages, considering the frequency of migration events, potential environmental barriers, and mechanisms of adaptation to new physicochemical conditions, including the modification of protein inventories and other genomic characteristics. Cells dependent on microbial hosts, particularly bacteria from the Candidate Phyla Radiation, have undergone repeated habitat transitions from environmental sources into animal microbiomes. We compare their trajectories to those of both free-living cells-including the Melainabacteria, Elusimicrobia, and methanogenic archaea-and cellular endosymbionts and bacteriophages, which have made similar transitions. We conclude by highlighting major related topics that may be worthy of future study.
Collapse
Affiliation(s)
- Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Cindy J Castelle
- Innovative Genomics Institute and Department of Earth and Planetary Science, University of California, Berkeley, California, USA;
| | - Jillian F Banfield
- Innovative Genomics Institute and Department of Earth and Planetary Science, University of California, Berkeley, California, USA;
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
22
|
Noell SE, Hellweger FL, Temperton B, Giovannoni SJ. A Reduction of Transcriptional Regulation in Aquatic Oligotrophic Microorganisms Enhances Fitness in Nutrient-Poor Environments. Microbiol Mol Biol Rev 2023; 87:e0012422. [PMID: 36995249 PMCID: PMC10304753 DOI: 10.1128/mmbr.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.
Collapse
Affiliation(s)
- Stephen E. Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|