1
|
Thomas K. Pints of the past, flavours for the future. Fungal Biol 2024; 128:2503-2512. [PMID: 39653496 DOI: 10.1016/j.funbio.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 12/17/2024]
Abstract
The recreation of historic beverages is possible via contemporary fermentations carried out with microbes revived form the past. Advanced molecular techniques have recently provided opportunities to investigate historic samples, such as those from beer found in shipwrecks, and provide data on their character as well as identifying differences with contemporary products. In some cases, isolates of yeasts and bacteria create the possibility for authentic recreations of fermented beverages that can have cultural and nostalgic interest. They may also provide insights into the relationship between humans and microbes. The authenticity of recreations, however, can be limited by difficulties in recipe interpretation, differences in water composition and ingredients, possible genetic changes of the retrieved microbes, and from advances in production processes and equipment. Such organisms may also be used to produce novel foods and for other new industrial (non-food) applications. Microorganisms in nature are known to survive geological time-periods. Nevertheless, the survival of some copiotrophic 'fermentation' microbes for a century or more suggests a robust stress biology. Moreover, it facilitates the exciting prospect of recreating fermented products once enjoyed by our predecessors.
Collapse
Affiliation(s)
- Keith Thomas
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Science Complex, City Campus, SUNDERLAND, SR1 3SD, UK; Brewlab Limited, Unit 1 West Quay Court, Sunderland Enterprise Park, Sunderland, Tyne and Wear, SR5 2TE, UK.
| |
Collapse
|
2
|
Timmis K, Hallsworth JE, McGenity TJ, Armstrong R, Colom MF, Karahan ZC, Chavarría M, Bernal P, Boyd ES, Ramos JL, Kaltenpoth M, Pruzzo C, Clarke G, López‐Garcia P, Yakimov MM, Perlmutter J, Greening C, Eloe‐Fadrosh E, Verstraete W, Nunes OC, Kotsyurbenko O, Nikel PI, Scavone P, Häggblom MM, Lavigne R, Le Roux F, Timmis JK, Parro V, Michán C, García JL, Casadevall A, Payne SM, Frey J, Koren O, Prosser JI, Lahti L, Lal R, Anand S, Sood U, Offre P, Bryce CC, Mswaka AY, Jores J, Kaçar B, Blank LM, Maaßen N, Pope PB, Banciu HL, Armitage J, Lee SY, Wang F, Makhalanyane TP, Gilbert JA, Wood TK, Vasiljevic B, Soberón M, Udaondo Z, Rojo F, Tamang JP, Giraud T, Ropars J, Ezeji T, Müller V, Danbara H, Averhoff B, Sessitsch A, Partida‐Martínez LP, Huang W, Molin S, Junier P, Amils R, Wu X, Ron E, Erten H, de Martinis ECP, Rapoport A, Öpik M, Pokatong WDR, Stairs C, Amoozegar MA, Serna JG. A concept for international societally relevant microbiology education and microbiology knowledge promulgation in society. Microb Biotechnol 2024; 17:e14456. [PMID: 38801001 PMCID: PMC11129164 DOI: 10.1111/1751-7915.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 05/29/2024] Open
Abstract
EXECUTIVE SUMMARY Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative-the IMiLI-is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators-learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators-learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships-a global societally relevant microbiology education ecosystem-in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. ABSTRACT The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us-individuals/communities/nations/the human world-and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT: our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091-1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.
Collapse
Affiliation(s)
- Kenneth Timmis
- Institute for MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | | | | | | | | | - Zeynep Ceren Karahan
- Department of Medical MicrobiologyAnkara University School of MedicineAnkaraTurkey
| | - Max Chavarría
- Escuela de Química, CIPRONAUniversidad de Costa Rica & Centro Nacional de Innovaciones Biotecnológicas (CENIBiot)San JoséCosta Rica
| | - Patricia Bernal
- Department of MicrobiologyUniversidad de SevillaSevillaSpain
| | - Eric S. Boyd
- Department of Microbiology and Cell BiologyMontana State UniversityBozemanMontanaUSA
| | - Juan Luis Ramos
- Consejo Superior de Investigaciones CientificasEstación Experimental del ZaidínGranadaSpain
| | - Martin Kaltenpoth
- Department of Insect SymbiosisMax Planck Institute for Chemical EcologyJenaGermany
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenoaItaly
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science and APC Microbiome IrelandUniversity College CorkCorkIreland
| | | | - Michail M. Yakimov
- Institute of Polar SciencesItalian National Research Council (ISP‐CNR)MessinaItaly
| | | | - Chris Greening
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
| | - Emiley Eloe‐Fadrosh
- Metagenome Program, DOE Joint Genome InstituteLawrence Berkeley National LabBerkeleyCaliforniaUSA
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
| | - Olga C. Nunes
- LEPABE‐Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of PortoPortoPortugal
| | | | - Pablo Iván Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Paola Scavone
- Departamento de MicrobiologíaInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
| | - Max M. Häggblom
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Rob Lavigne
- Laboratory of Gene TechnologyKU LeuvenHeverleeBelgium
| | - Frédérique Le Roux
- Département de Microbiologie, Infectiologie et ImmunologieUniversité de MontréalMontrealQuebecCanada
| | - James K. Timmis
- Department of Political ScienceUniversity of FreiburgFreiburg im BreisgauGermany
| | - Victor Parro
- Centro de Astrobiología (CAB)CSICINTAMadridSpain
| | - Carmen Michán
- Departamento de Bioquímica y Biología MolecularUniversidad de CórdobaCórdobaSpain
| | - José Luis García
- Environmental Biotechnology LaboratoryCentro de Investigaciones Biológicas Margarita Salas (CIB‐MS, CSIC)MadridSpain
| | - Arturo Casadevall
- Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Shelley M. Payne
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTexasUSA
| | - Joachim Frey
- Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Omry Koren
- Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | | | - Leo Lahti
- Department of ComputingUniversity of TurkuTurkuFinland
| | - Rup Lal
- Acharya Narendra Dev CollegeUniversity of DelhiNew DelhiDelhiIndia
| | - Shailly Anand
- Department of Zoology, Deen Dayal Upadhyaya CollegeUniversity of DelhiNew DelhiDelhiIndia
| | - Utkarsh Sood
- Department of Zoology, Kirori Mal CollegeUniversity of DelhiNew DelhiDelhiIndia
| | - Pierre Offre
- Department of Marine Microbiology and BiogeochemistryNIOZ–Royal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
| | - Casey C. Bryce
- Cabot Institute for the EnvironmentUniversity of BristolBristolUK
| | | | - Jörg Jores
- Institute of Veterinary BacteriologyUniversity of BernBernSwitzerland
| | - Betül Kaçar
- Department of BacteriologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | | | - Nicole Maaßen
- Institute of Applied MicrobiologyRWTH Aachen UniversityAachenGermany
| | - Phillip B. Pope
- Faculty of BiosciencesNorwegian University of Life SciencesAsNorway
- Faculty of Chemistry, Biotechnology and Food ScienceNMBUAsNorway
| | - Horia L. Banciu
- Department of Molecular Biology and BiotechnologyBabeș‐Bolyai UniversityCluj‐NapocaRomania
| | | | - Sang Yup Lee
- Department of Chemical & Biomolecular EngineeringKAIST (Korea Advanced Institute of Science and Technology)DaejeonSouth Korea
| | - Fengping Wang
- International Center for Deep Life Investigation (ICDLI)Shanghai JiaoTong UniversityShanghaiChina
| | - Thulani P. Makhalanyane
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaHatfieldSouth Africa
| | - Jack A. Gilbert
- Department of Pediatrics and Scripps, Institution of OceanographyUC San DiegoLa JollaCaliforniaUSA
| | - Thomas K. Wood
- Department of Chemical EngineeringPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia
| | - Mario Soberón
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Zulema Udaondo
- Consejo Superior de Investigaciones CientificasEstación Experimental del ZaidínGranadaSpain
| | - Fernando Rojo
- Department of Microbial Biotechnology, Centro Nacional de BiotecnologíaCSICMadridSpain
| | | | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution (ESE)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Jeanne Ropars
- Laboratoire Ecologie, Systématique et Evolution (ESE)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Thaddeus Ezeji
- Department of Animal SciencesThe Ohio State University & OARDCWoosterOhioUSA
| | - Volker Müller
- Molekulare Mikrobiologie & BioenergetikGoethe‐Universität FrankfurtFrankfurtGermany
| | - Hirofume Danbara
- Shibasaburo Kitasato Memorial MuseumKitasato UniversityMinato‐kuJapan
| | - Beate Averhoff
- Molekulare Mikrobiologie & BioenergetikGoethe‐Universität FrankfurtFrankfurtGermany
| | | | | | - Wei Huang
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | | | - Pilar Junier
- Laboratory of MicrobiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Ricardo Amils
- Centro de Biología Molecular Severo OchoaMadridSpain
| | - Xiao‐Lei Wu
- Department of Energy Resources EngineeringPeking UniversityBeijingChina
| | - Eliora Ron
- The Shmunis School of Biomedicine and Cancer ResearchTel Aviv UniversityTel AvivIsrael
| | - Huseyin Erten
- Department of Food EngineeringCukurova UniversityAdanaTurkey
| | | | - Alexander Rapoport
- Institute of Microbiology and BiotechnologyUniversity of LatviaRigaLatvia
| | - Maarja Öpik
- Department of BotanyUniversity of TartuTartuEstonia
| | | | | | | | - Jéssica Gil Serna
- Departamento de Genética, Fisiología y MicrobiologíaUniversidad Complutense de MadridMadridSpain
| |
Collapse
|
3
|
Bragazzi NL, Woldegerima WA, Siri A. Economic microbiology: exploring microbes as agents in economic systems. Front Microbiol 2024; 15:1305148. [PMID: 38450162 PMCID: PMC10915239 DOI: 10.3389/fmicb.2024.1305148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Microbial communities exhibit striking parallels with economic markets, resembling intricate ecosystems where microorganisms engage in resource exchange akin to human market transactions. This dynamic network of resource swapping mirrors economic trade in human markets, with microbes specializing in metabolic functions much like businesses specializing in goods and services. Cooperation and competition are central dynamics in microbial communities, with alliances forming for mutual benefit and species vying for dominance, similar to businesses seeking market share. The human microbiome, comprising trillions of microorganisms within and on our bodies, is not only a marker of socioeconomic status but also a critical factor contributing to persistent health inequalities. Social and economic factors shape the composition of the gut microbiota, impacting healthcare access and quality of life. Moreover, these microbes exert indirect influence over human decisions by affecting neurotransmitter production, influencing mood, behavior, and choices related to diet and emotions. Human activities significantly impact microbial communities, from dietary choices and antibiotic use to environmental changes, disrupting these ecosystems. Beyond their natural roles, humans harness microbial communities for various applications, manipulating their interactions and resource exchanges to achieve specific goals in fields like medicine, agriculture, and environmental science. In conclusion, the concept of microbial communities as biological markets offers valuable insights into their intricate functioning and adaptability. It underscores the profound interplay between microbial ecosystems and human health and behavior, with far-reaching implications for multiple disciplines. To paraphrase Alfred Marshall, "the Mecca of the economist lies in economic microbiology."
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada
- Department of Health Sciences (DISSAL), Postgraduate School of Public Health, University of Genoa, Genoa, Italy
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair, Health Anthropology Biosphere and Healing Systems, University of Genoa, Genoa, Italy
| | - Woldegebriel Assefa Woldegerima
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Anna Siri
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair, Health Anthropology Biosphere and Healing Systems, University of Genoa, Genoa, Italy
- Department of Wellbeing, Nutrition and Sport, Pegaso University, Naples, Italy
| |
Collapse
|