1
|
Compositional Changes in the Vaginal Bacterial Microbiome of Healthy Pregnant Women across the Three Gestational Trimesters in Ismailia, Egypt. Microorganisms 2023; 11:microorganisms11010139. [PMID: 36677431 PMCID: PMC9862816 DOI: 10.3390/microorganisms11010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
The composition of the vaginal microbiome may lead to adverse pregnancy outcomes. Normal pregnancy is associated with changes in the vaginal bacterial community composition, which tend to be more enriched with one or two Lactobacillus species promoting a healthy vagina and favorable birth outcomes. The aim of the current study was to determine compositional changes in the healthy vaginal microbiome composition during the three trimesters of pregnancy in Ismailia, Egypt using Illumina MiSeq sequencing of the V3-V4 region of the 16S rRNA. The phylum Firmicutes and the genus Lactobacillus dominated across the three trimesters of pregnancy. L. iners was the most abundant species. However, L. coleohominis and L. reuteri represented the least dominant vaginal lactobacilli. Core microbiome analyses showed the Lactobacillus genus and L. iners species to have the highest prevalence in all the samples of our study groups. The phylum Firmicutes was found to be negatively correlated with almost all other vaginal phyla during pregnancy. Likewise, a negative correlation between Lactobacillus and almost all other genera was detected, including significant negative correlations with Dialister and Prevotella. Furthermore, negative correlations of L. iners were detected with almost all other species, including a significant negative correlation with L. helveticus, G. vaginalis, S. anginosus, and S. agalactiae.
Collapse
|
2
|
Kumari P, Prakash P, Yadav S, Saran V. Microbiome analysis: An emerging forensic investigative tool. Forensic Sci Int 2022; 340:111462. [PMID: 36155349 DOI: 10.1016/j.forsciint.2022.111462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
Microbial diversity's potential has been investigated in medical and therapeutic studies throughout the last few decades. However, its usage in forensics is increasing due to its effectiveness in circumstances when traditional approaches fail to provide a decisive opinion or are insufficient in forming a concrete opinion. The application of human microbiome may serve in detecting the type of stains of saliva and vaginal fluid, as well as in attributing the stains to the individual. Similarly, the microbiome makeup of a soil sample may be utilised to establish geographic origin or to associate humans, animals, or things with a specific area, additionally microorganisms influence the decay process which may be used in depicting the Time Since death. Further in detecting the traces of the amount and concentration of alcohol, narcotics, and other forensically relevant compounds in human body or visceral tissues as they also affect the microbial community within human body. Beside these, there is much more scope of microbiomes to be explored in terms of forensic investigation, this review focuses on multidimensional approaches to human microbiomes from a forensic standpoint, implying the potential of microbiomes as an emerging tool for forensic investigations such as individual variability via skin microbiomes, reconstructing crime scene, and linking evidence to individual.
Collapse
Affiliation(s)
- Pallavi Kumari
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India.
| | - Poonam Prakash
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Shubham Yadav
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Vaibhav Saran
- Department of Forensic Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
3
|
Wang J, Cheng X, Zhang J, Liu Z, Cheng F, Yan J, Zhang G. Estimating the time since deposition (TsD) in saliva stains using temporal changes in microbial markers. Forensic Sci Int Genet 2022; 60:102747. [PMID: 35870433 DOI: 10.1016/j.fsigen.2022.102747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 06/07/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
Determining the time since deposition (TsD) of traces could be helpful in the investigation of criminal offenses. However, there are no reliable markers and models available for the inference of short-term TsD. The goal of this study was to investigate the potential of the succession pattern of human salivary microbial communities to serve as an efficiency TsD prediction tool in the resolution of the forensic cases. Saliva stains exposed to indoor conditions up to 20 days were collected and analyzed by 16S rRNA profiling using high-throughput sequencing technique. Noticeable differences in microbial composition were observed between different time points, and the indoor exposure time of saliva stains were inversely correlated with alpha diversity estimates across the measured time period. The sequencing results were used to identify TsD-dependent bacterial indicators to regress a generalized random forest model, resulting in a mean absolute deviation (MAD) of 1.41 days. Furthermore, a simplified TsD predictive model was also developed utilizing Enhydrobacter, Paenisporosarcina, and Janthinobacterium by quantitative PCR (qPCR) with a MAD of 1.32 days, and then forensic practice assessment were also performed by using mock samples with a MAD of 3.53 days. In conclusion, this study revealed significant changes in salivary microbial abundance as the prolongation of TsD. It demonstrated that the microbial biomarkers could be invoked as a "clock" for TsD estimation in human dried saliva stains.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Xiaojuan Cheng
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Feng Cheng
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030619, Shanxi, China.
| |
Collapse
|
4
|
Teoh SL, Das S. MicroRNAs in Various Body Fluids and its importance in Forensic Medicine. Mini Rev Med Chem 2022; 22:2332-2343. [PMID: 35240957 DOI: 10.2174/1389557522666220303141558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs which regulate gene expression. miRNAs have tissue-specific expression and are also present in various extracellular body fluids, including blood, tears, semen, vaginal fluid and urine. Additionally, expression of miRNAs in body fluids is linked to various pathological diseases, including cancer and neurodegenerative diseases. Examination of body fluids is important in forensic medicine as they serve as a valuable form of evidence. Due to its stability, miRNA offers an advantage for body fluid identification, which can be detected even after several months or from compromised samples. Identification of unique miRNA profiles for different body fluids enable the identification of these body fluid. Furthermore, miRNAs profiling can be used to estimate post-mortem interval. Various biochemical and molecular methods have been used for identification of miRNAs have shown promising results. We discuss different miRNAs as specific biomarkers and their clinical importance regarding different pathological conditions, as well as their medico-legal importance.
Collapse
Affiliation(s)
- Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| |
Collapse
|
5
|
Giampaoli S, De Vittori E, Barni F, Anselmo A, Rinaldi T, Baldi M, Miranda KC, Liao A, Brami D, Frajese GV, Berti A. DNA metabarcoding of forensic mycological samples. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2021. [DOI: 10.1186/s41935-021-00221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
DNA metabarcoding and massive parallel sequencing are valuable molecular tools for the characterization of environmental samples. In forensic sciences, the analysis of the sample’s fungal population can be highly informative for the estimation of post-mortem interval, the ascertainment of deposition time, the identification of the cause of death, or the location of buried corpses. Unfortunately, metabarcoding data analysis often requires strong bioinformatic capabilities that are not widely available in forensic laboratories.
Results
The present paper describes the adoption of a user-friendly cloud-based application for the identification of fungi in typical forensic samples. The samples have also been analyzed through the QIIME pipeline, obtaining a relevant data concordance on top genus classification results (88%).
Conclusions
The availability of a user-friendly application that can be run without command line activities will increase the popularity of metabarcoding fungal analysis in forensic samples.
Collapse
|
6
|
Changes of vaginal microbiota during cervical carcinogenesis in women with human papillomavirus infection. PLoS One 2020; 15:e0238705. [PMID: 32941440 PMCID: PMC7498004 DOI: 10.1371/journal.pone.0238705] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To evaluate the changes of vaginal microbiota during cervical carcinogenesis in women with high-risk human papillomavirus infection. Materials and methods Vaginal microbiota was analyzed using next-generation sequencing in women with normal, cervical intraepithelial neoplasia (CIN), or cervical cancer. Results A marked decrease of Lactobacillus crispatus was found in the CIN/cancer groups compared with that in the normal group. The diversity of microorganisms increased in patients with CIN or cervical cancer with HPV infection. Atopobium vaginae (OR 4.33, 95% CI 1.15–16.32), Dialister invisus (OR 4.89, 95% CI 1.20–19.94), Finegoldia magna (OR 6.00, 95% CI 1.08–33.27), Gardnerella vaginalis (OR 7.43, 95% CI 1.78–31.04), Prevotella buccalis (OR 11.00, 95% CI 2.00–60.57), and Prevotella timonensis (OR 6.00, 95% CI 1.46–24.69) were significantly associated with the risk of CIN 2/3 or cervical cancer. Conclusion Women with the CIN and cervical cancer showed a high diversity in vaginal microbiota. Depletion of Lactobacillus crispatus and increased abundance of anaerobic bacteria were detected in women with cervical disease.
Collapse
|
7
|
Giampaoli S, De Vittori E, Frajese G, Paytuví A, Sanseverino W, Anselmo A, Barni F, Berti A. A semi-automated protocol for NGS metabarcoding and fungal analysis in forensic. Forensic Sci Int 2020; 306:110052. [DOI: 10.1016/j.forsciint.2019.110052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/04/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022]
|
8
|
Lactobacillus DNA usage in differentiation of normal vaginal fluids in premenopausal and postmenopausal females. J Forensic Leg Med 2019; 66:58-64. [DOI: 10.1016/j.jflm.2019.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/23/2023]
|
9
|
Environmental microbiology: Perspectives for legal and occupational medicine. Leg Med (Tokyo) 2018; 35:34-43. [DOI: 10.1016/j.legalmed.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/09/2018] [Accepted: 09/23/2018] [Indexed: 11/18/2022]
|
10
|
Oliveira M, Amorim A. Microbial forensics: new breakthroughs and future prospects. Appl Microbiol Biotechnol 2018; 102:10377-10391. [PMID: 30302518 PMCID: PMC7080133 DOI: 10.1007/s00253-018-9414-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/17/2022]
Abstract
Recent advances in genetic data generation, through massive parallel sequencing (MPS), storage and analysis have fostered significant progresses in microbial forensics (or forensic microbiology). Initial applications in circumstances of biocrime, bioterrorism and epidemiology are now accompanied by the prospect of using microorganisms (i) as ancillary evidence in criminal cases; (ii) to clarify causes of death (e.g., drownings, toxicology, hospital-acquired infections, sudden infant death and shaken baby syndromes); (iii) to assist human identification (skin, hair and body fluid microbiomes); (iv) for geolocation (soil microbiome); and (v) to estimate postmortem interval (thanatomicrobiome and epinecrotic microbial community). When compared with classical microbiological methods, MPS offers a diverse range of advantages and alternative possibilities. However, prior to its implementation in the forensic context, critical efforts concerning the elaboration of standards and guidelines consolidated by the creation of robust and comprehensive reference databases must be undertaken.
Collapse
Affiliation(s)
- Manuela Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal. .,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho,45, 4200-135, Porto, Portugal. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4200-135, Porto, Portugal.
| | - António Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.,Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho,45, 4200-135, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4200-135, Porto, Portugal
| |
Collapse
|
11
|
Human-associated microbial populations as evidence in forensic casework. Forensic Sci Int Genet 2018; 36:176-185. [PMID: 30036744 DOI: 10.1016/j.fsigen.2018.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/01/2018] [Accepted: 06/28/2018] [Indexed: 01/26/2023]
Abstract
In forensic investigations involving human biological traces, cell type identification is often required. Identifying the cell type from which a human STR profile has originated can assist in verifying scenarios. Several techniques have been developed for this purpose, most of which focus on molecular characteristics of human cells. Here we present a microarray method focusing on the microbial populations that are associated with human cell material. A microarray with 863 probes targeting (sets of) species, specific genera, groups of genera or families was designed for this study and evaluated with samples from different body sites: hand, foot, groin, penis, vagina, mouth and faeces. In total 175 samples from healthy individuals were analysed. Next to human faeces, 15 feline and 15 canine faeces samples were also included. Both clustering and classification analysis were used for data analysis. Faecal and oral samples could clearly be distinguished from vaginal and skin samples, and also canine and feline faeces could be differentiated from human faeces. Some penis samples showed high similarity to vaginal samples, others to skin samples. Discriminating between skin samples from different skin sites proved to be challenging. As a proof of principle, twenty-one mock case samples were analysed with the microarray method. All mock case samples were clustered or classified within the correct main cluster/group. Only two of the mock case samples were assigned to the wrong sub-cluster/class; with classification one additional sample was classified within the wrong sub-class. Overall, the microarray method is a valuable addition to already existing cell typing techniques. Combining the results of microbial population analysis with for instance mRNA typing can increase the evidential value of a trace, since both techniques focus on independent targets within a sample.
Collapse
|
12
|
Valeriani F, Agodi A, Casini B, Cristina ML, D'Errico MM, Gianfranceschi G, Liguori G, Liguori R, Mucci N, Mura I, Pasquarella C, Piana A, Sotgiu G, Privitera G, Protano C, Quattrocchi A, Ripabelli G, Rossini A, Spagnolo AM, Tamburro M, Tardivo S, Veronesi L, Vitali M, Romano Spica V. Potential testing of reprocessing procedures by real-time polymerase chain reaction: A multicenter study of colonoscopy devices. Am J Infect Control 2018; 46:159-164. [PMID: 28958445 DOI: 10.1016/j.ajic.2017.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Reprocessing of endoscopes is key to preventing cross-infection after colonoscopy. Culture-based methods are recommended for monitoring, but alternative and rapid approaches are needed to improve surveillance and reduce turnover times. A molecular strategy based on detection of residual traces from gut microbiota was developed and tested using a multicenter survey. METHODS A simplified sampling and DNA extraction protocol using nylon-tipped flocked swabs was optimized. A multiplex real-time polymerase chain reaction (PCR) test was developed that targeted 6 bacteria genes that were amplified in 3 mixes. The method was validated by interlaboratory tests involving 5 reference laboratories. Colonoscopy devices (n = 111) were sampled in 10 Italian hospitals. Culture-based microbiology and metagenomic tests were performed to verify PCR data. RESULTS The sampling method was easily applied in all 10 endoscopy units and the optimized DNA extraction and amplification protocol was successfully performed by all of the involved laboratories. This PCR-based method allowed identification of both contaminated (n = 59) and fully reprocessed endoscopes (n = 52) with high sensibility (98%) and specificity (98%), within 3-4 hours, in contrast to the 24-72 hours needed for a classic microbiology test. Results were confirmed by next-generation sequencing and classic microbiology. CONCLUSIONS A novel approach for monitoring reprocessing of colonoscopy devices was developed and successfully applied in a multicenter survey. The general principle of tracing biological fluids through microflora DNA amplification was successfully applied and may represent a promising approach for hospital hygiene.
Collapse
Affiliation(s)
- Federica Valeriani
- Department of Movement, Human and Health Science, University of Rome "Foro Italico", Rome, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia," University of Catania, Catania, Italy
| | - Beatrice Casini
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University, Pisa, Italy
| | | | - Marcello Mario D'Errico
- Department of Biomedical Sciences and Public Health, Politechnic University of Marche, Ancona, Italy
| | - Gianluca Gianfranceschi
- Department of Movement, Human and Health Science, University of Rome "Foro Italico", Rome, Italy
| | - Giorgio Liguori
- Department of Movement and Health Sciences, University "Parthenope," Napoli, Italy
| | - Renato Liguori
- Department of Movement and Health Sciences, University "Parthenope," Napoli, Italy
| | - Nicolina Mucci
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance against Accidents at Work, INAIL, Rome, Italy
| | - Ida Mura
- Department of Biomedical Science-Hygiene Section, University of Sassari, Sassari, Italy
| | | | - Andrea Piana
- Department of Biomedical Science-Hygiene Section, University of Sassari, Sassari, Italy
| | - Giovanni Sotgiu
- Department of Biomedical Science-Hygiene Section, University of Sassari, Sassari, Italy
| | - Gaetano Privitera
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa University, Pisa, Italy
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Annalisa Quattrocchi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia," University of Catania, Catania, Italy
| | - Giancarlo Ripabelli
- Department of Medicine and Health Sciences "Vincenzo Tiberio," University of Molise, Campobasso, Italy
| | - Angelo Rossini
- Fondazione Santa Lucia Institute for Research and Health Care, IRCCS, Rome, Italy
| | | | - Manuela Tamburro
- Department of Medicine and Health Sciences "Vincenzo Tiberio," University of Molise, Campobasso, Italy
| | - Stefano Tardivo
- Department of Public Health and Community Medicine, University of Verona, Verona, Italy
| | - Licia Veronesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Science, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|