1
|
Boudard E, Fisson L, Moumane N, Dugay J, Vial J, Thiébaut D. Study of sampling phases for body odor sampling prior to analysis by TD-GC×GC/ToFMS. Anal Bioanal Chem 2025; 417:3177-3190. [PMID: 40227355 PMCID: PMC12103381 DOI: 10.1007/s00216-025-05857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025]
Abstract
Body odor consists of a complex matrix of volatile organic compounds (VOCs), which has garnered increasing interest in fields like medicine for its potential in disease diagnosis. However, the field of body odor analysis is advancing slowly, partly due to a lack of standardized methodologies. Although gas chromatography-mass spectrometry (GC-MS) is widely used for VOC analysis, there is a broad range of sampling and extraction methods, leading to different or even sometimes contradictory results. To move toward standardized procedures, this study compares five sampling phases for direct body odor sampling in terms of analytical cleanliness and VOC trapping/release efficiency: gauze, glass beads, PowerSorb®, Getxent® microtubes, and passive sampling pillows (PSP). Thermodesorption was employed to simplify the protocol and minimize contamination or sample loss, which often occurs during multistep processes. Given the matrix's complexity and the need to detect trace-level compounds, comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC/ToFMS) was used to achieve high sensitivity and peak capacity. PSP and PowerSorb® demonstrated the best performance, with mean recovery yields of 95% and 71%, respectively, and 22% and 10% variability, ensuring good repeatability. These findings, initially obtained under simulated conditions with a synthetic mixture, were validated with real body odor samples, with an optimal sampling duration estimated between 30 min and 1 h. This study not only highlights these effective sampling solutions but also emphasizes the risks associated with using sorbent phases that lack adequate analytical cleanliness (i.e., clean blank) such as gauze.
Collapse
Affiliation(s)
- Elsa Boudard
- UMR CBI, Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75231, Paris, Cedex 05, France.
| | - Lisa Fisson
- UMR CBI, Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75231, Paris, Cedex 05, France
| | - Nabil Moumane
- SenseDetect Health-Care, 21 grande rue, 78240, Aigremont, France
| | - José Dugay
- UMR CBI, Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75231, Paris, Cedex 05, France
| | - Jérôme Vial
- UMR CBI, Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75231, Paris, Cedex 05, France
| | - Didier Thiébaut
- UMR CBI, Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75231, Paris, Cedex 05, France
| |
Collapse
|
2
|
Loos HM, Schaal B, Pause BM, Smeets MAM, Ferdenzi C, Roberts SC, de Groot J, Lübke KT, Croy I, Freiherr J, Bensafi M, Hummel T, Havlíček J. Past, Present, and Future of Human Chemical Communication Research. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2025; 20:20-44. [PMID: 37669015 PMCID: PMC11720269 DOI: 10.1177/17456916231188147] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Although chemical signaling is an essential mode of communication in most vertebrates, it has long been viewed as having negligible effects in humans. However, a growing body of evidence shows that the sense of smell affects human behavior in social contexts ranging from affiliation and parenting to disease avoidance and social threat. This article aims to (a) introduce research on human chemical communication in the historical context of the behavioral sciences; (b) provide a balanced overview of recent advances that describe individual differences in the emission of semiochemicals and the neural mechanisms underpinning their perception, that together demonstrate communicative function; and (c) propose directions for future research toward unraveling the molecular principles involved and understanding the variability in the generation, transmission, and reception of chemical signals in increasingly ecologically valid conditions. Achieving these goals will enable us to address some important societal challenges but are within reach only with the aid of genuinely interdisciplinary approaches.
Collapse
Affiliation(s)
- Helene M. Loos
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
| | - Benoist Schaal
- Development of Olfactory Cognition and Communication Lab, Centre des Sciences du Goût et de l’Alimentation, CNRS UMR 6265, Université de Bourgogne
| | - Bettina M. Pause
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | | | - Camille Ferdenzi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | | | | | - Katrin T. Lübke
- Department of Experimental Psychology, Heinrich-Heine-Universität Düsseldorf
| | - Ilona Croy
- Institute for Psychology, Friedrich-Schiller-Universität Jena
| | - Jessica Freiherr
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Moustafa Bensafi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, Inserm U1028, Université Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden
| | | |
Collapse
|
3
|
Mahmoud MAA, Zhang Y. Enhancing Odor Analysis with Gas Chromatography-Olfactometry (GC-O): Recent Breakthroughs and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9523-9554. [PMID: 38640191 DOI: 10.1021/acs.jafc.3c08129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Gas chromatography-olfactometry (GC-O) has made significant advancements in recent years, with breakthroughs in its applications and the identification of its limitations. This technology is widely used for analyzing complex odor patterns. The review begins by explaining the principles of GC-O, including sample preparation, separation methods, and olfactory evaluation techniques. It then explores the diverse range of applications where GC-O has found success, such as food and beverage industries, environmental monitoring, perfume and aroma development, and forensic analysis. One of the major breakthroughs in GC-O analysis is the improvement in separation power and resolution of odorants. Techniques like rapid GC, comprehensive two-dimensional GC, and multidimensional GC have enhanced the identification and quantification of odor-active chemicals. However, GC-O also has limitations. These include the challenges in detecting and quantifying trace odorants, dealing with matrix effects, and ensuring the repeatability and consistency of results across laboratories. The review examines these limitations closely and discusses potential solutions and future directions for improvement in GC-O analysis. Overall, this review presents a comprehensive overview of the recent advances in GC-O, covering breakthroughs, applications, and limitations. It aims to promote the wider usage of GC-O analysis in odor analysis and related industries. Researchers, practitioners, and anyone interested in leveraging the capabilities of GC-O in analyzing complex odor patterns will find this review a valuable resource. The article highlights the potential of GC-O and encourages further research and development in the field.
Collapse
Affiliation(s)
- Mohamed A A Mahmoud
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, Cairo 11241, Egypt
| | - Yanyan Zhang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, Stuttgart 70599, Germany
| |
Collapse
|
4
|
Mazzatenta A, Pietrangelo T, Demontis R, D’Ovidio C. Volabolomic Fingerprinting for Post-Mortem Interval Estimation: A Novel Physiological Approach. Biomolecules 2024; 14:286. [PMID: 38540706 PMCID: PMC10968422 DOI: 10.3390/biom14030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 05/01/2024] Open
Abstract
Death is a multifaceted process wherein each individual cell and tissue has a metabolic homeostasis and a time of functional cessation defined by the dying process as well as by intrinsic and extrinsic factors. Decomposition is physiologically associated with the release of different types of volatile organic compounds (VOCs), and these form volaboloma mortis. The main purpose of this study was to record the volabolomic fingerprint produced by volatile molecules during the physiological decomposition process of human tissue and muscle cells. The volatile chemical signature has important implications for an open issue in forensics and pathology, namely the estimation of the postmortem interval (PMI), which decreases in accuracy with the passage of time. Volatile metabolites emitted from human tissues and muscle cells at 0, 24, 48, and 72 h were recorded in real time with an electronic nose sensor device. The key findings were the continuous sampling of VOCs emitted from tissues and cells. These showed a common behavior as time progressed; particularly, after 48 h the distributions became dispersed, and after 72 h they became more variable. Volabolomic fingerprinting associated with time progression relevant to the study of PMIs was reconstructed. Additionally, there may be broader applications, such as in dog training procedures for detecting human remains, and perhaps even for studying scavenger and insect attractants.
Collapse
Affiliation(s)
- Andrea Mazzatenta
- Neuroscience, Imaging and Clinical Science Department, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Tiziana Pietrangelo
- Neuroscience, Imaging and Clinical Science Department, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Roberto Demontis
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari and Azienda Ospedaliero-Universitaria di Cagliari, 09123 Cagliari, Italy;
| | - Cristian D’Ovidio
- Medicine and Aging Sciences Department, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
5
|
Maidodou L, Clarot I, Leemans M, Fromantin I, Marchioni E, Steyer D. Unraveling the potential of breath and sweat VOC capture devices for human disease detection: a systematic-like review of canine olfaction and GC-MS analysis. Front Chem 2023; 11:1282450. [PMID: 38025078 PMCID: PMC10646374 DOI: 10.3389/fchem.2023.1282450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The development of disease screening methods using biomedical detection dogs relies on the collection and analysis of body odors, particularly volatile organic compounds (VOCs) present in body fluids. To capture and analyze odors produced by the human body, numerous protocols and materials are used in forensics or medical studies. This paper provides an overview of sampling devices used to collect VOCs from sweat and exhaled air, for medical diagnostic purposes using canine olfaction and/or Gas Chromatography-Mass spectrometry (GC-MS). Canine olfaction and GC-MS are regarded as complementary tools, holding immense promise for detecting cancers and infectious diseases. However, existing literature lacks guidelines for selecting materials suitable for both canine olfaction and GC-MS. Hence, this review aims to address this gap and pave the way for efficient body odor sampling materials. The first section of the paper describes the materials utilized in training sniffing dogs, while the second section delves into the details of sampling devices and extraction techniques employed for exhaled air and sweat analysis using GC-MS. Finally, the paper proposes the development of an ideal sampling device tailored for detection purposes in the field of odorology. By bridging the knowledge gap, this study seeks to advance disease detection methodologies, harnessing the unique abilities of both dogs and GC-MS analysis in biomedical research.
Collapse
Affiliation(s)
- Laetitia Maidodou
- Twistaroma, Illkirch Graffenstaden, France
- CITHEFOR, EA 3452, Université de Lorraine, Nancy, France
- DSA, IPHC UMR7178, Université de Strasbourg, Strasbourg, France
| | - Igor Clarot
- CITHEFOR, EA 3452, Université de Lorraine, Nancy, France
| | - Michelle Leemans
- Clinical Epidemiology and Ageing, IMRB—Paris Est Créteil University /Inserm U955, Créteil, France
| | - Isabelle Fromantin
- Clinical Epidemiology and Ageing, IMRB—Paris Est Créteil University /Inserm U955, Créteil, France
- Wound Care and Research Unit, Curie Institute, Paris, France
| | - Eric Marchioni
- DSA, IPHC UMR7178, Université de Strasbourg, Strasbourg, France
| | | |
Collapse
|
6
|
Peters R, Veenstra R, Heutinck K, Baas A, Munniks S, Knotter J. Human scent characterization: A review. Forensic Sci Int 2023; 349:111743. [PMID: 37315480 DOI: 10.1016/j.forsciint.2023.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Human scent has long been cited as a probable parameter that can be exploited as a biometric measure. Identifying the scent of individual persons using specially trained canines is a well-known forensic method which is frequently used in criminal investigations. To date there has been limited research on the chemical components present in human scent and their usefulness in distinguishing between people. This review delivers insight into studies which have dealt with human scent in forensics. Sample collection methods, sample preparation, instrumental analysis, compounds identified in human scent and data analysis techniques are discussed. Methods for sample collection and preparation are presented, but to date, there is no available validated method. Instrumental methods are presented and from the overview it is clear that gas chromatography combined with mass spectrometry is the method of choice. New developments such as two-dimensional gas chromatography offer exiting possibilities to collect more information. Given the amount and complexity of data, data processing is used to extract the relevant information to discriminate people. Finally, sensors offer new opportunities for the characterization of human scent.
Collapse
Affiliation(s)
- Ruud Peters
- Saxion University of Applied Sciences, Research Group Technologies for Criminal Investigations, Handelskade 75, 7417 DH Deventer, the Netherlands.
| | - Rick Veenstra
- Saxion University of Applied Sciences, Research Group Technologies for Criminal Investigations, Handelskade 75, 7417 DH Deventer, the Netherlands
| | - Karin Heutinck
- Saxion University of Applied Sciences, Research Group Technologies for Criminal Investigations, Handelskade 75, 7417 DH Deventer, the Netherlands
| | - Albert Baas
- Saxion University of Applied Sciences, Research Group Technologies for Criminal Investigations, Handelskade 75, 7417 DH Deventer, the Netherlands
| | - Sandra Munniks
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Jaap Knotter
- Saxion University of Applied Sciences, Research Group Technologies for Criminal Investigations, Handelskade 75, 7417 DH Deventer, the Netherlands; Dutch Police Academy, Arnhemseweg 348, 7334 AC Apeldoorn, the Netherlands
| |
Collapse
|
7
|
Frazier CJG, Gokool VA, Holness HK, Mills DK, Furton KG. Multivariate regression modelling for gender prediction using volatile organic compounds from hand odor profiles via HS-SPME-GC-MS. PLoS One 2023; 18:e0286452. [PMID: 37405979 PMCID: PMC10321641 DOI: 10.1371/journal.pone.0286452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2023] [Indexed: 07/07/2023] Open
Abstract
The efficacy of using human volatile organic compounds (VOCs) as a form of forensic evidence has been well demonstrated with canines for crime scene response, suspect identification, and location checking. Although the use of human scent evidence in the field is well established, the laboratory evaluation of human VOC profiles has been limited. This study used Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) to analyze human hand odor samples collected from 60 individuals (30 Females and 30 Males). The human volatiles collected from the palm surfaces of each subject were interpreted for classification and prediction of gender. The volatile organic compound (VOC) signatures from subjects' hand odor profiles were evaluated with supervised dimensional reduction techniques: Partial Least Squares-Discriminant Analysis (PLS-DA), Orthogonal-Projections to Latent Structures Discriminant Analysis (OPLS-DA), and Linear Discriminant Analysis (LDA). The PLS-DA 2D model demonstrated clustering amongst male and female subjects. The addition of a third component to the PLS-DA model revealed clustering and minimal separation of male and female subjects in the 3D PLS-DA model. The OPLS-DA model displayed discrimination and clustering amongst gender groups with leave one out cross validation (LOOCV) and 95% confidence regions surrounding clustered groups without overlap. The LDA had a 96.67% accuracy rate for female and male subjects. The culminating knowledge establishes a working model for the prediction of donor class characteristics using human scent hand odor profiles.
Collapse
Affiliation(s)
- Chantrell J. G. Frazier
- Department of Chemistry and Biochemistry, Global Forensic and Justice Center, Florida International University, Miami, FL, United States of America
- Department of Chemistry and Food Science, Currently at Framingham State University, Framingham, Massachusetts, United States of America
| | - Vidia A. Gokool
- Department of Chemistry and Biochemistry, Global Forensic and Justice Center, Florida International University, Miami, FL, United States of America
- Currently at Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Nuclear and Chemical Sciences Division, Livermore, CA, United States of America
| | - Howard K. Holness
- Department of Chemistry and Biochemistry, Global Forensic and Justice Center, Florida International University, Miami, FL, United States of America
| | - DeEtta K. Mills
- Department of Biological Sciences, Global Forensic and Justice Center, Global Forensic and Justice Center, Florida International University, Miami, FL, United States of America
| | - Kenneth G. Furton
- Department of Chemistry and Biochemistry, Global Forensic and Justice Center, Florida International University, Miami, FL, United States of America
| |
Collapse
|
8
|
Development of a Method for the Measurement of Human Scent Samples Using Comprehensive Two-Dimensional Gas Chromatography with Mass Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8120232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Every human body is a source of a unique scent, which can be used for medical or forensic purposes. Human skin scent is a complex mixture of more or less volatile compounds with different chemical and physical properties, which often differ significantly in their concentrations. The most efficient technique for separating such complex samples is comprehensive two-dimensional gas chromatography (GC × GC). This work aimed to find the optimal arrangement of a two-dimensional chromatographic system and define a suitable chromatographic method for non-targeted analysis of human scent samples. Four different chromatographic columns (non-polar Rxi-5MS and TG-5HT, medium polar Rxi-17Sil MS and Rtx-200MS) and their different configurations were tested. The best system was the 30 m primary column Rtx-200MS (with the 2 m pre-column Rtx-200MS) and the 1 m secondary column TG-5HT in a reverse configuration. This system achieved the highest theoretical and conditional peak capacities, optimal resolution, and the lowest number of coelutions.
Collapse
|
9
|
Rivals I, Sautier C, Cognon G, Cuzuel V. Evaluation of distance-based approaches for forensic comparison: Application to hand odor evidence. J Forensic Sci 2021; 66:2208-2217. [PMID: 34342895 DOI: 10.1111/1556-4029.14818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
The issue of distinguishing between the same-source and different-source hypotheses based on various types of traces is a generic problem in forensic science. This problem is often tackled with Bayesian approaches, which are able to provide a likelihood ratio that quantifies the relative strengths of evidence supporting each of the two competing hypotheses. Here, we focus on distance-based approaches, whose robustness and specifically whose capacity to deal with high-dimensional evidence are very different, and need to be evaluated and optimized. A unified framework for direct methods based on estimating the likelihoods of the distance between traces under each of the two competing hypotheses, and indirect methods using logistic regression to discriminate between same-source and different-source distance distributions, is presented. Whilst direct methods are more flexible, indirect methods are more robust and quite natural in machine learning. Moreover, indirect methods also enable the use of a vectorial distance, thus preventing the severe information loss suffered by scalar distance approaches. Direct and indirect methods are compared in terms of sensitivity, specificity, and robustness, with and without dimensionality reduction, with and without feature selection, on the example of hand odor profiles, a novel and challenging type of evidence in the field of forensics. Empirical evaluations on a large panel of 534 subjects and their 1690 odor traces show the significant superiority of the indirect methods, especially without dimensionality reduction, be it with or without feature selection.
Collapse
Affiliation(s)
- Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, PSL Research University, Paris, France
| | - Cédric Sautier
- Institut de Recherche Criminelle de la Gendarmerie Nationale, Caserne Lange, France
| | - Guillaume Cognon
- Institut de Recherche Criminelle de la Gendarmerie Nationale, Caserne Lange, France
| | - Vincent Cuzuel
- Institut de Recherche Criminelle de la Gendarmerie Nationale, Caserne Lange, France
| |
Collapse
|
10
|
Ying X, He J, Li X. Molecularly imprinted electrospun fiber membrane for colorimetric detection of hexanoic acid. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
An imprinted electrospun fiber membrane was developed for the detection of volatile organic acids, which are key components of human body odor. In this study, hexanoic acid (HA) was selected as the target, polymethyl methacrylate (PMMA) was used as the substrate, and colorimetric detection of HA was achieved by a bromocresol purple (BCP) chromogenic agent. The results showed that the morphology of the fiber membrane was uniform and continuous, and it showed excellent selectivity and specificity to HA. Photographs of the color changes before and after fiber membrane adsorption were recorded by a camera and quantified by ImageJ software by the difference in gray value (ΔGray). This method is simple, intuitive, and low cost and has great potential for application in human odor analysis.
Collapse
Affiliation(s)
- Xiaoguang Ying
- Chemical Engineering Institute for Polymer Materials, College of Chemical Engineering, Fuzhou University , Fuzhou , China
| | - Jieyuan He
- Chemical Engineering Institute for Polymer Materials, College of Chemical Engineering, Fuzhou University , Fuzhou , China
| | - Xiao Li
- Chemical Engineering Institute for Polymer Materials, College of Chemical Engineering, Fuzhou University , Fuzhou , China
| |
Collapse
|
11
|
De Giovanni N, Marchetti D. A Systematic Review of Solid-Phase Microextraction Applications in the Forensic Context. J Anal Toxicol 2020; 44:268-297. [PMID: 31788690 DOI: 10.1093/jat/bkz077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/09/2019] [Accepted: 07/28/2019] [Indexed: 12/13/2022] Open
Abstract
Since the introduction in 1990, the solid-phase microextraction (SPME) technology has brought significant progress in many fields of forensic sciences due to the versatility of this fast and solventless alternative to conventional extraction techniques. A systematic review about SPME applications in forensic context from January 1995 to June 2018 was carried out according to systematic review guidelines. The majority of the reviewed articles (40/133) aimed to identify drugs (cannabinoids, cocaine, opiates, amphetamines, simultaneous detection of different drugs of abuse, prescribed drugs); 29 of the 133 articles focused on the investigation of fatalities; 28 of the 133 papers used headspace SPME technique for the identification of markers of chronic alcohol abuse. Sixteen papers involved this technique for the isolation of volatile organic compounds for the human odor profile and 20 concerned forensic applications regarding living people. Solid-phase microextraction was preferably employed in the headspace mode and many kinds of fibers were employed, although polydimethylsiloxane was the most adaptable to many forensic realities. Gas chromatography/mass spectrometry was more frequently used, probably for the well-established coupling with SPME. Most of the papers validated their method to harmonize the scientific approaches of procedures development. Good outcomes are reported on biological material collected from living people as well as on cadaveric samples. The results obtained by most of the studies about alcohol biomarkers on scalp hair have been adopted by the "Society of Hair Testing" to demonstrate abstinence over a pre-defined time period and to assess chronic excessive alcohol consumption.
Collapse
Affiliation(s)
- Nadia De Giovanni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Daniela Marchetti
- Fondazione Policlinico A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| |
Collapse
|
12
|
Drea CM. Design, delivery and perception of condition-dependent chemical signals in strepsirrhine primates: implications for human olfactory communication. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190264. [PMID: 32306880 DOI: 10.1098/rstb.2019.0264] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The study of human chemical communication benefits from comparative perspectives that relate humans, conceptually and empirically, to other primates. All major primate groups rely on intraspecific chemosignals, but strepsirrhines present the greatest diversity and specialization, providing a rich framework for examining design, delivery and perception. Strepsirrhines actively scent mark, possess a functional vomeronasal organ, investigate scents via olfactory and gustatory means, and are exquisitely sensitive to chemically encoded messages. Variation in delivery, scent mixing and multimodality alters signal detection, longevity and intended audience. Based on an integrative, 19-species review, the main scent source used (excretory versus glandular) differentiates nocturnal from diurnal or cathemeral species, reflecting differing socioecological demands and evolutionary trajectories. Condition-dependent signals reflect immutable (species, sex, identity, genetic diversity, immunity and kinship) and transient (health, social status, reproductive state and breeding history) traits, consistent with socio-reproductive functions. Sex reversals in glandular elaboration, marking rates or chemical richness in female-dominant species implicate sexual selection of olfactory ornaments in both sexes. Whereas some compounds may be endogenously produced and modified (e.g. via hormones), microbial analyses of different odorants support the fermentation hypothesis of bacterial contribution. The intimate contexts of information transfer and varied functions provide important parallels applicable to olfactory communication in humans. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- Christine M Drea
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708-0383, USA.,Department of Biology, Duke University, Durham, NC 27708-0383, USA
| |
Collapse
|
13
|
Prieto-Blanco M, Peñafiel Barba S, Moliner-Martínez Y, Campíns-Falcó P. Footprint of carbonyl compounds in hand scent by in-tube solid-phase microextraction coupled to nano-liquid chromatography/diode array detection. J Chromatogr A 2019; 1596:241-249. [DOI: 10.1016/j.chroma.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
|
14
|
There is no evidence that dogs can smell DNA – Comment on “Individual human scent as a forensic identifier using mantrailing”. Forensic Sci Int 2019; 297:e14-e15. [DOI: 10.1016/j.forsciint.2019.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/10/2019] [Indexed: 11/23/2022]
|
15
|
He Y, Concheiro-Guisan M. Microextraction sample preparation techniques in forensic analytical toxicology. Biomed Chromatogr 2018; 33:e4444. [DOI: 10.1002/bmc.4444] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yi He
- Department of Sciences, John Jay College of Criminal Justice; The City University of New York; New York NY USA
| | - Marta Concheiro-Guisan
- Department of Sciences, John Jay College of Criminal Justice; The City University of New York; New York NY USA
| |
Collapse
|
16
|
Cuzuel V, Leconte R, Cognon G, Thiébaut D, Vial J, Sauleau C, Rivals I. Human odor and forensics: Towards Bayesian suspect identification using GC × GC–MS characterization of hand odor. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:379-385. [DOI: 10.1016/j.jchromb.2018.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/01/2022]
|
17
|
Dubois LM, Stefanuto PH, Heudt L, Focant JF, Perrault KA. Characterizing decomposition odor from soil and adipocere samples at a death scene using HS-SPME-GC×GC-HRTOFMS. Forensic Chem 2018. [DOI: 10.1016/j.forc.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Kapono CA, Morton JT, Bouslimani A, Melnik AV, Orlinsky K, Knaan TL, Garg N, Vázquez-Baeza Y, Protsyuk I, Janssen S, Zhu Q, Alexandrov T, Smarr L, Knight R, Dorrestein PC. Creating a 3D microbial and chemical snapshot of a human habitat. Sci Rep 2018; 8:3669. [PMID: 29487294 PMCID: PMC5829137 DOI: 10.1038/s41598-018-21541-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
One of the goals of forensic science is to identify individuals and their lifestyle by analyzing the trace signatures left behind in built environments. Here, microbiome and metabolomic methods were used to see how its occupants used an office and to also gain insights into the lifestyle characteristics such as diet, medications, and personal care products of the occupants. 3D molecular cartography, a molecular visualization technology, was used in combination with mass spectrometry and microbial inventories to highlight human-environmental interactions. Molecular signatures were correlated with the individuals as well as their interactions with this indoor environment. There are person-specific chemical and microbial signatures associated with this environment that directly relate who had touched objects such as computers, computer mice, cell phones, desk phone, table or desks. By combining molecular and microbial investigation forensic strategies, this study offers novel insights to investigators who value the reconstructing of human lifestyle and characterization of human environmental interaction.
Collapse
Affiliation(s)
- Clifford A Kapono
- Department of Chemistry, University of California San Diego, La Jolla, CA, USA
| | - James T Morton
- Department of Computer of Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Kayla Orlinsky
- Department of Computer of Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Tal Luzzatto Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Neha Garg
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Yoshiki Vázquez-Baeza
- Department of Computer of Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ivan Protsyuk
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Stefan Janssen
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Theodore Alexandrov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Larry Smarr
- Department of Computer of Science and Engineering, University of California San Diego, La Jolla, CA, USA
- California Institute for Telecommunications and Information Technology, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Computer of Science and Engineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Human odor and forensics. Optimization of a comprehensive two-dimensional gas chromatography method based on orthogonality: How not to choose between criteria. J Chromatogr A 2018; 1536:58-66. [DOI: 10.1016/j.chroma.2017.08.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 08/14/2017] [Accepted: 08/20/2017] [Indexed: 11/20/2022]
|
20
|
Sampling method development and optimization in view of human hand odor analysis by thermal desorption coupled with gas chromatography and mass spectrometry. Anal Bioanal Chem 2017; 409:5113-5124. [DOI: 10.1007/s00216-017-0458-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/19/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
|