1
|
Ma W, Zhang Q, Xiang D, Mao K, Xue J, Chen Z, Chen Z, Du W, Zhai K, Zhang H. Metal-Organic Framework (MOF)-Based Sensors for Mercury (Hg) Detection: Design Strategies and Recent Progress. Chemistry 2025; 31:e202403760. [PMID: 39567351 DOI: 10.1002/chem.202403760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/22/2024]
Abstract
Monitoring mercury (Hg) is critical for environmental and public health. Metal-organic framework (MOF)-based sensors demonstrate the advantage of high sensitivity and rapid response. We summarize the advances of MOF sensors for Hg2+ detection from the perspective of MOF type and role in the sensors. First, we introduce three MOFs used in Hg sensors-UIO, ZIF, and MIL-that have demonstrated superior performance. Then, we discuss the specifics of MOF-based sensors for Hg2+ detection in terms of the recognition and signal elements. Currently, the recognition elements include T-rich aptamers, noble metal nanoparticles, central metal ions, and organic functional groups inherent to MOFs. Sensors with fluorescence and colorimetric signals are the two main types of optical MOF sensors used for Hg detection. Electrochemical sensors have also been fabricated, but these are less frequently reported, potentially due to the limited conductivity and cycling stability of MOFs. Notably, dual-signal sensors mitigate background signals interference and enhance the accuracy of Hg2+ detection. Furthermore, to facilitate portability and user-friendliness, portable devices such as microfluidics, paper-based devices, and smartphones have been developed for Hg2+ detection, showcasing potential applications. We also address the challenges related to MOF-based sensors for Hg2+ and future outlook.
Collapse
Affiliation(s)
- Wei Ma
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Qidu Zhang
- College of Civil Engineeing, Tongji University, Shanghai, 200092, China
| | - Dongshan Xiang
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jiaqi Xue
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhen Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Kun Zhai
- School of Chemistry and Environmental Engineeing, Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
2
|
Tian Y, Mou Y, Zhang W, Sun Z, Yin Y, Han L, Chen D, Guo Y, Sun X, Li F, Wu Y. A fluorescence and colorimetric dual-mode aptasensor for kanamycin detection. Biosens Bioelectron 2025; 268:116911. [PMID: 39520852 DOI: 10.1016/j.bios.2024.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This study presents the development of a dual-mode aptasensor for the sensitive detection of kanamycin (KAN), utilizing both fluorescence and colorimetric signals. The aptasensor was constructed using amino-functionalized silica nanoparticles (SiO2) combined with copper nanoclusters (CuNCs) and DNA-templated silver nanoclusters (DNA-AgNCs). Encapsulating CuNCs within SiO2 (CuNCs@SiO2) enhanced their stability by shielding them from environmental interference, while maintaining their bright blue fluorescence as a reference signal. DNA-AgNCs, which contain a KAN-recognizing aptamer and emit red fluorescence, served as the response signal. Single-stranded DNA was conjugated to CuNCs@SiO2 through a reaction between amino and carboxyl groups, and AgNCs were synthesized using the single-stranded DNA as a template. In the absence of KAN, the aptamer fragments in the DNA-AgNCs bound to gold-palladium nanoparticles (Au@PdNPs), resulting in fluorescence resonance energy transfer (FRET) and quenching of the fluorescence of DNA-AgNCs. When KAN bound to the aptamers, this disrupted the FRET, leading to fluorescence recovery. Increasing KAN concentration led to the higher fluorescence intensity of DNA-AgNCs, with a visible color change from blue to red under ultraviolet light. A WeChat mini program was developed to rapidly detect KAN by analyzing the relationship between RGB values and KAN concentration. The ratiometric fluorescence and colorimetric modes of the aptasensor exhibited low detection limits of 7.3 nM and 14.5 nM, respectively. The aptasensor was successfully applied to detect KAN in food samples. This aptasensor, combined with a smartphone, offers high practical utility for sensitive KAN detection.
Collapse
Affiliation(s)
- Yuhang Tian
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Yaoting Mou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Wanqi Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Zhicong Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Yanhao Yin
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Lu Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Dongfei Chen
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.
| | - Yanfang Wu
- Department of Chemistry, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
3
|
Zhang X, Zhu W, Mei L, Zhang S, Liu J, Wang F. Machine Learning-Enhanced Bacteria Detection Using a Fluorescent Sensor Array with Functionalized Graphene Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3084-3096. [PMID: 39747818 DOI: 10.1021/acsami.4c20078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Pathogenic bacteria are the source of many serious health problems, such as foodborne diseases and hospital infections. Timely and accurate detection of these pathogens is of vital significance for disease prevention, control of epidemic spread, and protection of public health security. Rapid identification of pathogenic bacteria has become a research focus in recent years. In contrast to traditional large-scale detection equipment, the fluorescent sensor array developed in this study can detect bacteria within just five min and is cost-effective. The array employs nitrogen- and sulfur-doped graphene quantum dots (NS-GQDs) synthesized through a simple hydrothermal process, making it environmentally friendly by avoiding toxic metal elements. Functionalized with antibiotics, spectinomycin, kanamycin, and polymyxin B, the NS-GQDs (renamed as S-NS-GQDs, K-NS-GQDs, and B-NS-GQDs) exhibit variable affinities for different bacteria, enabling broad-spectrum detection without targeting specific species. Upon binding with bacteria, the fluorescence intensity of the functionalized NS-GQDs decreases significantly. The sensor array exhibits distinct fluorescence responses to different bacterial species, which can be distinguished by using various machine learning algorithms. The results demonstrate that the platform can quickly and accurately identify and quantify five bacterial species, showing excellent performance in terms of accuracy, sensitivity, and stability. This makes it a promising tool with great practical application prospects in pathogenic bacterial detection.
Collapse
Affiliation(s)
- Xin Zhang
- Hefei University of Technology, Hefei, 230009, China
| | - WeiWei Zhu
- Hefei University of Technology, Hefei, 230009, China
| | - LiangHui Mei
- Hefei University of Technology, Hefei, 230009, China
| | | | - Jian Liu
- Hefei University of Technology, Hefei, 230009, China
| | - Fangbin Wang
- Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
4
|
Ding X, Sheng L, Zhang J, Zhang G, Gu Q, Li Y, Zhang L, Ji M. 3D-Printed Fluorescent Hydrogel Consisting of Conjugated Polymer and Biomacromolecule for Fast and Sensitive Detection of Cr(VI) in Vegetables. ACS APPLIED BIO MATERIALS 2024; 7:7909-7916. [PMID: 38657274 DOI: 10.1021/acsabm.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Portable fluorescent film sensors offer a solution to the contamination issue in homogeneous sensor detection systems. However, their special structure leads to low sensitivity and a long response time, resulting in a significant scientific challenge limiting their development and application. In this work, we propose a dual design strategy to prepare highly sensitive film sensors for rapidly detecting Cr2O72-. Specifically, P(Fmoc-Osu)-SA hydrogel films were developed by integrating the biological macromolecule sodium alginate (SA) with the conjugated polymer poly(N-(9-Fluorenylmethoxycarbonyloxy)succinimide) (P(Fmoc-Osu)), using both mold and inkjet 3D printing methods. The "molecular wire effect" of the sensing unit P(Fmoc-Osu) and the water channel within the film substrate are responsible for the improved sensitivity and the reduced response time of this thin film sensor. P(Fmoc-Osu)-SA hydrogel films prepared by these two methods can rapidly detect Cr2O72- with limits of detection of 1.18 and 0.078 nM, respectively. Considering that 3D-printed hydrogel films can be tailored to different shapes according to detection needs, the P(Fmoc-Osu)-SA hydrogel films produced from this method were effectively applied in vegetable samples. This study provides an innovative and effective strategy for the development of biocompatible hydrogel sensors that offer the potential for determining trace amounts of Cr2O72- in agriculture.
Collapse
Affiliation(s)
- Xingli Ding
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Li Sheng
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, P. R. China
| | - Jianming Zhang
- Institute for Quantum Science and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ge Zhang
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, P. R. China
| | - Qi Gu
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing 100101, P. R. China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, P. R. China
| | - Yu Li
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, P. R. China
| | - Long Zhang
- Institute for Quantum Science and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Min Ji
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
5
|
Li G, Chao M, Xu H, Tai S, Mao M, Cao W, Peng C, Ma W, Feng Y, Wang Z. Preparation of Metal Nanocluster Supraparticles for Ultrasensitive Sensing of Tetracycline Based on Multiple Interactions between a Target and Sensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26536-26546. [PMID: 39555860 DOI: 10.1021/acs.jafc.4c09194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
New strategies for enhancing the fluorescence emission of metal nanoclusters (MNCs) are very crucial for the highly sensitive sensing of food hazards. In this work, we prepared MNC supraparticles (Sc-CB/AuNCs) by simultaneously introducing cucurbit[7]uril (CB[7]) and Sc3+ ions into ATT-AuNCs for the first time. The obtained supraparticles exhibited strong emission enhancement due to synergistic aggregation-induced emission enhancement and restriction of intramolecular motion effects. Notably, the fluorescence of ATT-AuNCs was enhanced by 24-fold due to the combination of CB[7] and Sc3+ ions, and the quantum yield reached 69.1%. Moreover, we found that tetracycline (TC) could bind to the Sc-CB/AuNCs through simultaneous host-guest recognition and ionic complexation, which effectively quenched the Sc-CB/AuNCs through the synergy of photoinduced electron transfer and inner filter effect. Based on the above multiple interactions between TC and Sc-CB/AuNCs, an ultrasensitive sensing method for TC was constructed with an LOD of 0.3 nM. Furthermore, a portable fluorescent gel sensor was constructed and successfully used for TC detection in honey samples. The test took only 2 min. This work not only provided a simple and effective fluorescence enhancement strategy for MNCs but also offered a novel sensing strategy, which may largely extend the potential of host-guest recognition-based sensors for food and environmental hazards.
Collapse
Affiliation(s)
- Guowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Mengjia Chao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Hengyu Xu
- China Tobacco Zhejiang Industrial Co. Ltd., Ningbo 315502, P. R. China
| | - Shengmei Tai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Minxin Mao
- Shandong Institute of Pomology, Taian 271000, P. R. China
| | - Wenbo Cao
- Technology Innovation Center of Special Food for State Market Regulation, 35-302 South Changjiang Road, Wuxi, Jiangsu Province 214142, P. R. China
- Wuxi Food Safety Inspection and Test Center, 35-210 South Changjiang Road, Wuxi, Jiangsu Province 214142, P. R. China
| | - Chifang Peng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Wei Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| | - Yongwei Feng
- Technology Innovation Center of Special Food for State Market Regulation, 35-302 South Changjiang Road, Wuxi, Jiangsu Province 214142, P. R. China
- Wuxi Food Safety Inspection and Test Center, 35-210 South Changjiang Road, Wuxi, Jiangsu Province 214142, P. R. China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
- International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, P. R. China
| |
Collapse
|
6
|
Huang X, Xing X, Zhang P, Li S, Liu J, Wang S. Silver amplified immunosensor via effective fluorogenic Ag +-imidazole aggregation for detection of AFB 1. Anal Chim Acta 2024; 1330:343297. [PMID: 39489977 DOI: 10.1016/j.aca.2024.343297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Cereals are susceptible to aflatoxin contamination during storage and transportation, which is highly carcinogenic and teratogenic, and seriously threaten human health. The accurate and rapid detection of total aflatoxin (including aflatoxin B1, B2, G1, and G2) is of great importance for food safety. Conventional fluorescence immunoassays have the advantage of being sensitive and fast; however, these methods can be affected by strong background and matrix interference. Therefore, the development of ultrasensitive, cost-effective, and interference rejection sensors for detecting aflatoxins in moldy grains is vital for food safety and human health. RESULTS In this paper, a broad-spectrum aflatoxin monoclonal antibody was prepared by using hybridoma cell fusion technology. An aggregation-induced emission (AIE) based immunosensor via silver amplification coupled with a fluorogenic Ag+ probe was established for AFB1 analysis. Silver nanoparticles are decomposed into numerous Ag+ by H2O2, and then Ag+ further specifically binds with imidazole-modified AIE molecules, improving the sensitivity and anti-interference ability of the method. The IC50 and IC15 of AIE-based immunosensor for AFB1 were 0.019 and 0.0014 μg/L, respectively, 2.3-fold and 5.8-fold higher than those of icELISA. The AIE-based immunosensor was also used to analyze AFB1 from actual cereal samples, with spiked recoveries ranging from 72.91 to 115.92 %. In addition, the method was used to detect total aflatoxins in moldy grains. SIGNIFICANCE Based on the advantages of broad-spectrum aflatoxin monoclonal antibody, high-efficiency metal signal amplification, and functional AIE molecule, a sensitive, accurate, cost-effective, and time-saving method was developed for the analysis of total aflatoxins in cereals. Moreover, the proposed signal amplification strategy shows great potential for analyzing other trace-level small molecular pollutants.
Collapse
Affiliation(s)
- Xufang Huang
- State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Xiaorui Xing
- State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Pixian Zhang
- State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Shijie Li
- State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Shuo Wang
- State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Cheng X, Liu S, Hu Y. Recent Advances in Nanozyme Sensors Based on Metal-Organic Frameworks and Covalent-Organic Frameworks. BIOSENSORS 2024; 14:520. [PMID: 39589979 PMCID: PMC11592407 DOI: 10.3390/bios14110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity, which have drawn increasing attention on account of their unique superiorities including very high robustness, low cost, and ease of modification. Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) have emerged as promising candidates for nanozymes due to their abundant catalytic activity centers, inherent porosity, and tunable chemical functionalities. In this review, we first compare the enzyme-mimicking activity centers and catalytic mechanisms between MOF and COF nanozymes, and then summarize the recent research on designing and modifying MOF and COF nanozymes with inherent catalytic activity. Moreover, typical examples of sensing applications based on these nanozymes are presented, as well as the translation of enzyme catalytic activity into a visible signal response. At last, a discussion of current challenges is presented, followed by some future prospects to provide guidance for designing nanozyme sensors based on MOFs and COFs for practical applications.
Collapse
Affiliation(s)
| | | | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510060, China; (X.C.); (S.L.)
| |
Collapse
|
8
|
Li J, Sun D, Wen Y, Chen X, Wang H, Li S, Song Z, Liu H, Ma J, Chen L. Molecularly imprinted polymers and porous organic frameworks based analytical methods for disinfection by-products in water and wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124249. [PMID: 38810677 DOI: 10.1016/j.envpol.2024.124249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Disinfection by-products (DBPs) with heritage toxicity, mutagenicity and carcinogenicity are one kind of important new pollutants, and their detection and removal in water and wastewater has become a common challenge facing mankind. Advanced functional materials with ideal selectivity, adsorption capacity and regeneration capacity provide hope for the determination of DBPs with low concentration levels and inherent molecular structural similarity. Among them, molecularly imprinted polymers (MIPs) are favored, owing to their predictable structure, specific recognition and wide applicability. Also, metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) with unique pore structure, large specific surface area and easy functionalization, attract increasing interest. Herein, we review recent advances in analytical methods based on the above-mentioned three functional materials for DBPs in water and wastewater. Firstly, MIPs, MOFs and COFs are briefly introduced. Secondly, MIPs, MOFs and COFs as extractants, recognition element and adsorbents, are comprehensively discussed. Combining the latest research progress of solid-phase extraction (SPE), sensor, adsorption and nanofiltration, typical examples on MIPs and MOFs/COFs based analytical and removal applications in water and wastewater are summarized. Finally, the application prospects and challenges of the three functional materials in DBPs analysis are proposed to promote the development of corresponding analytical methods.
Collapse
Affiliation(s)
- Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Dani Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Yuhao Wen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xuan Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Hongdan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Shuang Li
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao, 266033, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Huitao Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao, 266033, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
9
|
Yang Y, Zhou Z, Wang T, Tian D, Ren S, Gao Z. MOF-on-MOF heterostructure boosting AIE sensing and triggered structural collapse for histamine detection. Talanta 2024; 270:125632. [PMID: 38199119 DOI: 10.1016/j.talanta.2024.125632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
We explored a novel preparation method for MOF-on-MOF heterostructured material (Zn-BTEC@ZIF-8). This prepared heterostructured material acts as a container, capable of adsorbing tetracycline hydrochloride molecules into its backbone through hydrogen bonding and π-π interactions. This phenomenon triggers an aggregation induced emission (AIE) effect, leading to the formation of luminescent bodies. The coordination between histamine and MOF was found to collapse the originally stabilized MOF-on-MOF structure. This collapse causes the splitting of the initially stabilized MOF-on-MOF structure from the aggregated state into fragments, resulting in the quenching of fluorescence in the fluorophore. Remarkably, the fluorescence quenching efficiency of this composite surpasses that of single-layer metal-organic framework (MOF) zeolitic imidazolate framework-8 (ZIF-8) or zinc-based MOF of pyromellitic acid (Zn-BTEC), enabling more sensitive detection of histamine. In this investigation, we constructed a label-free fluorescent sensor specifically designed for the detection of histamine, capitalizing on the AIE effect inherent in MOF-on-MOF architecture and the presence of tetracycline hydrochloride (Tet). The sensor demonstrates a rapid, straightforward, and stable response, allowing for histamine detection within 20 min. Notably, the sensor covers a detection range of 2-400 mg L-1, achieving a low detection limit of 1.458 mg L-1 The practical application of this sensor for quantitative detection of histamine in river water and various fish species exhibited robust performance, ensuring reliability and accuracy in real samples. Its potential application in food safety and environmental monitoring is evident, making it a valuable tool for addressing histamine-related challenges in these domains.
Collapse
Affiliation(s)
- Yingao Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zixuan Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tao Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Daoming Tian
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
10
|
Ding X, Sheng L, Zhang G, Ji M, Li Y. Conjugated Polymer-Based Hydrogel Film for a Fast and Sensitive Detection of Fe(Ⅲ) in Vegetables. Molecules 2024; 29:925. [PMID: 38474437 DOI: 10.3390/molecules29050925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024] Open
Abstract
Fluorescent film sensors are ideal for the real-time outdoor detection of heavy metal ions of Fe3+, but they are limited because of their low sensitivity and long response time due to their special structure. In this work, we constructed a fluorescent hydrogel for the specific detection of Fe3+, utilizing poly(9-fluorenecarboxylic acid) (PFCA) as the sensing moiety and sodium alginate (SA) as the cross-linking substrate, which exhibited a rapid and selective recognition of Fe3+ among a panel of 16 anions and 21 cations. It can sense Fe3+ at 0.1 nM immediately owing to the porous network structure of the PFCA-SA film that provided enhanced ion transport channels and active sites, and the "molecular line effect" of polymer PFCA. Moreover, we successfully applied this platform to detect Fe3+ in four different vegetable samples. This work provides an innovative and effective strategy for fabricating green and sustainable fluorescent sensors.
Collapse
Affiliation(s)
- Xingli Ding
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Li Sheng
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ge Zhang
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Min Ji
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Yu Li
- Jiangxi Provincial Engineering Research Center for Waterborne Coatings, School of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
11
|
Li S, Zhang H, Huang Z, Jia Q. Fluorometric and colorimetric dual-mode sensing of α-glucosidase based on aggregation-induced emission enhancement of AuNCs. J Mater Chem B 2024; 12:1550-1557. [PMID: 38251966 DOI: 10.1039/d3tb02532b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Herein, a fluorometric and colorimetric dual-mode assay platform used for α-glucosidase (α-Glu) activity sensing based on aggregation-induced emission enhancement (AIEE) of AuNCs was developed for the first time. The quantum yield (QY) and fluorescence lifetime of AuNCs were successfully ameliorated by Ce3+-triggered AIEE (Ce@AuNCs). Subsequently, on the basis of the inner filter effect (IFE) and dynamic quenching effect (DQE) between 2,6-dichlorophenolindophenol (DCIP) and Ce@AuNCs as well as the reduction of DCIP by ascorbic acid (AA) generated from α-Glu-catalyzed hydrolysis of L-ascorbic acid-2-O-α-D-glucopyranosyl (AA2G), the marriage of fluorometric and colorimetric modes applied for α-Glu activity monitoring was achieved. Besides, the feasibility of this dual-mode sensing system was confirmed by the assays versus potential interfering substances and in real samples. In particular, this system was further applied to evaluate natural α-Glu inhibitors (AGIs) including luteolin, apigenin, and hesperidin. Overall, the multi-mode optical sensor newly designed here has the potential for the accurate discovery of natural anti-diabetes drugs and the therapy of diabetes.
Collapse
Affiliation(s)
- Songrui Li
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Huifeng Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
12
|
Zhang Z, Yan B. Convolution Neural Network-Assisted Smart Fluorescent-Tongue Based on Lanthanide Ion-Induced Forming MOF/HOF Composite for Differentiation of Flavor Compounds and Wine Identification. ACS Sens 2023; 8:3585-3594. [PMID: 37612786 DOI: 10.1021/acssensors.3c01273] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Wine flavor is a vital quality characteristic in wine, influenced by those flavor components with low sensory thresholds. It is crucial to recognize and classify the wine components related to their flavor contribution. The integration of fluorescent sensors and artificial intelligence shows huge potential in flavor recognition by emulation of the gustatory perception system. Meanwhile, achieving information identification of wine based on multiple information barcodes has hopeful applications in anticounterfeiting. In this study, we present a simple method in which organic linkers are weaved into a hydrogen-bonded organic framework (HOF) for the available transformation of a metal-bonded organic framework (MOF) induced by lanthanide ions (Ln3+). The fluorescent Ln-MOF/HOF composite exhibits high sensitivity, rapid response, and good recyclability for detecting seven flavor compounds in wine, including tannic acid, ionone, vanillin, anethole, anisaldehyde, hydroxybenzaldehyde, and 4-hydroxy-2-methylacetophenone. Depending on its satisfactory detectability, a novel strategy is provided in which a fluorescent sensor is able to function as a smart fluorescent-tongue (F-tongue) by the aid of convolutional neural network to differentiate these seven flavor compounds. In addition, the Ln-MOF/HOF composite has been used to prepare multiple information barcodes for wine information identification on the basis of dynamic fluorescence response toward tannic acid. The mimetic gustatory perception system developed in this study may offer a promising strategy for flavor recognition in food and further food anticounterfeiting.
Collapse
Affiliation(s)
- Zishuo Zhang
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|