1
|
Regan J, DeJarnette C, Reitler P, Gihaz S, Srivastava A, Ge W, Tucker KM, Peters TL, Meibohm B, Ben Mamoun C, Fortwendel JR, Hevener KE, Palmer GE. Pantothenate kinase is an effective target for antifungal therapy. Cell Chem Biol 2025; 32:710-721.e6. [PMID: 40378822 DOI: 10.1016/j.chembiol.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 02/11/2025] [Accepted: 04/14/2025] [Indexed: 05/19/2025]
Abstract
Pantothenate kinase (PanK) catalyzes the first step in the conversion of pantothenate to coenzyme A (CoA), an essential cofactor in all living organisms. The findings of this study demonstrate that PanK is essential for the viability and virulence of two of the most medically significant fungi-the pathogenic yeast Candida albicans, and the infectious mold Aspergillus fumigatus-within the mammalian host. Biochemical, biophysical as well as chemical-genetic approaches were applied to identify 3,4-methylenedioxy-β-nitrostyrene (MNS) as a broad-spectrum antifungal that directly engages and inhibits PanK to block CoA production. Importantly, MNS is inactive against a mammalian PanK and demonstrates in vivo antifungal efficacy a mouse model of disseminated C. albicans infection. Thus, MNS has provided a valuable chemical probe to establish the validity of targeting PanK with small molecule inhibitors as a strategy to develop efficacious antifungal therapeutics.
Collapse
Affiliation(s)
- Jessica Regan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Christian DeJarnette
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Parker Reitler
- Department of Molecular Immunology and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Shalev Gihaz
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ashish Srivastava
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Wenbo Ge
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Katie M Tucker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Tracy L Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA.
| | - Glen E Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, USA.
| |
Collapse
|
2
|
Cavestro C, D'Amato M, Colombo MN, Cascone F, Moro AS, Levi S, Tiranti V, Di Meo I. CoA synthase plays a critical role in neurodevelopment and neurodegeneration. Front Cell Neurosci 2024; 18:1458475. [PMID: 39301217 PMCID: PMC11410578 DOI: 10.3389/fncel.2024.1458475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Coenzyme A (CoA), which is widely distributed and vital for cellular metabolism, is a critical molecule essential in both synthesizing and breaking down key energy sources in the body. Inborn errors of metabolism in the cellular de novo biosynthetic pathway of CoA have been linked to human genetic disorders, emphasizing the importance of this pathway. The COASY gene encodes the bifunctional enzyme CoA synthase, which catalyzes the last two reactions of the CoA biosynthetic pathway and serves as one of the rate-limiting components of the pathway. Recessive variants of this gene cause an exceptionally rare and devastating disease called COASY protein-associated neurodegeneration (CoPAN) while complete loss-of-function variants in COASY have been identified in fetuses/neonates with Pontocerebellar Hypoplasia type 12 (PCH 12). Understanding why the different symptoms emerge in these disorders and what determines the development of one syndrome over the other is still not achieved. To shed light on the pathogenesis, we generated a new conditional animal model in which Coasy was deleted under the control of the human GFAP promoter. We used this mouse model to investigate how defects in the CoA biosynthetic pathway affect brain development. This model showed a broad spectrum of severity of the in vivo phenotype, ranging from very short survival (less than 2 weeks) to normal life expectancy in some animals. Surviving mice displayed a behavioral phenotype with sensorimotor defects. Ex vivo histological analysis revealed variable but consistent cerebral and cerebellar cortical hypoplasia, in parallel with a broad astrocytic hyper-proliferation in the cerebral cortex. In addition, primary astrocytes derived from this model exhibited lipid peroxidation, iron dyshomeostasis, and impaired mitochondrial respiration. Notably, Coasy ablation in radial glia and astrocytic lineage triggers abnormal neuronal development and chronic neuroinflammation, offering new insights into disease mechanisms.
Collapse
Affiliation(s)
- Chiara Cavestro
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco D'Amato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Nicol Colombo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Floriana Cascone
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Sonia Levi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
3
|
Cavestro C, Diodato D, Tiranti V, Di Meo I. Inherited Disorders of Coenzyme A Biosynthesis: Models, Mechanisms, and Treatments. Int J Mol Sci 2023; 24:ijms24065951. [PMID: 36983025 PMCID: PMC10054636 DOI: 10.3390/ijms24065951] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Coenzyme A (CoA) is a vital and ubiquitous cofactor required in a vast number of enzymatic reactions and cellular processes. To date, four rare human inborn errors of CoA biosynthesis have been described. These disorders have distinct symptoms, although all stem from variants in genes that encode enzymes involved in the same metabolic process. The first and last enzymes catalyzing the CoA biosynthetic pathway are associated with two neurological conditions, namely pantothenate kinase-associated neurodegeneration (PKAN) and COASY protein-associated neurodegeneration (CoPAN), which belong to the heterogeneous group of neurodegenerations with brain iron accumulation (NBIA), while the second and third enzymes are linked to a rapidly fatal dilated cardiomyopathy. There is still limited information about the pathogenesis of these diseases, and the knowledge gaps need to be resolved in order to develop potential therapeutic approaches. This review aims to provide a summary of CoA metabolism and functions, and a comprehensive overview of what is currently known about disorders associated with its biosynthesis, including available preclinical models, proposed pathomechanisms, and potential therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Cavestro
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Daria Diodato
- Unit of Muscular and Neurodegenerative Disorders, Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| |
Collapse
|
4
|
Filonenko V, Gout I. Discovery and functional characterisation of protein CoAlation and the antioxidant function of coenzyme A. BBA ADVANCES 2023; 3:100075. [PMID: 37082257 PMCID: PMC10074942 DOI: 10.1016/j.bbadva.2023.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Coenzyme A (CoA) is an essential cofactor in all living cells which plays critical role in cellular metabolism, the regulation of gene expression and the biosynthesis of major cellular constituents. Recently, CoA was found to function as a major antioxidant in both prokaryotic and eukaryotic cells. This unconventional function of CoA is mediated by a novel post-translational modification, termed protein CoAlation. This review will highlight the history of this discovery, current knowledge, and future directions on studying molecular mechanisms of protein CoAlation and whether the antioxidant function of CoA is associated with pathologies, such as neurodegeneration and cancer.
Collapse
Affiliation(s)
- Valeriy Filonenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
- Corresponding authors.
| | - Ivan Gout
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Corresponding authors.
| |
Collapse
|
5
|
Casamayor A, Ariño J. Fungal Hal3 (and Its Close Relative Cab3) as Moonlighting Proteins. J Fungi (Basel) 2022; 8:1066. [PMID: 36294631 PMCID: PMC9604783 DOI: 10.3390/jof8101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 08/30/2023] Open
Abstract
Hal3 (Sis2) is a yeast protein that was initially identified as a regulatory subunit of the Saccharomyces cerevisiae Ser/Thr protein phosphatase Ppz1. A few years later, it was shown to participate in the formation of an atypical heterotrimeric phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme, thus catalyzing a key reaction in the pathway leading to Coenzyme A biosynthesis. Therefore, Hal3 was defined as a moonlighting protein. The structure of Hal3 in some fungi is made of a conserved core, similar to bacterial or mammalian PPCDCs; meanwhile, in others, the gene encodes a larger protein with N- and C-terminal extensions. In this work, we describe how Hal3 (and its close relative Cab3) participates in these disparate functions and we review recent findings that could make it possible to predict which of these two proteins will show moonlighting properties in fungi.
Collapse
Affiliation(s)
| | - Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
6
|
Albacar M, Velázquez D, Casamayor A, Ariño J. The toxic effects of yeast Ppz1 phosphatase are counteracted by subcellular relocalization mediated by its regulatory subunit Hal3. FEBS Lett 2022; 596:1556-1566. [DOI: 10.1002/1873-3468.14330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Marcel Albacar
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Spain
| | - Diego Velázquez
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Spain
| | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès Spain
| |
Collapse
|
7
|
Olzhausen J, Grigat M, Seifert L, Ulbricht T, Schüller HJ. Increased biosynthesis of acetyl-CoA in the yeast Saccharomyces cerevisiae by overexpression of a deregulated pantothenate kinase gene and engineering of the coenzyme A biosynthetic pathway. Appl Microbiol Biotechnol 2021; 105:7321-7337. [PMID: 34491400 PMCID: PMC8494682 DOI: 10.1007/s00253-021-11523-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/20/2021] [Accepted: 08/06/2021] [Indexed: 12/04/2022]
Abstract
Coenzyme A (CoA) and its derivatives such as acetyl-CoA are essential metabolites for several biosynthetic reactions. In the yeast S. cerevisiae, five enzymes (encoded by essential genes CAB1-CAB5; coenzyme A biosynthesis) are required to perform CoA biosynthesis from pantothenate, cysteine, and ATP. Similar to enzymes from other eukaryotes, yeast pantothenate kinase (PanK, encoded by CAB1) turned out to be inhibited by acetyl-CoA. By genetic selection of intragenic suppressors of a temperature-sensitive cab1 mutant combined with rationale mutagenesis of the presumed acetyl-CoA binding site within PanK, we were able to identify the variant CAB1 W331R, encoding a hyperactive PanK completely insensitive to inhibition by acetyl-CoA. Using a versatile gene integration cassette containing the TPI1 promoter, we constructed strains overexpressing CAB1 W331R in combination with additional genes of CoA biosynthesis (CAB2, CAB3, HAL3, CAB4, and CAB5). In these strains, the level of CoA nucleotides was 15-fold increased, compared to a reference strain without additional CAB genes. Overexpression of wild-type CAB1 instead of CAB1 W331R turned out as substantially less effective (fourfold increase of CoA nucleotides). Supplementation of overproducing strains with additional pantothenate could further elevate the level of CoA (2.3-fold). Minor increases were observed after overexpression of FEN2 (encoding a pantothenate permease) and deletion of PCD1 (CoA-specific phosphatase). We conclude that the strategy described in this work may improve the efficiency of biotechnological applications depending on acetyl-CoA. Key points • A gene encoding a hyperactive yeast pantothenate kinase (PanK) was constructed. • Overexpression of CoA biosynthetic genes elevated CoA nucleotides 15-fold. • Supplementation with pantothenate further increased the level of CoA nucleotides.
Collapse
Affiliation(s)
- Judith Olzhausen
- Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Cendres+Métaux SA, CH-2501, Biel/Bienne, Switzerland
| | - Mathias Grigat
- Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Larissa Seifert
- Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Universitätsklinikum Hamburg-Eppendorf, Medizinische Klinik, Nephrologie, Hamburg, Germany
| | - Tom Ulbricht
- Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Abteilung Molekulare Genetik und Infektionsbiologie, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.
| |
Collapse
|
8
|
Mendes V, Green SR, Evans JC, Hess J, Blaszczyk M, Spry C, Bryant O, Cory-Wright J, Chan DSH, Torres PHM, Wang Z, Nahiyaan N, O’Neill S, Damerow S, Post J, Bayliss T, Lynch SL, Coyne AG, Ray PC, Abell C, Rhee KY, Boshoff HIM, Barry CE, Mizrahi V, Wyatt PG, Blundell TL. Inhibiting Mycobacterium tuberculosis CoaBC by targeting an allosteric site. Nat Commun 2021; 12:143. [PMID: 33420031 PMCID: PMC7794376 DOI: 10.1038/s41467-020-20224-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/18/2020] [Indexed: 02/02/2023] Open
Abstract
Coenzyme A (CoA) is a fundamental co-factor for all life, involved in numerous metabolic pathways and cellular processes, and its biosynthetic pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis. The biosynthesis of CoA is performed in five steps, with the second and third steps being catalysed in the vast majority of prokaryotes, including M. tuberculosis, by a single bifunctional protein, CoaBC. Depletion of CoaBC was found to be bactericidal in M. tuberculosis. Here we report the first structure of a full-length CoaBC, from the model organism Mycobacterium smegmatis, describe how it is organised as a dodecamer and regulated by CoA thioesters. A high-throughput biochemical screen focusing on CoaB identified two inhibitors with different chemical scaffolds. Hit expansion led to the discovery of potent and selective inhibitors of M. tuberculosis CoaB, which we show to bind to a cryptic allosteric site within CoaB.
Collapse
Affiliation(s)
- Vitor Mendes
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Simon R. Green
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Joanna C. Evans
- grid.7836.a0000 0004 1937 1151MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Jeannine Hess
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Michal Blaszczyk
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Christina Spry
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Owain Bryant
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - James Cory-Wright
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Daniel S-H. Chan
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Pedro H. M. Torres
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Zhe Wang
- grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Navid Nahiyaan
- grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Sandra O’Neill
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Sebastian Damerow
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - John Post
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Tracy Bayliss
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Sasha L. Lynch
- grid.7836.a0000 0004 1937 1151MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Anthony G. Coyne
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Peter C. Ray
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Chris Abell
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Kyu Y. Rhee
- grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Helena I. M. Boshoff
- grid.419681.30000 0001 2164 9667Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Clifton E. Barry
- grid.7836.a0000 0004 1937 1151MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa ,grid.419681.30000 0001 2164 9667Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Valerie Mizrahi
- grid.7836.a0000 0004 1937 1151MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Paul G. Wyatt
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Tom L. Blundell
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| |
Collapse
|
9
|
Hong KQ, Fu XM, Dong SS, Xiao DG, Dong J. Modulating acetate ester and higher alcohol production in Saccharomyces cerevisiae through the cofactor engineering. J Ind Microbiol Biotechnol 2019; 46:1003-1011. [PMID: 30969383 DOI: 10.1007/s10295-019-02176-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
Flavor production by esters or by higher alcohols play a key role in the sensorial quality of fermented alcoholic beverages. In Saccharomyces cerevisiae cells, the syntheses of esters and higher alcohols are considerably influenced by intracellular CoA levels catalyzed by pantothenate kinase. In this work, we examined the effects of cofactor CoA and acetyl-CoA synthesis on the metabolism of esters and higher alcohols. Strains 12α-BAP2 and 12α+ATF1 where generated by deleting and overexpressing BAP2 (encoded branched-chain amino acid permease) and ATF1 (encoded alcohol acetyl transferases), respectively, in the parent 12α strains. Then, 12α-BAP2+CAB1 and 12α-BAP2+CAB3 strains were obtained by overexpressing CAB1 (encoded pantothenate kinase Cab1) and CAB3 (encoded pantothenate kinase Cab3) in the 12α-BAP2 strain, and 12α-BAP2+CAB1+ATF1 and 12α-BAP2+CAB3+ATF1 were generated by overexpressing ATF1 in the pantothenate kinase overexpression strains. The acetate ester level in 12α-BAP2 was slightly changed relative to that in the control strain 12α, whereas the acetate ester levels in 12α-BAP2+CAB1, 12α-BAP2+CAB3, 12α-BAP2+CAB1+ATF1, and 12α-BAP2+CAB3+ATF1 were distinctly increased (44-118% for ethyl acetate and 18-57% for isoamyl acetate). The levels of n-propanol, methyl-1-butanol, isopentanol, isobutanol, and phenethylol levels were changed and varied among the six engineered strains. The levels of acetate esters and higher alcohols can be modulated by changing the CoA and acetyl-CoA levels. The method proposed in this work supplies a practical means of breeding yeast strains by modulating acetate ester and higher alcohol production.
Collapse
Affiliation(s)
- Kun-Qiang Hong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiao-Meng Fu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China
| | - Sheng-Sheng Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China
| | - Jian Dong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, No. 29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
10
|
Dong J, Wang P, Fu X, Dong S, Li X, Xiao D. Increase ethyl acetate production in Saccharomyces cerevisiae by genetic engineering of ethyl acetate metabolic pathway. J Ind Microbiol Biotechnol 2019; 46:801-808. [PMID: 30810845 DOI: 10.1007/s10295-019-02142-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/21/2022]
Abstract
Ethyl acetate has attracted much attention as an important chemical raw material and a flavor component of alcoholic beverages. In this study, the biosynthetic pathway for the production of ethyl acetate in Chinese liquor yeast was unblocked. In addition to engineering Saccharomyces cerevisiae to increased intracellular CoA and acetyl-CoA levels, we also increased the combining efficiency of acetyl-CoA to ethanol. The genes encoding phosphopantothenate-cysteine ligase, acetyl-CoA synthetase, and alcohol acetyltransferase were overexpressed by inserting the strong promoter PGK1p and the terminator PGK1t, respectively, and then combine them. Our results finally showed that the ethyl acetate levels of all engineering strains were improved. The final engineering strain CLy12a-ATF1-ACS2-CAB2 had a significant increase in ethyl acetate yield, reaching 610.26 (± 14.28) mg/L, and the yield of higher alcohols was significantly decreased. It is proved that the modification of ethyl acetate metabolic pathway is extremely important for the production of ethyl acetate from Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jian Dong
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, NO.29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China
| | - Pengfei Wang
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, NO.29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China
| | - Xiaomeng Fu
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, NO.29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China
| | - Shengsheng Dong
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, NO.29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China
| | - Xiao Li
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, NO.29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, NO.29 13th Street, Economic and Technological Development District, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
11
|
Zheng P, Zhang M, Khan MH, Liu H, Jin Y, Yue J, Gao Y, Teng M, Zhu Z, Niu L. Crystallographic Analysis of the Catalytic Mechanism of Phosphopantothenoylcysteine Synthetase from Saccharomyces cerevisiae. J Mol Biol 2019; 431:764-776. [PMID: 30653991 DOI: 10.1016/j.jmb.2019.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 11/20/2022]
Abstract
Phosphopantothenoylcysteine (PPC) synthetase (PPCS) catalyzes nucleoside triphosphate-dependent condensation reaction between 4'-phosphopantothenate (PPA) and l-cysteine to form PPC in CoA biosynthesis. The catalytic mechanism of PPCS has not been resolved yet. Coenzyme A biosynthesis protein 2 (Cab2) possesses activity of PPCS in Saccharomyces cerevisiae. Our enzymatic assays suggest that Cab2 could utilize both ATP and CTP to activate PPA in vitro. The results of isothermal titration calorimetry indicate that PPA, CTP, and ATP could bind to Cab2 individually, with PPA having the highest binding affinity. To provide further insight into the catalytic mechanism of Cab2, we determined the crystal structures of Cab2 and its complex with PPA, the reaction intermediate 4'-phosphopantothenoyl-CMP, the final reaction product PPC, and the product analogue phosphopantothenoylcystine. Except for PPA, all other ligands were generated in situ and present in the active-site pocket of Cab2. Structures of Cab2 in complex with ligands provide insight into substrates binding and its catalytic mechanism. Analysis of structures indicates that the carboxyl of PPA-moiety of ligands and the γ-amino group of Asn97 possess different conformations in these complex structures. The cysteine/cystine/serine selectivity assays for Cab2 indicate that the amino group rather than the thiol group of l-cysteine attacks the carbonyl of 4'-phosphopantothenoyl-CMP to form PPC. Based on structural and biochemical data, the catalytic mechanism of Cab2 was proposed for the first time.
Collapse
Affiliation(s)
- Peiyi Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Mengying Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Muhammad Hidayatullah Khan
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Hejun Liu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yuping Jin
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jian Yue
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yongxiang Gao
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| |
Collapse
|
12
|
Abstract
Two inborn errors of coenzyme A (CoA) metabolism are responsible for distinct forms of neurodegeneration with brain iron accumulation (NBIA), a heterogeneous group of neurodegenerative diseases having as a common denominator iron accumulation mainly in the inner portion of globus pallidus. Pantothenate kinase-associated neurodegeneration (PKAN), an autosomal recessive disorder with progressive impairment of movement, vision and cognition, is the most common form of NBIA and is caused by mutations in the pantothenate kinase 2 gene (PANK2), coding for a mitochondrial enzyme, which phosphorylates vitamin B5 in the first reaction of the CoA biosynthetic pathway. Another very rare but similar disorder, denominated CoPAN, is caused by mutations in coenzyme A synthase gene (COASY) coding for a bi-functional mitochondrial enzyme, which catalyzes the final steps of CoA biosynthesis. It still remains a mystery why dysfunctions in CoA synthesis lead to neurodegeneration and iron accumulation in specific brain regions, but it is now evident that CoA metabolism plays a crucial role in the normal functioning and metabolism of the nervous system.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, Milan 20126, Italy
| | - Miryam Carecchio
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, Milan 20126, Italy
- Department of Child Neurology, Foundation IRCCS Neurological Institute C. Besta, Via Celoria 11, Milan 20133, Italy
- Department of Medicine and Surgery, PhD Programme in Molecular and Translational Medicine, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, Milan 20126, Italy
| |
Collapse
|
13
|
Santolaria C, Velázquez D, Strauss E, Ariño J. Mutations at the hydrophobic core affect Hal3 trimer stability, reducing its Ppz1 inhibitory capacity but not its PPCDC moonlighting function. Sci Rep 2018; 8:14701. [PMID: 30279472 PMCID: PMC6168597 DOI: 10.1038/s41598-018-32979-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022] Open
Abstract
S. cerevisiae Hal3 (ScHal3) is a moonlighting protein that, is in its monomeric state, regulates the Ser/Thr protein phosphatase Ppz1, but also joins ScCab3 (and in some instances the Hal3 paralog Vhs3) to form an unusual heterotrimeric phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. PPCDC is required for CoA biosynthesis and in most eukaryotes is a homotrimeric complex with three identical catalytic sites at the trimer interfaces. However, in S. cerevisiae the heterotrimeric arrangement results in a single functional catalytic center. Importantly, the specific structural determinants that direct Hal3's oligomeric state and those required for Ppz1 inhibition remain largely unknown. We mutagenized residues in the predicted hydrophobic core of ScHal3 (L403-L405) and the plant Arabidopsis thaliana Hal3 (AtHal3, G115-L117) oligomers and characterized their properties as PPCDC components and, for ScHal3, also as Ppz1 inhibitor. We found that in AtHal3 these changes do not affect trimerization or PPCDC function. Similarly, mutation of ScHal3 L403 has no effect. In contrast, ScHal3 L405E fails to form homotrimers, but retains the capacity to bind Cab3-explaining its ability to rescue a hal3 vhs3 synthetically lethal mutation. Remarkably, the L405E mutation decreases Hal3's ability to interact with and to inhibit Ppz1, confirming the importance of the oligomer/monomer equilibrium in Hal3's Ppz1 regulating function.
Collapse
Affiliation(s)
- Carlos Santolaria
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Matieland, 7602, South Africa
| | - Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
14
|
Di Meo I, Tiranti V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol 2018; 22:272-284. [PMID: 29409688 DOI: 10.1016/j.ejpn.2018.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/06/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Brain iron accumulation is the hallmark of a group of seriously invalidating and progressive rare diseases collectively denominated Neurodegeneration with Brain Iron Accumulation (NBIA), characterized by movement disorder, painful dystonia, parkinsonism, mental disability and early death. Currently there is no established therapy available to slow down or reverse the progression of these conditions. Several genes have been identified as responsible for NBIA but only two encode for proteins playing a direct role in iron metabolism. The other genes encode for proteins either with various functions in lipid metabolism, lysosomal activity and autophagic processes or with still unknown roles. The different NBIA subtypes have been classified and denominated on the basis of the mutated genes and, despite genetic heterogeneity, some of them code for proteins, which share or converge on common metabolic pathways. In the last ten years, the implementation of genetic screening based on Whole Exome Sequencing has greatly accelerated gene discovery, nevertheless our knowledge of the pathogenic mechanisms underlying the NBIA syndromes is still largely incomplete.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, Pierfranco and Luisa Mariani Centre for the Study of Mitochondrial Disorders in Children, Foundation IRCCS Neurological Institute C. Besta, Via Temolo 4, 20126, Milan, Italy.
| |
Collapse
|
15
|
Abrie JA, Molero C, Ariño J, Strauss E. Complex stability and dynamic subunit interchange modulates the disparate activities of the yeast moonlighting proteins Hal3 and Vhs3. Sci Rep 2015; 5:15774. [PMID: 26514574 PMCID: PMC4626798 DOI: 10.1038/srep15774] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 11/17/2022] Open
Abstract
Saccharomyces cerevisiae Hal3 and Vhs3 are moonlighting proteins, acting both as inhibitors of the serine/threonine protein phosphatase Ppz1 and as subunits (together with Cab3) of the unique heterotrimeric phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme of Hemiascomycetous yeast. Both these roles are essential: PPCDC catalyses the third step of coenzyme A biosynthesis, while Ppz1 inhibition is required for regulation of monovalent cation homeostasis. However, the mechanisms by which these proteins’ disparate activities are regulated are not well understood. The PPCDC domains (PDs) of Hal3, Vhs3 and Cab3 constitute the minimum requirement for these proteins to show both PPCDC activity and, in the case of Hal3 and Vhs3, to bind to Ppz1. Using these PD proteins as a model system to study the possibility of dynamic interchange between these roles, we provide evidence that Hal3 binds Ppz1 as a monomer (1:1 stoichiometry), requiring it to de-oligomerize from its usual homo- and heterotrimeric states (the latter having PPCDC activity). This de-oligomerization is made possible by structural features that set Hal3 apart from Vhs3, increasing its ability to undergo monomer exchange. These findings suggest that oligomer interchange may be a significant factor in the functional regulation of these proteins and their various unrelated (moonlighting) functions.
Collapse
Affiliation(s)
- J Albert Abrie
- Department of Biochemistry, Stellenbosch University, South Africa
| | - Cristina Molero
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, South Africa
| |
Collapse
|
16
|
Abstract
CoA (coenzyme A) is an essential cofactor in all living organisms. CoA and its thioester derivatives [acetyl-CoA, malonyl-CoA, HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) etc.] participate in diverse anabolic and catabolic pathways, allosteric regulatory interactions and the regulation of gene expression. The biosynthesis of CoA requires pantothenic acid, cysteine and ATP, and involves five enzymatic steps that are highly conserved from prokaryotes to eukaryotes. The intracellular levels of CoA and its derivatives change in response to extracellular stimuli, stresses and metabolites, and in human pathologies, such as cancer, metabolic disorders and neurodegeneration. In the present mini-review, we describe the current understanding of the CoA biosynthetic pathway, provide a detailed overview on expression and subcellular localization of enzymes implicated in CoA biosynthesis, their regulation and the potential to form multi-enzyme complexes for efficient and highly co-ordinated biosynthetic process.
Collapse
|
17
|
Coenzyme A and its derivatives: renaissance of a textbook classic. Biochem Soc Trans 2015; 42:1025-32. [PMID: 25109997 DOI: 10.1042/bst20140176] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In 1945, Fritz Lipmann discovered a heat-stable cofactor required for many enzyme-catalysed acetylation reactions. He later determined the structure for this acetylation coenzyme, or coenzyme A (CoA), an achievement for which he was awarded the Nobel Prize in 1953. CoA is now firmly embedded in the literature, and in students' minds, as an acyl carrier in metabolic reactions. However, recent research has revealed diverse and important roles for CoA above and beyond intermediary metabolism. As well as participating in direct post-translational regulation of metabolic pathways by protein acetylation, CoA modulates the epigenome via acetylation of histones. The organization of CoA biosynthetic enzymes into multiprotein complexes with different partners also points to close linkages between the CoA pool and multiple signalling pathways. Dysregulation of CoA biosynthesis or CoA thioester homoeostasis is associated with various human pathologies and, although the biochemistry of CoA biosynthesis is highly conserved, there are significant sequence and structural differences between microbial and human biosynthetic enzymes. Therefore the CoA biosynthetic pathway is an attractive target for drug discovery. The purpose of the Coenzyme A and Its Derivatives in Cellular Metabolism and Disease Biochemical Society Focused Meeting was to bring together researchers from around the world to discuss the most recent advances on the influence of CoA, its biosynthetic enzymes and its thioesters in cellular metabolism and diseases and to discuss challenges and opportunities for the future.
Collapse
|
18
|
Currie E, Guo X, Christiano R, Chitraju C, Kory N, Harrison K, Haas J, Walther TC, Farese RV. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. J Lipid Res 2014; 55:1465-77. [PMID: 24868093 PMCID: PMC4076087 DOI: 10.1194/jlr.m050229] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 01/29/2023] Open
Abstract
Accurate protein inventories are essential for understanding an organelle’s functions. The lipid droplet (LD) is a ubiquitous intracellular organelle with major functions in lipid storage and metabolism. LDs differ from other organelles because they are bounded by a surface monolayer, presenting unique features for protein targeting to LDs. Many proteins of varied functions have been found in purified LD fractions by proteomics. While these studies have become increasingly sensitive, it is often unclear which of the identified proteins are specific to LDs. Here we used protein correlation profiling to identify 35 proteins that specifically enrich with LD fractions of Saccharomyces cerevisiae. Of these candidates, 30 fluorophore-tagged proteins localize to LDs by microscopy, including six proteins, several with human orthologs linked to diseases, which we newly identify as LD proteins (Cab5, Rer2, Say1, Tsc10, YKL047W, and YPR147C). Two of these proteins, Say1, a sterol deacetylase, and Rer2, a cis-isoprenyl transferase, are enzymes involved in sterol and polyprenol metabolism, respectively, and we show their activities are present in LD fractions. Our results provide a highly specific list of yeast LD proteins and reveal that the vast majority of these proteins are involved in lipid metabolism.
Collapse
Affiliation(s)
- Erin Currie
- Department of Biochemistry and Biophysics University of California, San Francisco, CA 94158 Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Xiuling Guo
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | | | | | - Nora Kory
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - Kenneth Harrison
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Joel Haas
- Department of Biochemistry and Biophysics University of California, San Francisco, CA 94158 Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Tobias C Walther
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - Robert V Farese
- Department of Biochemistry and Biophysics University of California, San Francisco, CA 94158 Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158 Department of Medicine, University of California, San Francisco, CA 94158
| |
Collapse
|