1
|
Mao Y, Ren J, Li H, Ramaswamy HS, Xiao T, Zhang S, Dai M, Song T, Yu Y, Zhu S. Effect of liquid nitrogen spray freezing conditions - temperature, sample volume and exposure depth - on the resulting temperature fluctuation, microstructure, and quality of large yellow croaker fish during frozen storage. Food Chem 2025; 476:143466. [PMID: 39983480 DOI: 10.1016/j.foodchem.2025.143466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
The microstructure and physicochemical properties of large yellow croaker (Larimichthys crocea) fish frozen by air freezing (AF, -20 °C) and liquid nitrogen spray freezing (LNSF) at -20, -60, and -100 °C, during frozen storage at -30 °C were evaluated. LNSF at -100 °C resulted in small and uniform ice crystals with a significantly (P < 0.05) lower cross-sectional area (187 μm2) as compared to AF (7844 μm2), thereby better preserving the structure of myofibrils, and reducing the thawing loss from 11.6% to 7.0%. The rate of lipid oxidation and protein degradation significantly decreased with an increasing freezing rate. The effects of sample volume and depth on temperature fluctuations and changes in the ice crystal size were explored based on changes in the ice fraction. The temperature fluctuations decreased from 0.94 to 0.65 °C, and the cross-sectional area decreased from 457 to 287 μm2, as the product depth increased from 2 to 20 mm. Therefore, the sample volume, depth, and freezing temperature had significant effects on the microstructure and quality deterioration. LNSF at -100 °C effectively maintained the best quality and longest shelf life of frozen large yellow croaker.
Collapse
Affiliation(s)
- Yuxiao Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Junde Ren
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Hongyue Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Hosahalli S Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, St-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Ting Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Sinan Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Mingyun Dai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Tao Song
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Yong Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Songming Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ocean Academy, Zhejiang University, Zhoushan 316021, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China.
| |
Collapse
|
2
|
Tan P, Wang C, Wei D, Wang F, Zhao Z, Zhang W. Laser processing materials for photo-to-thermal applications. Adv Colloid Interface Sci 2025; 337:103382. [PMID: 39700970 DOI: 10.1016/j.cis.2024.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Photothermal conversion materials (PCMs) are crucial component in solar-thermal energy technologies. Although various PCMs with excellent sunlight harvesting have been developed for colorful solar-thermal applications, uniform and large-scale production of PCMs remains a challenge, and the PCMs prepared through the conventional methods are often non-site specific. Laser processing technology (LPT), as an efficient, convenient, green and sustainable technology, can directly create micro/nano structures and patterns at specific locations on materials surface, attracting widespread attention in photo-to-thermal applications. Here, we summarize the laser processing of preparing PCMs through laser sintering, laser modification, laser ablation in liquid, laser induced carbonization, and laser etching. We also introduce the working mechanism of LPT, and analyze the thermal conductivity, heat storage performance and hydrophilic/hydrophobic properties of the substrate after LPT treatment. Furthermore, the application of LPT in solar anti-icing/deicing, seawater desalination, heat exchange system, energy storage and transfer, and other related fields are introduced. Additionally, we provide a prospect for the development of LPT and offer directions for future research. We hope that this review can provide meaningful reference value for scholars in this field.
Collapse
Affiliation(s)
- Puxin Tan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Chengbing Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Dan Wei
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Fan Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Zexiang Zhao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wenhe Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
3
|
Hemmati S. Expanding the cryoprotectant toolbox in biomedicine by multifunctional antifreeze peptides. Biotechnol Adv 2025:108545. [PMID: 40023203 DOI: 10.1016/j.biotechadv.2025.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The global cryopreservation market size rises exponentially due to increased demand for cell therapy-based products, assisted reproductive technology, and organ transplantation. Cryoprotectants (CPAs) are required to reduce ice-related damage, osmotic cell injury, and protein denaturation. Antioxidants are needed to hamper membrane lipid peroxidation under freezing stress, and antibiotics are added to the cryo-solutions to prevent contamination. The vitrification process for sized organs requires a high concentration of CPA, which is hardly achievable using conventional penetrating toxic CPAs like DMSO. Antifreeze peptides (AFpeps) are biocompatible CPAs leveraging inspiration from nature, such as freeze-tolerant and freeze-avoidant organisms, to circumvent logistic limitations in cryogenic conditions. This study aims to introduce the advances of AFpeps with cell-penetrating, antioxidant, and antimicrobial characteristics. We herein revisit the placement of AFpeps in the biobanking of cancer cells, immune cells, stem cells, blood cells, germ cells (sperms and oocytes), and probiotics. Implementing low-immunogenic AFpeps for allograft cryopreservation minimizes HLA mismatching risk after organ transplantation. Applying AFpeps to formulate bioinks with optimal rheology in extrusion-based 3D cryobiopriners expedites the bench-to-beside transition of bioprinted scaffolds. This study advocates that the fine-tuned synthetic or insect-derived AFpeps, forming round blunt-shape crystals, are biomedically broad-spectrum, and cell-permeable AFpeps from marine and plant sources, which result in sharp ice crystals, are appropriate for cryosurgery. Perspectives of the available room for developing peptide mimetics in favor of higher activity and stability and peptide-functionalized nanoparticles for enhanced delivery are delineated. Finally, antitumor immune activation by cryoimmunotherapy as an autologous in-vivo tumor lysate vaccine has been illustrated.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Hou Y, Ning X, Liu Z, Li R, Fan Y, Li N, Li X, Xu X, Li K, Liu Q. Strong self-association of chitosan microgels at interface mediated high stabilities in Pickering emulsion. Int J Biol Macromol 2025; 289:138796. [PMID: 39689789 DOI: 10.1016/j.ijbiomac.2024.138796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
The spontaneous self-organization of naturally-occurring polysaccharide particles into a thick and robust gel network at interface in Pickering emulsion is challenging. Inspired by the phenomenon that chitosan microgels (CSMs) with a certain size could self-associate into a solidified gel phase upon freezing, here we tentatively used CSMs to construct a highly-stable Pickering emulsion. CSMs can form a stable Langmuir's layer at the water/oil interface through the network deformation and re-arrangement of dangling chains, while the subsequent negative polymer coating can avoid the bridging resulting from the cross-association for CSMs on different emulsion droplets upon freezing. The experimental results indicated that the emulsion showed excellent features, including the wide pH range stability (3-12), long-term storage stability (> 3 months), thermal stability (121 °C, 30 min). Moreover, CSMs could self-associate into a reliable gel layer around the oil droplet in freezing, leading to the better freeze-thaw stability (1-3 cycles). The negative coating not only facilitates the formation of interfacial gel network around each emulsion droplet, but also produces huge steric hindrance and electrostatic repulsion to suppress the coalescence. This work provides a different way to modulate the interfacial structure, thus developing a more stable polysaccharide-based Pickering emulsion.
Collapse
Affiliation(s)
- Yarui Hou
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Xuan Ning
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Zeqi Liu
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Ran Li
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Yiyuan Fan
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Na Li
- College of Biological Sciences and Technology, Taiyuan Normal University, No. 319 Daxue Street, Yuci District, Jinzhong 030619, China
| | - Xiaojun Li
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Kai Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500 Kunming, China.
| | - Qingye Liu
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
| |
Collapse
|
5
|
Yu S, Zhi Z, Wang Y, Chen F, Pang J, Wu C. Investigating the cryoprotective mechanism of phosphorylated nano-chitin in shrimp (Litopenaeus vannamei) during frozen storage. Food Res Int 2025; 203:115794. [PMID: 40022326 DOI: 10.1016/j.foodres.2025.115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
This study aims to explore the cryoprotective effects of phosphorylated surface deacetylated chitin nanofibers (PS-ChNFs) on shrimp. Compared to the control- and those treated with surface deacetylated chitin nanofibers (S-ChNFs) or sodium tripolyphosphate (STPP), the PS-ChNFs-treated group showed lower thawing losses and cooking losses, alongside higher myofibrillar protein concentrations and Ca2+-ATPase activity in frozen shrimp. Additional, PS-ChNFs-treated significantly delayed protein aggregation and the deterioration of the secondary structure in shrimp during frozen storage (p < 0.05). Furthermore, microscopy analysis revealed PS-ChNFs effectively inhibited ice crystal growth and slowed the damage to muscle tissue structures. Molecular simulations suggested that the cryoprotective effect of PS-ChNFs were primarily achieved through the "water substitution" and "glassy state" hypotheses, wherein PS-ChNFs formed hydrogen bonds with water and reduced the number of water molecules around myosin. These findings indicate that PS-ChNFs hold significant potential as cryoprotectants for freeze-stored aquatic products.
Collapse
Affiliation(s)
- Shan Yu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Zijian Zhi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yufei Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Fujie Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
6
|
Zhao S, Wu J, Guo Z, Liu Q, Guo L, Kong J, Zuo M, Ding C. Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time. Carbohydr Polym 2025; 348:122934. [PMID: 39567109 DOI: 10.1016/j.carbpol.2024.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024]
Abstract
A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing characteristics indicated that treatments with 10 mT static magnetic fields (SMF) and 6 mT alternating magnetic fields (AMF) yielded optimal results, significantly reducing the duration of the maximum ice crystal generation zone by approximately 18 min. Compared to no magnetic field (NMF) treatment, a 16-day frozen storage experiment showed significant improvements in the texture characteristics of cooked rice treated with magnetic fields. However, the moisture content of rice treated with AMF closely resembled those of freshly cooked rice, with a slight increase in yellowness compared to SMF treatment. Throughout the storage period, the crystallinity for the AMF treatment exceeded that of the SMF treatment by 2.99 %. Furthermore, compared to SMF treatment, water molecules in FCR treated with AMF are more tightly bound. Given the superior sensory scores in the AMF treatment, it can be concluded that while SMF reduces color degradation, AMF is more effective in preserving moisture, and structural density. Hence, magnetic fields, especially AMF, emerge as a promising auxiliary technology for FCR, offering a theoretical basis for advancing cold chain logistics technology for cooked rice.
Collapse
Affiliation(s)
- Siqi Zhao
- College of Food Science and Engineering, Nanjing University of Finance and Economics / Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jiawei Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics / Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhenqi Guo
- College of Food Science and Engineering, Nanjing University of Finance and Economics / Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiang Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics / Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Liping Guo
- College of Food Science and Engineering, Nanjing University of Finance and Economics / Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jianlei Kong
- National Engineering Research Center for Agri-Product Quality Traceability / China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zuo
- National Engineering Research Center for Agri-Product Quality Traceability / China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Chao Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics / Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; Xuzhou University of Technology, Xuhzou 221000, China.
| |
Collapse
|
7
|
Xie M, Qian G, Ye Q, Zhang Y, Wang M, Deng Z, Yu Y, Chen C, Li H, Li D. Dual-crosslinked reduced graphene oxide/polyimide aerogels possessing regulable superelasticity, fatigue resistance, and rigidity for thermal insulation and flame retardant protection in harsh conditions. J Colloid Interface Sci 2024; 676:1011-1022. [PMID: 39068833 DOI: 10.1016/j.jcis.2024.07.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Polyimide (PI) aerogels have various applications in aerospace, national defense, military industry, and rail transit equipment. This paper reports a series of ultra-lightweight, high elasticity, high strength, low thermal conductivity, and high flame retardant rGO/PI nanocomposite aerogels prepared by the ice templating method. The effects of freezing processes (unidirectional freezing and random freezing), chemical composition, and environmental temperature (-196-200 °C) on the morphology, mechanical, and thermal properties of the aerogels were systematically studied. The results indicated that unidirectional aerogels exhibit anisotropic mechanical properties and thermal performance. Compression in the horizontal direction showed high elasticity, high fatigue resistance, and superior thermal insulation. Meanwhile, in the vertical direction, it demonstrated high strength (PI-G-9 reaching 14 MPa). After 10,000 cycles of compression in the horizontal direction (at 50 % strain), the unidirectional PI-G-5 aerogel still retains 90.32 % height retention, and 78.5 % stress retention, and exhibited a low stable energy loss coefficient (22.11 %). It also possessed a low thermal conductivity (32.8 mW m-1 K-1) and demonstrated good thermal insulation performance by sustaining at 200 °C for 30 min. Interestingly, the elasticity of the aerogels was enhanced with decreasing temperatures, achieving a height recovery rate of up to 100 % when compressed in liquid nitrogen. More importantly, the rGO/PI aerogels could be utilized over a wide temperature range (-196-200 °C) and had a high limiting oxygen index (LOI) ranging from 43.3 to 48.1 %. Therefore, this work may provide a viable approach for designing thermal insulation and flame-retardant protective materials with excellent mechanical properties that are suitable for harsh environments.
Collapse
Affiliation(s)
- Mingzhu Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guangtao Qian
- Collaborative Innovation Center for Civil Aviation Composites, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Qibin Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yicai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mengxia Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiqing Deng
- Shanghai Institute of Precision Measurement and Test, Shanghai 201109, China
| | - Youhai Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chunhai Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dandan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Jia G, Zhang H. Control of emulsion crystal growth in low-temperature environments. Adv Colloid Interface Sci 2024; 334:103313. [PMID: 39437491 DOI: 10.1016/j.cis.2024.103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Currently, various types of emulsions can be applied to a wide range of systems. Emulsions are thermodynamically unstable systems, and their crystallization can be affected by a variety of factors. The nucleation and growth processes of emulsion crystal networks are determined on the basis of reported theoretical and experimental methods. The issues addressed include changes in the apparent crystal morphology of samples, changes in thermal properties with respect to temperature, changes in boundary conditions, and changes in the various applications of emulsions as feedstocks or in processing and storage methods. Changes in a variety of common emulsions during constant-temperature storage and unavoidable temperature fluctuations (e.g., multiple freeze-thaw cycles) are considered. Different methods for controlling the crystalline stability of these colloidal systems are also discussed. This review outlines the crystallization mechanism of emulsions during their food processing and storage.
Collapse
Affiliation(s)
- Guoliang Jia
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China; Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China.
| | - Huawen Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Wang Y, Huang B, Li Z. Electric Field-Enhanced Ion Rejection Rate in Freeze Desalination. Chemphyschem 2024; 25:e202400397. [PMID: 38960874 DOI: 10.1002/cphc.202400397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Freeze desalination is an appealing method for seawater desalination through freezing seawater. The percentage of ions in the liquid phase, which is termed ion rejection rate, is a critical factor affecting the performance of freeze desalination. Improving the ion rejection rate is an important topic for freeze desalination. In this work, we investigate the effects of electric fields on the ion rejection rate during the freezing of seawater through molecular dynamics simulations. It is found that the ion rejection rate increases with increasing electric field strength. The enhanced ion rejection rate is due to the reduction of the energy barrier at the ice-water interface caused by the electric field, which affects the orientation of water molecules and ion-water interactions. However, the electric field hinders the ice growth rate, which affects the productivity of freeze desalination. Nevertheless, the finding in this work offers a new idea to improve the ion rejection rate. Practically, a trade-off needs to be found to optimize the overall performance of freeze desalination.
Collapse
Affiliation(s)
- Yixiang Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Baoling Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhigang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
10
|
Wang B, Liang J, Zhou C, Zhang J, Ji L, Li C, Mei X, Chen H. Research Progress on the Effect and Mechanism of Superchilling Preservation Technology on Meat Quality Control. Foods 2024; 13:3309. [PMID: 39456370 PMCID: PMC11507462 DOI: 10.3390/foods13203309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
During storage and transportation, meat is susceptible to the effects of microorganisms, endogenous enzymes, and oxygen, leading to issues such as moisture loss, spoilage, and deterioration. Superchilling, as a preservation method that combines the benefits of refrigeration and freezing, can effectively slow the growth and reproduction of microorganisms, control protein and lipid oxidation, reduce water loss, and maintain the quality and sensory properties of meat. This paper reviews the current application status of superchilling technology in meat preservation, focusing on the mechanisms of ice crystal formation, water retention, tenderness preservation, protein and fat oxidation control, and microbial growth inhibition under superchilling conditions. Additionally, it summarizes the research progress on the combined application of superchilling with emerging technologies such as electric fields, magnetic fields, and electron beams in meat preservation and explores its potential and future prospects for improving meat quality. The aim is to provide scientific evidence and technical support for the application of superchilling technology in enhancing meat quality.
Collapse
Affiliation(s)
- Bo Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.L.); (L.J.)
| | - Jiamin Liang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.L.); (L.J.)
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China;
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.L.); (L.J.)
| | - Lili Ji
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.L.); (L.J.)
| | - Congyan Li
- Sichuan Academy of Animal Husbandry Science, Chengdu 610106, China; (C.L.); (X.M.)
| | - Xiuli Mei
- Sichuan Academy of Animal Husbandry Science, Chengdu 610106, China; (C.L.); (X.M.)
| | - Hongyue Chen
- Chongqing Animal Husbandry and Veterinary Technology Extension Station, Chongqing 710014, China;
| |
Collapse
|
11
|
Huang W, Wang T, Liu H, Zhu X, Liu CH, Yue Y, Wang G, Hou L, Liu H, Nie L, An X, Yu X. Time-Responsive Visualization of Cryogenic Detection Based on the Dynamic Optical Signals of CaZnOS. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51080-51088. [PMID: 39267398 DOI: 10.1021/acsami.4c09647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Cryogenic detection technology is essential to ensure safety and effectiveness in fields such as medical refrigeration, cold chain transport, and cryogenic bioengineering. In this paper, a time-responsive visual cryogenic detection strategy is developed based on the storage properties of CaZnOS: Pb2+, Pr3+ phosphors with shallow traps. Since the carrier release rate from the trap center receives the influence of ambient temperature and storage time, the storage time of the temperature-sensitive product can be determined by the different optical signals of CaZnOS: Pb2+, Pr3+ phosphors obtained under 980 nm laser irradiation. In addition, CaZnOS: Pb2+, Pr3+ phosphors with multimode luminescence enable time-responsive visual detection of ambient temperature under extreme conditions. This work not only demonstrates the potential of CaZnOS: Pb2+, Pr3+ phosphors for visual detection of temperature and time but also paves the way for the development of various applications relying on cryogenic monitoring.
Collapse
Affiliation(s)
- Wenlong Huang
- College of Materials and Chemistry & Chemical Engineering, Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu 610059, China
| | - Ting Wang
- College of Materials and Chemistry & Chemical Engineering, Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu 610059, China
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hongxue Liu
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Xuanyu Zhu
- College of Materials and Chemistry & Chemical Engineering, Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu 610059, China
| | - Chun Hai Liu
- College of Materials and Chemistry & Chemical Engineering, Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu 610059, China
| | - Yang Yue
- School of Mechanical Engineering, Institute for Advanced Materials, Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, China
| | - Guohao Wang
- College of Materials and Chemistry & Chemical Engineering, Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu 610059, China
| | - Lihui Hou
- College of Materials and Chemistry & Chemical Engineering, Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu 610059, China
| | - Haozhe Liu
- College of Materials and Chemistry & Chemical Engineering, Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu 610059, China
| | - Lin Nie
- College of Materials and Chemistry & Chemical Engineering, Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu 610059, China
| | - Xin An
- School of Mechanical Engineering, Institute for Advanced Materials, Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, China
| | - Xue Yu
- School of Mechanical Engineering, Institute for Advanced Materials, Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, China
| |
Collapse
|
12
|
Zhang P, Wang H, Xia Z, Xing S, Li J, Wang J, Guo L, Guo Z, Ji ZY, Qu L. Hydrogen-Bond-Repairing Solar Evaporator with Reconstructed Large-Width Channels for Durable Solarizing Seawater. NANO LETTERS 2024; 24:11615-11623. [PMID: 39225704 DOI: 10.1021/acs.nanolett.4c03179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Conventional solarizing seawater suffers from inefficiency and space constraints. Interfacial solar vapor generation (ISVG) presents an energy-efficient alternative, yet the scalability, adaptability, and durability of a solar evaporator for practical use are remaining concerns. Herein, a hydrogen-bond-repairing solar evaporator featuring reconstructed large-width channels is proposed for ongoing solarization of seawater in ISVG. The polyacrylamide/trehalose/graphene hydrogel (PTGH) exhibits excellent mechanical properties and large-width salt discharge channels. PTGH achieves a notable water evaporation rate of 2.82 kg m-2 h-1 under 1 sun and remains effective even in low-temperature environments. The large-area PTGH is able to continuously operate for solarizing seawater under different conditions, until raw brine is highly concentrated, and eventually solid salt is separated from water. Compared to conventional solarizing seawater, PTGH can save 66.67%-75% of time or land to obtain the same amount of solid salt.
Collapse
Affiliation(s)
- Panpan Zhang
- Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Haiyang Wang
- Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Zhenyuan Xia
- Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| | - Shijie Xing
- Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jie Li
- Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jing Wang
- Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Linpei Guo
- Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Zhiyuan Guo
- Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Zhi-Yong Ji
- Engineering Research Center of Seawater Utilization of Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Liangti Qu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
13
|
Ma Y, Bi J, Feng S, Wu Z, Yi J. Higher molecular weight pectin inhibits ice crystal growth and its effect on the microstructural and physical properties of pectin cryogels. Carbohydr Polym 2024; 340:122312. [PMID: 38858011 DOI: 10.1016/j.carbpol.2024.122312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Understanding the formation of ice crystals is essential for tailoring the microstructure and physical properties of cryogels. This study investigated the effects and mechanisms of pectin molecular weight (Mw) on impacting ice crystal formation. Pectin fractions various Mw (10.13-212.20 kDa) were prepared by hydrothermal method. The solution of high Mw pectin fractions exhibited higher contact angle, lower water freedom, and stronger adsorption of water molecules. The splat experiment and molecular dynamic (MD) results confirmed that higher Mw pectin have stronger ice crystal growth inhibition activity than lower Mw pectin. Furthermore, the pore size distribution of the cryogel increased from 98-203 μm to 105-267 μm as the molecular weight decreased from 212.2 kDa to 121.0 kDa. Additionally, in the higher Mw pectin cryogel, stronger mechanical strength was observed. These findings suggested that changing the molecular weight of pectin has the potential to regulate the ice crystal growth, microstructure and physical properties of frozen products.
Collapse
Affiliation(s)
- Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; College of Mechanical Engineering, Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin University of Science and Technology, Tianjin, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| | - Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhonghua Wu
- College of Mechanical Engineering, Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin University of Science and Technology, Tianjin, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
14
|
Zheng O, Zhang L, Sun Q, Liu S. Basic Theory of Ice Crystallization Based on Water Molecular Structure and Ice Structure. Foods 2024; 13:2773. [PMID: 39272539 PMCID: PMC11395702 DOI: 10.3390/foods13172773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Freezing storage is the most common method of food preservation and the formation of ice crystals during freezing has an important impact on food quality. The water molecular structure, mechanism of ice crystal formation, and ice crystal structure are elaborated in the present review. Meanwhile the methods of ice crystal characterization are outlined. It is concluded that the distribution of the water molecule cluster structure during the crystallization process directly affects the formed ice crystals' structure, but the intrinsic relationship needs to be further investigated. The morphology and distribution of ice crystals can be observed by experimental methods while simulation methods provide the possibility to study the molecular structure changes in water and ice crystals. It is hoped that this review will provide more information about ice crystallization and promote the control of ice crystals in frozen foods.
Collapse
Affiliation(s)
- Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Li Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| |
Collapse
|
15
|
Yang T, Zhang Y, Guo L, Li D, Liu A, Bilal M, Xie C, Yang R, Gu Z, Jiang D, Wang P. Antifreeze Polysaccharides from Wheat Bran: The Structural Characterization and Antifreeze Mechanism. Biomacromolecules 2024; 25:3877-3892. [PMID: 38388358 DOI: 10.1021/acs.biomac.3c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Exploring a novel natural cryoprotectant and understanding its antifreeze mechanism allows the rational design of future sustainable antifreeze analogues. In this study, various antifreeze polysaccharides were isolated from wheat bran, and the antifreeze activity was comparatively studied in relation to the molecular structure. The antifreeze mechanism was further revealed based on the interactions of polysaccharides and water molecules through dynamic simulation analysis. The antifreeze polysaccharides showed distinct ice recrystallization inhibition activity, and structural analysis suggested that the polysaccharides were arabinoxylan, featuring a xylan backbone with a majority of Araf and minor fractions of Manp, Galp, and Glcp involved in the side chain. The antifreeze arabinoxylan, characterized by lower molecular weight, less branching, and more flexible conformation, could weaken the hydrogen bonding of the surrounding water molecules more evidently, thus retarding the transformation of water molecules into the ordered ice structure.
Collapse
Affiliation(s)
- Tao Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yining Zhang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Li Guo
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Anqi Liu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Muhammad Bilal
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology, and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- The Sanya Institute of Nanjing Agricultural University, Sanya 572024, People's Republic of China
| |
Collapse
|
16
|
Song J, Tas RP, Martens MCM, Ritten MVM, Wu H, Jones ER, Lebouille JGJL, Vis M, Voets IK, Tuinier R. Freezing-mediated formation of supraproteins using depletion forces. J Colloid Interface Sci 2024; 665:622-633. [PMID: 38552579 DOI: 10.1016/j.jcis.2024.03.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
Hypothesis Long-acting formulations such as microparticles, injectable depots and implantable devices can realize spatiotemporally controlled delivery of protein drugs to extend their therapeutic in vivo half-lives. To efficiently encapsulate the protein drugs into such drug delivery systems, (sub)micron-sized protein particles are needed. The formation of micronized supraproteins can be induced through the synergistic combination of attractive depletion forces and freezing. The size of the supraproteins can be fine-tuned from submicron to several microns by adjusting the ice crystallization rate through the freeze-quench depth, which is set by the target temperature. Methods Supraprotein micron structures were prepared from protein solutions under various conditions in the presence and absence of nonadsorbing polyethylene glycol. Scanning electron microscopy and dynamic light scattering were employed to determine the sizes of the supraproteins and real-time total internal reflection fluorescent microscopy was used to follow the supraprotein formation during freezing. The protein secondary structure was measured before and after micronization by circular dichroism. A phase diagram of a protein-polyethylene glycol mixture was theoretically predicted to investigate whether the depletion interaction can elucidate the phase behavior. Findings Micronized protein supraparticles could be prepared in a controlled manner by rapid freeze-drying of aqueous mixtures of bovine serum albumin, horseradish peroxidase and lysozyme mixed with polyethylene glycol. Upon freezing, the temperature quench initiates a phase separation process which is reminiscent of spinodal decomposition. This demixing is subsequently arrested during droplet phase separation to form protein-rich microstructures. The final size of the generated protein microparticles is determined by a competition between phase separation and cooling rate, which can be controlled by target temperature. The experimental phase diagram of the aqueous protein-polyethylene glycol dispersion aligns with predictions from depletion theory for charged colloids and nonadsorbing polymers.
Collapse
Affiliation(s)
- Jiankang Song
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| | - Roderick P Tas
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Laboratory of Self-organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Max C M Martens
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Manon V M Ritten
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Hanglong Wu
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | | | | | - Mark Vis
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Ilja K Voets
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Laboratory of Self-organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Remco Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
17
|
Zhao M, Mu L, Guo Z, Lv W, Jiang H, Li B. Double-layer microcapsules based on shellac for enhancing probiotic survival during freeze drying, storage, and simulated gastrointestinal digestion. Int J Biol Macromol 2024; 267:131483. [PMID: 38599426 DOI: 10.1016/j.ijbiomac.2024.131483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Probiotics are susceptible to diverse conditions during processing, storage, and digestion. Here, shellac (SC), sodium alginate (SA), coconut oil (CO), soybean oil (SO), and trehalose (AL) were used to prepare microcapsules aiming to improve the survival of Lactiplantibacillus plantarum KLDS1.0318 during freeze-drying, storage process, and gastrointestinal digestion. The results showed that for SA/AL/SC/CO and SA/AL/SC/SO, the survival loss decreased by 51.2 % and 51.0 % after a freeze-drying process compared with microcapsules embedded by SA; the viable bacteria count loss decreased by 4.36 and 4.24 log CFU/mL compared with free cell (CON) during storage for 28 d under 33%RH at 25 °C, respectively; while for simulating digestion in vitro, the survival loss decreased by 3.05 and 2.70 log CFU/mL, 0.63 and 0.55 log CFU/mL after digestion at simulated gastric fluid for 120 min and small intestine fluid for 180 min, respectively (P < 0.05). After microcapsules were added to fermented dairy stored at 4 °C for 21 d, the viable bacteria count of SA/AL/SC/CO and SA/AL/SC/SO significantly increased by 2.10 and 1.70 log CFU/mL compared with CON, respectively (P < 0.05). In conclusion, the current study indicated that shellac-based probiotic microcapsules have superior potential to protect and deliver probiotics in food systems.
Collapse
Affiliation(s)
- Mengna Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Longkai Mu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhengtao Guo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wenqing Lv
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haixin Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
18
|
Sun Q, Kong B, Zheng O, Liu S, Dong X. Tracking protein aggregation behaviour and emulsifying properties induced by structural alterations in common carp (Cyprinus carpio) myofibrillar protein during long-term frozen storage. Int J Biol Macromol 2024; 264:130171. [PMID: 38360237 DOI: 10.1016/j.ijbiomac.2024.130171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
The effect of ultrasound-assisted immersion freezing (UIF), air freezing (AF), and immersion freezing (IF) on the protein structure, aggregation, and emulsifying properties of common carp (Cyprinus carpio) myofibrillar protein during frozen storage were evaluated in the present study. The result showed that, compared with AF and IF samples, UIF sample had higher reactive/total sulfhydryl, protein solubility, and lower protein turbidity (P < 0.05), indicating that UIF was beneficial to inhibit protein oxidation and aggregation induced by frozen storage. UIF inhibited the alteration of secondary structure and tertiary structure during frozen storage. Meanwhile, UIF sample had higher emulsifying activity index, and smaller emulsion droplet diameter than AF and IF samples (P < 0.05), suggesting that UIF was beneficial for maintaining the emulsifying properties of protein during storage. In general, UIF is a potential and effective method to suppress the decrease in protein emulsifying properties during long-term frozen storage.
Collapse
Affiliation(s)
- Qinxiu Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
19
|
Chang X, Liu H, Zhuang K, Chen L, Zhang Q, Chen X, Ding W. Study on the Quality Variation and Internal Mechanisms of Frozen Oatmeal Cooked Noodles during Freeze-Thaw Cycles. Foods 2024; 13:541. [PMID: 38397519 PMCID: PMC10887751 DOI: 10.3390/foods13040541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Frozen staple food, attributed to its favorable taste and convenience, has a promising development potential in the future. Frequent freezing and thawing, however, will affect its quality. This study simulated several freeze-thaw cycles (FTC) that may occur during the cold chain process of frozen oatmeal cooked noodles (FOCN) production to consumption. The quality changes and their mechanisms were elucidated using methods such as differential scanning calorimetry (DSC), low-field nuclear magnetic resonance (LF-NMR), Fourier-transform infrared spectroscopy (FTIR), confocal laser scanning microscopy (CLSM), texture analysis, and sensory evaluation. The freezable water content of the FOCN decreased because of the FTC treatment, and the relative content of total water in FOCN also decreased accordingly. The increase in β-Turn after FTC induced disorder in the secondary structure of proteins, causing the protein microstructure to become loose and discontinuous, which in turn reduced the water-holding capacity of FOCN. Additionally, FTC reduced the chewiness and sensory score of FOCN. This research will contribute a theoretical foundation for optimizing the cold chain process.
Collapse
Affiliation(s)
- Xianhui Chang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hairong Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
| | - Kun Zhuang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qi Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xi Chen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenping Ding
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.C.); (H.L.); (K.Z.); (L.C.); (Q.Z.); (X.C.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
20
|
Xie Y, Zhou K, Chen B, Ma Y, Tang C, Li P, Wang Z, Xu F, Li C, Zhou H, Xu B. Mechanism of low-voltage electrostatic fields on the water-holding capacity in frozen beef steak: Insights from myofilament lattice arrays. Food Chem 2023; 428:136786. [PMID: 37429235 DOI: 10.1016/j.foodchem.2023.136786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
This study investigated the impact of low-voltage electrostatic field-assisted freezing on the water-holding capacity of beef steaks. The enhances mechanism of water-holding capacity by electrostatic field was elucidated through the detection of dynamic changes in the myofilament lattice and the construction of an in vitro myosin filaments model. The findings demonstrated that the disorder of the myofilament array, resulted from the aggregation of myosin filaments during freezing, is a crucial factor responsible for the water loss. The intervention of the electrostatic field can effectively reduce the myofibril density by 18.7%, while maintaining a regular lattice array by modulating electrostatic and hydrophobic interactions between myofibrils. Moreover, the electrostatic field significantly inhibited the migration of immobilized water to free water, thus resulting in an increase in the water-holding capacity of myofibrils by 36%. This work provides insights into the underlying mechanisms of water loss in frozen steaks and its regulation.
Collapse
Affiliation(s)
- Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Cheng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Feiran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
21
|
Chen Q, Xie Y, Yu H, Guo Y, Yao W. Non-destructive prediction of colour and water-related properties of frozen/thawed beef meat by Raman spectroscopy coupled multivariate calibration. Food Chem 2023; 413:135513. [PMID: 36745947 DOI: 10.1016/j.foodchem.2023.135513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Freeze-thaw accelerated the colour deterioration of beef with the increase of colour b* and the decrease of colour a* values (P < 0.05). The maximum exudate loss reached 22 % after the seventh freeze-thaw. A strong correlation between the transversal relaxation time T21 and thawing loss may mean that T21 water contributed to the exudate loss during freeze-thaw. Afterwards, competitive adaptive reweighted sampling-partial least square (CARS-PLS) has the best prediction in thawing loss of frozen/thawed beef with correlation coefficients of prediction (Rp) of 0.971, and root mean square error of prediction (RMSEP) of 1.436. Besides, Uninformative variable elimination-partial least squares (UVE-PLS) showed good prediction effects on colour values (Rp = 0.932 - 0.994) and water content (Rp = 0.928, RMSEP = 0.582) of frozen/thawed beef. Therefore, this work demonstrated that Raman spectroscopy coupled with multivariate calibration has a good ability for non-destructive prediction in colour and water-related properties of frozen/thawed beef.
Collapse
Affiliation(s)
- Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, China
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, China
| | - Hang Yu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, China
| | - Yahui Guo
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, China
| | - Weirong Yao
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, China.
| |
Collapse
|
22
|
Buniowska-Olejnik M, Mykhalevych A, Polishchuk G, Sapiga V, Znamirowska-Piotrowska A, Kot A, Kamińska-Dwórznicka A. Study of Water Freezing in Low-Fat Milky Ice Cream with Oat β-Glucan and Its Influence on Quality Indicators. Molecules 2023; 28:molecules28072924. [PMID: 37049686 PMCID: PMC10096017 DOI: 10.3390/molecules28072924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
The work is devoted to the study of the functional and technological properties of oat β-glucan in low-fat milky ice cream (2% fat) in comparison with the stabilization system Cremodan® SI 320. β-glucan (0.5%) has a greater effect on the cryoscopic temperature of ice cream mixes than Cremodan® SI 320 in the same amount (decrease by 0.166 °C vs. 0.078 °C), which inhibits the freezing process of free water in ice cream during technological processing in the temperature range from -5 to -10 °C. Microscopy of ice cream samples after freezing and hardening shows the ability of β-glucan to form a greater number of energy bonds due to specific interaction with milk proteins. Analysis of the microstructure of ice cream samples during 28 d of storage confirms the ability of oat β-glucan to suppress the growth of ice crystals more effectively than Cremodan® SI 320. Oat β-glucan gives ice cream a rich creamy taste, increases overrun and resistance to melting, which brings this type of frozen dessert closer to a full-fat analogue (10% fat).
Collapse
Affiliation(s)
- Magdalena Buniowska-Olejnik
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklinskiej 2D St., 35-601 Rzeszow, Poland
| | - Artur Mykhalevych
- Department of Milk and Dairy Products Technology, Educational and Scientific Institute of Food Technologies, National University of Food Technologies, Volodymyrska 68 St., 01033 Kyiv, Ukraine
| | - Galyna Polishchuk
- Department of Milk and Dairy Products Technology, Educational and Scientific Institute of Food Technologies, National University of Food Technologies, Volodymyrska 68 St., 01033 Kyiv, Ukraine
| | - Victoria Sapiga
- Department of Milk and Dairy Products Technology, Educational and Scientific Institute of Food Technologies, National University of Food Technologies, Volodymyrska 68 St., 01033 Kyiv, Ukraine
| | - Agata Znamirowska-Piotrowska
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklinskiej 2D St., 35-601 Rzeszow, Poland
| | - Anna Kot
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Anna Kamińska-Dwórznicka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C, 02-776 Warsaw, Poland
| |
Collapse
|
23
|
Quantitative analysis perspective: Ice growth and super-chilling state of frozen dough under quick freezing. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
24
|
Effect of active ice nucleation bacteria on freezing and the properties of surimi during frozen storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Du X, Wang B, Li H, Liu H, Shi S, Feng J, Pan N, Xia X. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Compr Rev Food Sci Food Saf 2022; 21:4812-4846. [PMID: 36201389 DOI: 10.1111/1541-4337.13040] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
Freezing can prolong the shelf life of muscle foods and is widely used in their preservation. However, inevitable quality deterioration can occur during freezing, frozen storage, and thawing. This review explores the eating quality deterioration characteristics (color, water holding capacity, tenderness, and flavor) and mechanisms (irregular ice crystals, oxidation, and hydrolysis of lipids and proteins) of frozen muscle foods. It also summarizes and classifies the novel physical-field-assisted-freezing technologies (high-pressure, ultrasound, and electromagnetic) and bioactive antifreeze (ice nucleation proteins, antifreeze proteins, natural deep eutectic solvents, carbohydrate, polyphenol, phosphate, and protein hydrolysates), regulating the dynamic process from water to ice. Moreover, some novel thermal and nonthermal thawing technologies to resolve the loss of water and nutrients caused by traditional thawing methods were also reviewed. We concluded that the physical damage caused by ice crystals was the primary reason for the deterioration in eating quality, and these novel techniques promoted the eating quality of frozen muscle foods under proper conditions, including appropriate parameters (power, time, and intermittent mode mentioned in ultrasound-assisted techniques; pressure involved in high-pressure-assisted techniques; and field strength involved in electromagnetic-assisted techniques) and the amounts of bioactive antifreeze. To obtain better quality frozen muscle foods, more efficient technologies and substances must be developed. The synergy of novel freezing/thawing technology may be more effective than individual applications. This knowledge may help improve the eating quality of frozen muscle foods.
Collapse
Affiliation(s)
- Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
26
|
Lin D, Sun LC, Chen YL, Liu GM, Miao S, Cao MJ. Shrimp spoilage mechanisms and functional films/coatings used to maintain and monitor its quality during storage. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Chen Y, Xiao W, Jia G, Sun A. Initial ice growth control mechanism for CMC-Na in model systems. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|