1
|
Steller JG, Gumina D, Driver C, Palmer C, Brown LD, Reeves S, Hobbins JC, Galan HL. 3D Fractional Limb Volume Identifies Reduced Subcutaneous and Lean Mass in Fetal Growth Restriction. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1623-1632. [PMID: 34580892 DOI: 10.1002/jum.15841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Fetal 2D and 3D fractional limb volume (FLV) measurements by ultrasound can detect fetal lean and subcutaneous mass and possibly percent body fat. Our objectives were to 1) compare FLV measurements in fetuses with fetal growth restriction (FGR) versus small for gestational age (SGA) defined by the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG)-supported international Delphi consensus and 2) correlate FLV findings with birth metrics. We hypothesize that FLV measurements will be significantly smaller in FGR versus SGA fetuses and will correlate closer with Ponderal index (PIx) in the neonate than abdominal circumference (AC). METHODS Patients were categorized as FGR or SGA as defined by ISUOG. Total thigh volume (TTV), volumes of lean mass (LMV), and fat mass volume (FMV) were calculated from 3D acquisitions. Measurements were compared between groups and correlated with birthweight (BW) and PIx (BW/crown-heal length). RESULTS The FGR group (n = 37) delivered earlier (37/2 versus 38/0; P = .0847), were lighter (2.2 kg versus 2.6 kg; P = .0003) and had lower PIx (0.023 versus 0.025; P = .0013) than SGAs (n = 22). FGRs had reduced TTV (40.6 versus 48.4 cm3 ; P = .0164), FMV (20.8 versus 25.3 cm3 ; P = .0413), and LMV (19.8 versus 23.1 cm3 ; P = .0387). AC had the highest area under the curve (0.69) for FGR. FMV was more strongly associated with PIx than the AC (P = .0032). CONCLUSIONS The AC and FLV measurements were significantly reduced in FGR fetuses compared to SGAs. While the AC outperformed FLV in predicting FGR, the FLV correlated best with PIx, which holds investigative promise.
Collapse
Affiliation(s)
- Jonathan G Steller
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of California, Irvine, Orange, CA, USA
| | - Diane Gumina
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Camille Driver
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Claire Palmer
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laura D Brown
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shane Reeves
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - John C Hobbins
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Henry L Galan
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
2
|
Wang Y, Zhang A, Stock T, Lopriore E, Oepkes D, Wang Q. The accuracy of prenatal diagnosis of selective fetal growth restriction with second trimester Doppler ultrasound in monochorionic diamniotic twin pregnancies. PLoS One 2021; 16:e0255897. [PMID: 34370786 PMCID: PMC8351928 DOI: 10.1371/journal.pone.0255897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Selective fetal restriction growth (sFGR) is one of the common diseases of monochorionic diamniotic (MCDA) twin pregnancies, resulting in many adverse outcomes. At present, second trimester ultrasonography is widely used in the prenatal diagnosis of sFGR, but the diagnostic effectiveness is still uncertain. The aim of this study is to assess the diagnostic accuracy of second trimester Doppler ultrasound measurements for sFGR. METHODS A retrospective study included 280 pregnant women (118 with and 162 without sFGR) with MCDA pregnancies was conducted in the fetal medicine center from Leiden University Medical Center from January 2008 to December 2013. The women participating had already undergone an ultrasound examination in the second trimester. The postnatal criteria of sFGR was a single birth weight (BW) < 3 rd percentile in a twin, or birth weight discordance (BWD)≥25% between two twins, while the BW of the smaller twin < 10th percentile. Early prenatal diagnosis of sFGR was defined as a single EFW < 3 rd percentile in a twin, or at least 2 of the following 4 parameters must be met (fetal weight of one fetus < 10th percentile, AC of one fetus <10th percentile, EFW discordance≥25%, UA pulsatility index (PI) of the smaller fetus > 95th percentile). According to the diagnosis of sFGR after birth, we evaluate diagnostic effectiveness of Doppler ultrasound in the second trimester for sFGR. RESULTS Of these 280 participants, the mean age was 32.06 ± 4.76 years. About 43.9% of pregnant women were primiparas. The ability of second trimester Doppler ultrasound to accurately diagnosed sFGR is 75.4%, missed diagnosis rate and the misdiagnosis rate were 24.6% and 10.5% respectively. The ROC curve indicated that the combination of AC discordance, EFW discordance, and small fetal UA blood flow was the best diagnostic indicator of sFGR in MCDA pregnancy with the AUC was 0.882 (95%CI, 0.839-0.926). CONCLUSIONS Second trimester Doppler and ultrasound measurements is an effective method for early prenatal diagnosis of sFGR. The combined indicator of AC discordance, EFW discordance, and the small fetal UA blood flow reaches highest diagnostic value.
Collapse
Affiliation(s)
- Yao Wang
- Public Health School, Medical College of Qingdao University, Qingdao, China
| | - Ai Zhang
- Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Tineck Stock
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Enrico Lopriore
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dick Oepkes
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Qiuzhen Wang
- Public Health School, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Kooijman MN, Jaddoe VWV, Steegers EAP, Gaillard R. Associations of maternal metabolic profile with placental and fetal cerebral and cardiac hemodynamics. Eur J Obstet Gynecol Reprod Biol 2020; 257:51-58. [PMID: 33360239 DOI: 10.1016/j.ejogrb.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/12/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Maternal obesity and metabolic health affect pregnancy outcomes. We examined whether maternal metabolic profiles are associated with placental and fetal hemodynamics. STUDY DESIGN In a population-based prospective cohort study among 1175 women we examined the associations of an adverse maternal metabolic profile in early pregnancy with placental, fetal cerebral and cardiac hemodynamic development. We obtained maternal pre-pregnancy BMI by questionnaire and measured blood pressure, cholesterol, triglycerides and glucose concentrations at a median gestational age of 12.6 (95 % range 9.6-17.1) weeks. An adverse maternal metabolic profile was defined as ≥4 risk factors. Placental and fetal hemodynamics were measured by pulsed-wave-Doppler at a median gestational age of 30.3 (95 % range 28.8-32.3) weeks. RESULTS An adverse maternal metabolic profile was associated with a 0.29 Z-score higher (95 %CI 0.08-0.50) fetal cerebral middle artery pulsatility index (PI), but not with placental or fetal cardiac hemodynamic patterns. When the individual components of an adverse maternal metabolic profile were assessed, we observed that higher maternal total cholesterol and triglyceride concentrations were associated with a higher cerebral middle artery PI (Z-score, 0.09 (95 %CI 0.02-0.15), 0.09 (95 %CI 0.03-0.15) per Z-score increase). Higher total and HDL maternal cholesterol concentrations were also associated with a higher aorta ascendens peak systolic velocity (PSV) Z-score, 0.08 (95 %CI 0.01-0.14)), and a larger left cardiac output (Z-score, 0.08 (95 %CI 0.00-0.15), respectively). CONCLUSION An adverse maternal metabolic profile, especially higher cholesterol and triglycerides concentrations, are associated with increased fetal cerebral vascular resistance and larger fetal aorta ascendens diameter, PSV and left cardiac output, but not with placental vascular resistance indices. Further studies are needed to identify long-term consequences of the observed associations.
Collapse
Affiliation(s)
- Marjolein N Kooijman
- The Generation R Study Group, the Netherlands; Department of Pediatrics, the Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, the Netherlands; Department of Pediatrics, the Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Romy Gaillard
- The Generation R Study Group, the Netherlands; Department of Pediatrics, the Netherlands.
| |
Collapse
|
4
|
Vermeulen MJ, Gaillard R, Miliku K, Reiss I, Steegers EAP, Jaddoe V, Felix J. Influence of genetic variants for birth weight on fetal growth and placental haemodynamics. Arch Dis Child Fetal Neonatal Ed 2020; 105:393-398. [PMID: 31666310 DOI: 10.1136/archdischild-2019-317044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To determine the combined effect of 60 genetic variants (single nucleotide polymorphisms, SNPs), previously identified as being associated with birth weight, on fetal growth and placental haemodynamics throughout pregnancy. DESIGN Prospective birth cohort (Generation R Study). SETTING General multiethnic population. PARTICIPANTS 5374 singleton liveborn children with genome-wide association arrays and fetal growth data. METHODS Longitudinal and cross-sectional analyses of a genetic score of the total number of birth weight-increasing alleles across the 59 available SNPs and repeated fetal growth and haemodynamic measures. MAIN OUTCOME MEASURES SD scores (SDS) of fetal weight, (femur) length, head circumference, umbilical artery pulsatility index, uterine artery mean resistance index and placental weight, in different periods of pregnancy until birth. RESULTS In longitudinal analyses, the effect of the genetic score on the fetal growth measures increased throughout pregnancy (p<0.001). At 20 weeks of gestation, the genetic score was not associated with any of the fetal growth measures, whereas at 30 weeks it was associated with all. The strongest effects were observed at birth: per SD increase in genetic score, birth weight increased by 0.15 SDS (95% confidence interval: 0.13 to 0.18), birth length by 0.12 SDS (0.08 to 0.19) and head circumference by 0.08 SDS (0.05 to 0.12). The genetic score was not associated with placental haemodynamics, but was associated with a 14 g (10 to 18) increase in placental weight per SDS increase in genetic score. CONCLUSIONS Our results suggest that genetic variants related to birth weight exert their combined effect on fetal growth from second half of pregnancy onwards and have no effect on placental haemodynamics.
Collapse
Affiliation(s)
- Marijn J Vermeulen
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Romy Gaillard
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kozeta Miliku
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Irwin Reiss
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eric A P Steegers
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent Jaddoe
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands .,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Austrich-Olivares A, Femenía T, Manzanares J. Cannabis Use in Pregnant and Breastfeeding Women: Behavioral and Neurobiological Consequences. Front Psychiatry 2020; 11:586447. [PMID: 33240134 PMCID: PMC7667667 DOI: 10.3389/fpsyt.2020.586447] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 01/21/2023] Open
Abstract
Nowadays, cannabis is the most consumed illicit drug. The global prevalence of the use of cannabis in 2017 was estimated in 188 million of people, 3.8% of worldwide population. Importantly, the legalization of cannabis in different countries, together with the increase in the apparent safety perception, may result in a great variety of health problems. Indeed, an important concern is the increase in cannabis use among pregnant and breastfeeding women, especially since the content of delta9-tetrahidrocannabinol (THC) is currently around 2-fold higher than it was 15-20 years ago. The purpose of this study was to review cannabis use during pregnancy and breastfeeding including epidemiological aspects, therapeutic or preventive strategies, and experimental considerations and results from animal models of perinatal cannabis exposure to analyze the underlying neurobiological mechanisms and to identify new therapeutic approaches. A recent report revealed that among pregnant women aged 15-44, last month cannabis use prevalence was over 4.9%, raising to 8.5% in the 18-25-year-old age range. Pre- and post-natal exposure to cannabis may be associated with critical alterations in the newborn infants that are prolonged throughout childhood and adolescence. Briefly, several reports revealed that perinatal cannabis exposure was associated with low birth weight, reduction in the head circumference, cognitive deficits (attention, learning, and memory), disturbances in emotional response leading to aggressiveness, high impulsivity, or affective disorders, and higher risk to develop a substance use disorder. Furthermore, important neurobiological alterations in different neuromodulatory and neurotransmission systems have been associated with cannabis consumption during pregnancy and lactation. In spite of the evidences pointing out the negative behavioral and neurobiological consequences of cannabis use in pregnant and breastfeeding women, there are still limitations to identify biomarkers that could help to establish preventive or therapeutic approaches. It is difficult to define the direct association specifically with cannabis, avoiding other confusing factors, co-occurrence of other drugs consumption (mainly nicotine and alcohol), lifestyle, or socioeconomic factors. Therefore, it is necessary to progress in the characterization of short- and long-term cannabis exposure-related disturbances.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Teresa Femenía
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
6
|
Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IJzendoorn MH, de Jongste JC, Klaver CCW, van der Lugt A, Mackenbach JP, Moll HA, Peeters RP, Raat H, Rings EHHM, Rivadeneira F, van der Schroeff MP, Steegers EAP, Tiemeier H, Uitterlinden AG, Verhulst FC, Wolvius E, Felix JF, Jaddoe VWV. The Generation R Study: design and cohort update 2017. Eur J Epidemiol 2017. [PMID: 28070760 DOI: 10.1007/s10654‐016‐0224‐9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Generation R Study is a population-based prospective cohort study from fetal life until adulthood. The study is designed to identify early environmental and genetic causes and causal pathways leading to normal and abnormal growth, development and health from fetal life, childhood and young adulthood. This multidisciplinary study focuses on several health outcomes including behaviour and cognition, body composition, eye development, growth, hearing, heart and vascular development, infectious disease and immunity, oral health and facial growth, respiratory health, allergy and skin disorders of children and their parents. Main exposures of interest include environmental, endocrine, genomic (genetic, epigenetic, microbiome), lifestyle related, nutritional and socio-demographic determinants. In total, 9778 mothers with a delivery date from April 2002 until January 2006 were enrolled in the study. Response at baseline was 61%, and general follow-up rates until the age of 10 years were around 80%. Data collection in children and their parents includes questionnaires, interviews, detailed physical and ultrasound examinations, behavioural observations, lung function, Magnetic Resonance Imaging and biological sampling. Genome and epigenome wide association screens are available. Eventually, results from the Generation R Study contribute to the development of strategies for optimizing health and healthcare for pregnant women and children.
Collapse
Affiliation(s)
- Marjolein N Kooijman
- The Generation R Study Group (NA-2915), Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Claudia J Kruithof
- The Generation R Study Group (NA-2915), Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Marinus H van IJzendoorn
- Center for Child and Family Studies, Leiden University, Leiden, The Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Johan C de Jongste
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Johan P Mackenbach
- Department of Public Health, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Henriëtte A Moll
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Hein Raat
- Department of Public Health, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Edmond H H M Rings
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Marc P van der Schroeff
- Department of Otolaryngology, Head and Neck Surgery, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Frank C Verhulst
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Eppo Wolvius
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group (NA-2915), Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group (NA-2915), Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IJzendoorn MH, de Jongste JC, Klaver CCW, van der Lugt A, Mackenbach JP, Moll HA, Peeters RP, Raat H, Rings EHHM, Rivadeneira F, van der Schroeff MP, Steegers EAP, Tiemeier H, Uitterlinden AG, Verhulst FC, Wolvius E, Felix JF, Jaddoe VWV. The Generation R Study: design and cohort update 2017. Eur J Epidemiol 2017; 31:1243-1264. [PMID: 28070760 PMCID: PMC5233749 DOI: 10.1007/s10654-016-0224-9] [Citation(s) in RCA: 622] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/30/2016] [Indexed: 12/31/2022]
Abstract
The Generation R Study is a population-based prospective cohort study from fetal life until adulthood. The study is designed to identify early environmental and genetic causes and causal pathways leading to normal and abnormal growth, development and health from fetal life, childhood and young adulthood. This multidisciplinary study focuses on several health outcomes including behaviour and cognition, body composition, eye development, growth, hearing, heart and vascular development, infectious disease and immunity, oral health and facial growth, respiratory health, allergy and skin disorders of children and their parents. Main exposures of interest include environmental, endocrine, genomic (genetic, epigenetic, microbiome), lifestyle related, nutritional and socio-demographic determinants. In total, 9778 mothers with a delivery date from April 2002 until January 2006 were enrolled in the study. Response at baseline was 61%, and general follow-up rates until the age of 10 years were around 80%. Data collection in children and their parents includes questionnaires, interviews, detailed physical and ultrasound examinations, behavioural observations, lung function, Magnetic Resonance Imaging and biological sampling. Genome and epigenome wide association screens are available. Eventually, results from the Generation R Study contribute to the development of strategies for optimizing health and healthcare for pregnant women and children.
Collapse
Affiliation(s)
- Marjolein N Kooijman
- The Generation R Study Group (NA-2915), Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Claudia J Kruithof
- The Generation R Study Group (NA-2915), Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Marinus H van IJzendoorn
- Center for Child and Family Studies, Leiden University, Leiden, The Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Johan C de Jongste
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Johan P Mackenbach
- Department of Public Health, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Henriëtte A Moll
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Hein Raat
- Department of Public Health, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Edmond H H M Rings
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Marc P van der Schroeff
- Department of Otolaryngology, Head and Neck Surgery, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Frank C Verhulst
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Eppo Wolvius
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group (NA-2915), Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group (NA-2915), Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus Medical Center, University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|