1
|
Afzal I, Kuznetsova A, Foght J, Ulrich A, Siddique T. Microbial interactions with magnetite enhance methane production from hydrocarbon biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138082. [PMID: 40163993 DOI: 10.1016/j.jhazmat.2025.138082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Indigenous microbial communities in fine tailings (FT) biodegrade residual diluent hydrocarbons and support CH4 emissions from oil sands tailings ponds and end-pit lakes. We investigated the effect of added crystalline Fe mineral magnetite on microbial metabolism of hydrocarbons in FT collected from methanogenically less and more active sites of an end-pit lake. Magnetite accelerated CH4 production by enhancing the biodegradation of hydrocarbons, with a more prominent effect on complex/relatively recalcitrant aliphatics (C8-C11 compounds) and monoaromatics. Interestingly, 86-92 % of total magnetite added in FT remained stable even after the metabolism of labile hydrocarbons (∼45 % of total diluent hydrocarbons). This may be due to magnetite enabling mineralogical direct interspecies electron transfer (mDIET) rather than iron reduction to enhance the methanogenic biodegradation of hydrocarbons. Enrichment of Coriobacteriaceae along with Desulfosporosinus, Syntrophus, Peptococcaceae, Smithella, Methanosaeta, and Methanoregula in magnetite-supplemented FT during hydrocarbon biodegradation suggested their potential role in developing mDIET. These results suggest that magnetite, when present, accelerates methanogenesis and potentially may increase rather than suppress CH4 emissions from FT, and also suggest the potential use of magnetite to accelerate bioremediation of other hydrocarbon-contaminated anaerobic environments.
Collapse
Affiliation(s)
- Iram Afzal
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Alsu Kuznetsova
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Julia Foght
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada.
| |
Collapse
|
2
|
Ma JY, Liu JH, Chen CZ, Zhang YZ, Guo ZS, Song MP, Jiang F, Chai ZT, Li Z, Lv SX, Zhen YJ, Wang L, Liang ZL, Jiang ZY. Characteristics of microbial carbon pump in the sediment of kelp aquaculture zone and its contribution to recalcitrant dissolved organic carbon turnover: insights into metabolic patterns and ecological functions. ENVIRONMENTAL RESEARCH 2025; 277:121559. [PMID: 40228693 DOI: 10.1016/j.envres.2025.121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/16/2025]
Abstract
The study delves into the microbial carbon pump (MCP) within the sediments of kelp aquaculture zones, focusing on its influence on the turnover of recalcitrant dissolved organic carbon (RDOC). Following kelp harvest, significant alterations in the microbial community structure were noted, with a decrease in complexity and heterogeneity within co-occurrence networks potentially impacting RDOC production efficiency. Metabolic models constructed identified four key microbial lineages crucial for RDOC turnover, with their abundance observed to decrease post-harvest. Analysis of metabolic complementarity revealed that RDOC-degrading microorganisms exhibit broad substrate diversity and are engaged in specific resource exchange patterns, with cross-feeding interactions possibly enhancing the ecological efficiency of the MCP. Notably, the degradation of RDOC was found not to deplete the RDOC pool; as aromatic compounds break down, new ones are released into the environment, thus supporting the renewal of the RDOC pool. The research highlights the pivotal role of microbial communities in RDOC turnover and offers fresh insights into their cross-feeding behavior related to RDOC cycling, providing valuable data to support the future development and application of MCP theory.
Collapse
Affiliation(s)
- Jun-Yang Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, PR China; Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Ji-Hua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Yi-Ze Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Zhan-Sheng Guo
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Min-Peng Song
- Yantai Vocational College, Yantai, 264670, Shandong, PR China
| | - Feng Jiang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zi-Tong Chai
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zhu Li
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Su-Xian Lv
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Yu-Jiao Zhen
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Lu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zhen-Lin Liang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China
| | - Zhao-Yang Jiang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, Shandong, PR China.
| |
Collapse
|
3
|
Feng F, Yang Y, Liu Q, Wu S, Yun Z, Xu X, Jiang Y. Insights into the characteristics of changes in dissolved organic matter fluorescence components on the natural attenuation process of toluene. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134952. [PMID: 38944985 DOI: 10.1016/j.jhazmat.2024.134952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Natural attenuation (NA) is of great significance for the remediation of contaminated groundwater, and how to identify NA patterns of toluene in aquifers more quickly and effectively poses an urgent challenge. In this study, the NA of toluene in two typical soils was conducted by means of soil column experiment. Based on column experiments, dissolved organic matter (DOM) was rapidly identified using fluorescence spectroscopy, and the relationship between DOM and the NA of toluene was established through structural equation modeling analysis. The adsorption rates of toluene in clay and sandy soil were 39 % and 26 %, respectively. The adsorption capacity and total NA capacity of silty clay were large. The occurrence of fluorescence peaks of protein-like components and specific products indicated the occurrence of biodegradation. Arenimonas, Acidovorax and Brevundimonas were the main degrading bacteria identified in Column A, while Pseudomonas, Azotobacter and Mycobacterium were the main ones identified in Column B. The pH, ORP, and Fe(II) were the most important factors affecting the composition of microbial communities, which in turn affected the NA of toluene. These results provide a new way to quickly identify NA of toluene.
Collapse
Affiliation(s)
- Fan Feng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiyuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuxuan Wu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhichao Yun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Chen X, Sheng Y, Wang G, Guo L, Zhang H, Zhang F, Yang T, Huang D, Han X, Zhou L. Microbial compositional and functional traits of BTEX and salinity co-contaminated shallow groundwater by produced water. WATER RESEARCH 2022; 215:118277. [PMID: 35305487 DOI: 10.1016/j.watres.2022.118277] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Intrusion of salinity and petroleum hydrocarbons (e.g., benzene, toluene, ethylbenzene, and xylenes, BTEX) into shallow groundwater by so-called 'produced water' (the water associated with oil and gas production) has recently drawn much attention. However, how this co-contamination affects the groundwater microbial community remains unknown. Herein, geochemical methods (e.g., ion ratios) and high-throughput sequencing (amplicon and shotgun metagenomic) were used to study the contaminant source, hydrogeochemical conditions, microbial community and function in salinity and BTEX co-contaminated shallow groundwater in an oil field, northwest China. The desulfurization coefficient (100rSO42-/rCl-), coefficient of sodium and chloride (rNa+/rCl-), and coefficient of magnesium and chloride (rMg2+/rCl-) revealed an intrusion of produced water into groundwater, resulting in elevated levels of salinity and BTEX. The consumption of terminal electron acceptors (e.g., NO3-, Fe3+, and SO42-) was likely coupled with BTEX degradation. Relative to the bacteria, decreased archaeal diversity and enriched community in produced water-contaminated groundwater suggested that archaea were more susceptible to elevated BTEX and salinity. Relative to the nitrate and sulfate reduction genes, the abundance of marker genes encoding fermentation (acetate and hydrogen production) and methanogenesis (aceticlastic and methylotrophic) was more proportional to BTEX concentration. The produced water intrusion significantly enriched the salt-tolerant anaerobic fermentative heterotroph Woesearchaeia in shallow groundwater, and its co-occurrence with BTEX-degrading bacteria and methanogen Methanomicrobia suggested mutualistic interactions among the archaeal and bacterial communities to couple BTEX degradation with fermentation and methanogenesis. This study offers a first insight into the microbial community and function in groundwater contaminated by produced water.
Collapse
Affiliation(s)
- Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China; Department of Geology and Environmental Earth Science, Miami University, OH 45056, USA.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China.
| | - Liang Guo
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Fan Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Tao Yang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Dandan Huang
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, PR China
| | - Xu Han
- Geology Institute of China Chemical Geology and Mine Bureau, Beijing, PR China
| | - Ling Zhou
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
5
|
Yadav M, Joshi C, Paritosh K, Thakur J, Pareek N, Masakapalli SK, Vivekanand V. Reprint of:Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2022; 71:62-76. [DOI: 10.1016/j.ymben.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022]
|
6
|
Understanding Interaction Patterns within Deep-Sea Microbial Communities and Their Potential Applications. Mar Drugs 2022; 20:md20020108. [PMID: 35200637 PMCID: PMC8874374 DOI: 10.3390/md20020108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Environmental microbes living in communities engage in complex interspecies interactions that are challenging to decipher. Nevertheless, the interactions provide the basis for shaping community structure and functioning, which is crucial for ecosystem service. In addition, microbial interactions facilitate specific adaptation and ecological evolution processes particularly essential for microbial communities dwelling in resource-limiting habitats, such as the deep oceans. Recent technological and knowledge advancements provide an opportunity for the study of interactions within complex microbial communities, such as those inhabiting deep-sea waters and sediments. The microbial interaction studies provide insights into developing new strategies for biotechnical applications. For example, cooperative microbial interactions drive the degradation of complex organic matter such as chitins and celluloses. Such microbiologically-driven biogeochemical processes stimulate creative designs in many applied sciences. Understanding the interaction processes and mechanisms provides the basis for the development of synthetic communities and consequently the achievement of specific community functions. Microbial community engineering has many application potentials, including the production of novel antibiotics, biofuels, and other valuable chemicals and biomaterials. It can also be developed into biotechniques for waste processing and environmental contaminant bioremediation. This review summarizes our current understanding of the microbial interaction mechanisms and emerging techniques for inferring interactions in deep-sea microbial communities, aiding in future biotechnological and therapeutic applications.
Collapse
|
7
|
Cupples AM, Thelusmond JR. Predicting the occurrence of monooxygenases and their associated phylotypes in soil microcosms. METHODS IN MICROBIOLOGY 2021; 193:106401. [PMID: 34973287 DOI: 10.1016/j.mimet.2021.106401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Cometabolic oxidation involves the oxidation of chemicals often by monooxygenases or dioxygenases and can be a removal process for environmental contaminants such as trichloroethene (TCE) or 1,4-dioxane. Information on the occurrence of these genes and their associated microorganisms in environmental samples has the potential to enhance our understanding of contaminant removal. The overall aims were to 1) ascertain which genes encoding for monooxygenases (from methanotrophs, ammonia oxidizing bacteria and toluene/phenol oxidizers) and other key enzymes are present in soil microcosms and 2) determine which phylotypes are associated with those genes. The approach involved a predictive tool called PICRUSt2 and 16S rRNA gene amplicon datasets from two previous soil microcosm studies. The following targets from the KEGG database were examined: pmo/amo, mmo, dmp/pox/tomA, tmo/tbu/tou, bssABC (and downstream genes), tod, xylM, xylA, gst, dhaA, catE, dbfA1, dbfA2 and phenol 2-monooxygenase. A large number of phylotypes were associated with pmo/amo, while mmo was linked to only five. Several phylotypes were associated with both pmo/amo and mmo. The most dominant microorganism predicted for mmoX was Mycobacterium (also predicted for pmo/amo). A large number of phylotypes were associated with all six genes from the dmp/pox/tomA KEGG group. The taxonomic associations predicted for the tmo/tbu/tou KEGG group were more limited. In both datasets, Geobacter was a key phylotype for benzylsuccinate synthase. The dioxygenase-mediated toluene degradation pathway encoded by todC1C2BA was largely absent, as were the genes (xylM, xylA) encoding for xylene monooxygenase. All other genes investigated were predicted to be present and were associated with a number of microorganisms. Overall, the analysis predicted the genes encoding for sMMO (mmo), T3MO/T3MO/ToMO (tmo/tbu/tou) and benzylsuccinate synthase (bssABC) are present for a limited number of phylotypes compared to those encoding for pMMO/AMO (pmo/amo) and phenol monooxygenase/T2MO (dmp/poxA/tomA). These findings suggest in soils contaminant removal via pMMO/AMO or phenol monooxygenase/T2MO may be common because of the occurrence of these enzymes with a large number of phylotypes.
Collapse
Affiliation(s)
- Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2021; 69:323-337. [PMID: 34864213 DOI: 10.1016/j.ymben.2021.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.
Collapse
|
9
|
Epiphytic Bacteria Are Essential for the Production and Transformation of Algae-Derived Carboxyl-Rich Alicyclic Molecule (CRAM)-like DOM. Microbiol Spectr 2021; 9:e0153121. [PMID: 34668747 PMCID: PMC8528127 DOI: 10.1128/spectrum.01531-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The microbial carbon pump (MCP) provides a mechanistic illustration of transformation of recalcitrant dissolved organic matter (DOM) in the ocean. Here, we explored and demonstrated the key roles of algae-associated microorganisms (mainly heterotrophic bacteria) in the production and transformation of carboxyl-rich alicyclic molecule (CRAM)-like DOM through a laboratory experiment involving cultures of Skeletonema dohrnii. Without the participation of the associated bacteria, CRAM-like DOM molecules were not detected via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in algal cultures treated with antibiotics. Similarly, CRAM-like DOM were not detected in cultures of bacteria alone. Our experimental results showed that algae-associated bacteria are important in the process of converting algal-derived organic matter into CRAM-like DOM during S. dohrnii culture. Bacteroidetes (mainly Flavobacteriia) dominated the bacterial community in the stationary and degradation phases, where the predicted metabolic pathways for bacterial assemblages were mainly involved in biosynthesis, metabolism, and degradation. Facilitated by these heterotrophic bacteria, the amount and the chemodiversity of CRAM-like DOM derived from algae varied during the growth and decomposition of algal cells, and CRAM-like DOM were enriched at the later growth stage. The properties and characteristics of these CRAM-like DOM, including molecular weight, double bond equivalent, hydrogen-carbon ratio, carbon-nitrogen ratio, carbon-sulfur ratio, and modified aromaticity index increased with the growth and decay of algal cells, indicating the transformation from active to recalcitrant DOM. In contrast, the organic matter in axenic cultures of S. dohrnii mainly existed in the form of particulate organic matters (POM), and small amounts of CRAM-like DOM were detected. This study provides the first laboratory evidence to reveal and confirm the direct involvement of algae-associated microbiomes in the production and transformation of algae-derived refractory DOM, highlighting the significance of these epiphytic bacteria in marine carbon sequestration and global carbon cycling. IMPORTANCE Dissolved organic matter (DOM) serves as a major carbon and nutrient pool in oceans, and recalcitrant DOM are the primary sources for carbon sequestration in depths. Here, we demonstrate the critical roles of algae-associated microorganisms (mainly heterotrophic bacteria) in the transformation of recalcitrant dissolved organic matter through laboratory cultures of a model diatom, Skeletonema dohrnii. Our experimental results showed that in addition to affecting the growth and the physiology of S. dohrnii, algae-associated bacteria are important in processing and converting algal DOM into CRAM-like DOM. Facilitated by the associated bacteria, the amount and the chemodiversity of DOM derived from algae varied during the growth and decomposition of algal cells, and enriched recalcitrant DOM formed in the later growth stage. The properties and diversity of DOM increased with the growth and decay of algal cells, indicating the transformation from active DOM to inert organic matter. Our results confirmed that the direct involvement of algae-associated microbes in the production of CRAM-like DOM. Detailed community structure analysis of the algae-associated bacterial community and its predicted functions confirmed the involvement of certain bacterial groups (e.g., Flavobacteriia) in biosynthesis, metabolism, and degradation.
Collapse
|
10
|
Arslan M, Gamal El-Din M. Bacterial diversity in petroleum coke based biofilters treating oil sands process water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146742. [PMID: 33839672 DOI: 10.1016/j.scitotenv.2021.146742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Adopting nature-based solutions for the bioremediation of oil sands process water (OSPW) is of significant interest, which requires a thorough understanding of how bacterial communities behave within treatment systems operated under natural conditions. This study investigates the OSPW remediation potential of delayed petroleum-coke (PC), which is a byproduct of bitumen upgrading process and is readily available at oil refining sites, in fixed-bed biofilters particularly for the degradation of naphthenic acids (NAs) and aromatics. The biofilters were operated continuously and total and active bacterial communities were studied by DNA and RNA-based amplicon sequencing in a metataxonomic fashion to extrapolate the underlying degradation mechanisms. The results of total community structure indicated a high abundance of aerobic bacteria at all depths of the biofilter, e.g., Porphyrobacter, Legionella, Pseudomonas, Planctomyces. However, redox conditions within the biofilters were anoxic (-153 to -182 mV) that selected anaerobic bacteria to actively participate in the remediation of OSPW, i.e., Ruminicoccus, Eubacterium, Faecalibacterium, Dorea. After 15 days of operation, the removal of classical NAs was recorded up to 20% whereas oxidized NAs species were poorly removed, i.e., O3-NAs: 4.8%, O4-NAs: 1.2%, O5-NAs: 1.7%, and O6-NAs: 0.5%. Accordingly, monoaromatics, diaromatics, and triaromatics were removed up to 16%, 22%, and 15%, respectively. The physiology of the identified genera suggested that the degradation in the PC-based biofilters was most likely proceeded in a scheme similar to beta-oxidation during anaerobic digestion process. The presence of hydrogenotrophic methanogens namely Methanobrevibacter and Methanomassiliicoccus and quantification of mcrA gene (2.4 × 102 to 8.7 × 102 copies/mg of PC) revealed that methane production was likely occurring in a syntrophic mechanism during the OSPW remediation. A slight reduction in toxicity was also observed. This study suggests that PC-based biofilters may offer some advantages in the remediation of OSPW; however, the production of methane could be of future concerns if operated at field-scale.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
11
|
Marietou A. Sulfate reducing microorganisms in high temperature oil reservoirs. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:99-131. [PMID: 34353505 DOI: 10.1016/bs.aambs.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High temperature reservoirs offer a window into the microbial life of the deep biosphere. Sulfate reducing microorganisms have been recovered from high temperature oil reservoirs around the globe and characterized using culture-dependent and culture-independent approaches. The activities of sulfate reducers contribute to reservoir souring and hydrocarbon degradation among other attracting considerable interest from the oil industry for the last 100 years. The extremes of temperature and pressure shape the activities and distribution of sulfate reducing bacteria and archaea in high temperature reservoirs. This chapter will attempt to summarize the key findings on the diversity and activities of sulfate reducing microorganisms in high temperature reservoirs.
Collapse
Affiliation(s)
- Angeliki Marietou
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
12
|
Taylor NM, Toth CRA, Collins V, Mussone P, Gieg LM. The Effect of an Adsorbent Matrix on Recovery of Microorganisms from Hydrocarbon-Contaminated Groundwater. Microorganisms 2021; 9:microorganisms9010090. [PMID: 33401442 PMCID: PMC7823327 DOI: 10.3390/microorganisms9010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
The microbial degradation of recalcitrant hydrocarbons is an important process that can contribute to the remediation of oil and gas-contaminated environments. Due to the complex structure of subsurface terrestrial environments, it is important to identify the microbial communities that may be contributing to biodegradation processes, along with their abilities to metabolize different hydrocarbons in situ. In this study, a variety of adsorbent materials were assessed for their ability to trap both hydrocarbons and microorganisms in contaminated groundwater. Of the materials tested, a porous polymer resin (Tenax-TA) recovered the highest diversity of microbial taxa in preliminary experiments and was selected for additional (microcosm-based) testing. Oxic and anoxic experiments were prepared with groundwater collected from a contaminated aquifer to assess the ability of Tenax-TA to adsorb two environmental hydrocarbon contaminants of interest (toluene and benzene) while simultaneously providing a surface for microbial growth and hydrocarbon biodegradation. Microorganisms in oxic microcosms completely degraded both targets within 14 days of incubation, while anoxically-incubated microorganisms metabolized toluene but not benzene in less than 80 days. Community analysis of Tenax-TA-associated microorganisms revealed taxa highly enriched in sessile hydrocarbon-degrading treatments, including Saprospiraceae, Azoarcus, and Desulfoprunum, which may facilitate hydrocarbon degradation. This study showed that Tenax-TA can be used as a matrix to effectively trap both microorganisms and hydrocarbons in contaminated environmental systems for assessing and studying hydrocarbon-degrading microorganisms of interest.
Collapse
Affiliation(s)
- Nicole M. Taylor
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Courtney R. A. Toth
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada;
| | - Victoria Collins
- Applied BioNanotechnology Industrial Research Chair Program, Northern Alberta Institute of Technology, 11762-106 Street, Edmonton, AB T5G 2R1, Canada; (V.C.); (P.M.)
| | - Paolo Mussone
- Applied BioNanotechnology Industrial Research Chair Program, Northern Alberta Institute of Technology, 11762-106 Street, Edmonton, AB T5G 2R1, Canada; (V.C.); (P.M.)
| | - Lisa M. Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
- Correspondence:
| |
Collapse
|
13
|
Rossmassler K, Snow CD, Taggart D, Brown C, De Long SK. Advancing biomarkers for anaerobic o-xylene biodegradation via metagenomic analysis of a methanogenic consortium. Appl Microbiol Biotechnol 2019; 103:4177-4192. [PMID: 30968165 DOI: 10.1007/s00253-019-09762-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
Abstract
Quantifying functional biomarker genes and their transcripts provides critical lines of evidence for contaminant biodegradation; however, accurate quantification depends on qPCR primers that contain no, or minimal, mismatches with the target gene. Developing accurate assays has been particularly challenging for genes encoding fumarate-adding enzymes (FAE) due to the high level of genetic diversity in this gene family. In this study, metagenomics applied to a field-derived, o-xylene-degrading methanogenic consortium revealed genes encoding FAE that would not be accurately quantifiable by any previously available PCR assays. Sequencing indicated that a gene similar to the napthylmethylsuccinate synthase gene (nmsA) was most abundant, although benzylsuccinate synthase genes (bssA) also were present along with genes encoding alkylsuccinate synthase (assA). Upregulation of the nmsA-like gene was observed during o-xylene degradation. Protein homology modeling indicated that mutations in the active site, relative to a BssA that acts on toluene, increase binding site volume and accessibility, potentially to accommodate the relatively larger o-xylene. The new nmsA-like gene was also detected at substantial concentrations at field sites with a history of xylene contamination.
Collapse
Affiliation(s)
- Karen Rossmassler
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | | | - Casey Brown
- Microbial Insights, Inc., Knoxville, TN, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
14
|
Roy A, Sar P, Sarkar J, Dutta A, Sarkar P, Gupta A, Mohapatra B, Pal S, Kazy SK. Petroleum hydrocarbon rich oil refinery sludge of North-East India harbours anaerobic, fermentative, sulfate-reducing, syntrophic and methanogenic microbial populations. BMC Microbiol 2018; 18:151. [PMID: 30348104 PMCID: PMC6198496 DOI: 10.1186/s12866-018-1275-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022] Open
Abstract
Background Sustainable management of voluminous and hazardous oily sludge produced by petroleum refineries remains a challenging problem worldwide. Characterization of microbial communities of petroleum contaminated sites has been considered as the essential prerequisite for implementation of suitable bioremediation strategies. Three petroleum refinery sludge samples from North Eastern India were analyzed using next-generation sequencing technology to explore the diversity and functional potential of inhabitant microorganisms and scope for their on-site bioremediation. Results All sludge samples were hydrocarbon rich, anaerobic and reduced with sulfate as major anion and several heavy metals. High throughput sequencing of V3-16S rRNA genes from sludge metagenomes revealed dominance of strictly anaerobic, fermentative, thermophilic, sulfate-reducing bacteria affiliated to Coprothermobacter, Fervidobacterium, Treponema, Syntrophus, Thermodesulfovibrio, Anaerolinea, Syntrophobacter, Anaerostipes, Anaerobaculum, etc., which have been well known for hydrocarbon degradation. Relatively higher proportions of archaea were detected by qPCR. Archaeal 16S rRNA gene sequences showed presence of methanogenic Methanobacterium, Methanosaeta, Thermoplasmatales, etc. Detection of known hydrocarbon utilizing aerobic/facultative anaerobic (Mycobacterium, Pseudomonas, Longilinea, Geobacter, etc.), nitrate reducing (Gordonia, Novosphigobium, etc.) and nitrogen fixing (Azovibrio, Rhodobacter, etc.) bacteria suggested niche specific guilds with aerobic, facultative anaerobic and strict anaerobic populations. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predicted putative genetic repertoire of sludge microbiomes and their potential for hydrocarbon degradation; lipid-, nitrogen-, sulfur- and methane- metabolism. Methyl coenzyme M reductase A (mcrA) and dissimilatory sulfite reductase beta-subunit (dsrB) genes phylogeny confirmed methanogenic and sulfate-reducing activities within sludge environment endowed by hydrogenotrophic methanogens and sulfate-reducing Deltaproteobacteria and Firmicutes members. Conclusion Refinery sludge microbiomes were comprised of hydrocarbon degrading, fermentative, sulfate-reducing, syntrophic, nitrogen fixing and methanogenic microorganisms, which were in accordance with the prevailing physicochemical nature of the samples. Analysis of functional biomarker genes ascertained the activities of methanogenic and sulfate-reducing organisms within sludge environment. Overall data provided better insights on microbial diversity and activity in oil contaminated environment, which could be exploited suitably for in situ bioremediation of refinery sludge. Electronic supplementary material The online version of this article (10.1186/s12866-018-1275-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajoy Roy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713 209, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Jayeeta Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Avishek Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India.,School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Poulomi Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Abhishek Gupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Balaram Mohapatra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Siddhartha Pal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713 209, India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713 209, India.
| |
Collapse
|
15
|
Toth CRA, Gieg LM. Time Course-Dependent Methanogenic Crude Oil Biodegradation: Dynamics of Fumarate Addition Metabolites, Biodegradative Genes, and Microbial Community Composition. Front Microbiol 2018; 8:2610. [PMID: 29354103 PMCID: PMC5758579 DOI: 10.3389/fmicb.2017.02610] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
Biodegradation of crude oil in subsurface petroleum reservoirs has adversely impacted most of the world's oil, converting this resource to heavier forms that are of lower quality and more challenging to recover. Oil degradation in deep reservoir environments has been attributed to methanogenesis over geological time, yet our understanding of the processes and organisms mediating oil transformation in the absence of electron acceptors remains incomplete. Here, we sought to identify hydrocarbon activation mechanisms and reservoir-associated microorganisms that may have helped shape the formation of biodegraded oil by incubating oilfield produced water in the presence of light (°API = 32) or heavy crude oil (°API = 16). Over the course of 17 months, we conducted routine analytical (GC, GC-MS) and molecular (PCR/qPCR of assA and bssA genes, 16S rRNA gene sequencing) surveys to assess microbial community composition and activity changes over time. Over the incubation period, we detected the formation of transient hydrocarbon metabolites indicative of alkane and alkylbenzene addition to fumarate, corresponding with increases in methane production and fumarate addition gene abundance. Chemical and gene-based evidence of hydrocarbon biodegradation under methanogenic conditions was supported by the enrichment of hydrocarbon fermenters known to catalyze fumarate addition reactions (e.g., Desulfotomaculum, Smithella), along with syntrophic bacteria (Syntrophus), methanogenic archaea, and several candidate phyla (e.g., “Atribacteria”, “Cloacimonetes”). Our results reveal that fumarate addition is a possible mechanism for catalyzing the methanogenic biodegradation of susceptible saturates and aromatic hydrocarbons in crude oil, and we propose the roles of community members and candidate phyla in our cultures that may be involved in hydrocarbon transformation to methane in crude oil systems.
Collapse
Affiliation(s)
- Courtney R A Toth
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lisa M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Michas A, Vestergaard G, Trautwein K, Avramidis P, Hatzinikolaou DG, Vorgias CE, Wilkes H, Rabus R, Schloter M, Schöler A. More than 2500 years of oil exposure shape sediment microbiomes with the potential for syntrophic degradation of hydrocarbons linked to methanogenesis. MICROBIOME 2017; 5:118. [PMID: 28893308 PMCID: PMC5594585 DOI: 10.1186/s40168-017-0337-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/03/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND Natural oil seeps offer the opportunity to study the adaptation of ecosystems and the associated microbiota to long-term oil exposure. In the current study, we investigated a land-to-sea transition ecosystem called "Keri Lake" in Zakynthos Island, Greece. This ecosystem is unique due to asphalt oil springs found at several sites, a phenomenon already reported 2500 years ago. Sediment microbiomes at Keri Lake were studied, and their structure and functional potential were compared to other ecosystems with oil exposure histories of various time periods. RESULTS Replicate sediment cores (up to 3-m depth) were retrieved from one site exposed to oil as well as a non-exposed control site. Samples from three different depths were subjected to chemical analysis and metagenomic shotgun sequencing. At the oil-exposed site, we observed high amounts of asphalt oil compounds and a depletion of sulfate compared to the non-exposed control site. The numbers of reads assigned to genes involved in the anaerobic degradation of hydrocarbons were similar between the two sites. The numbers of denitrifiers and sulfate reducers were clearly lower in the samples from the oil-exposed site, while a higher abundance of methanogens was detected compared to the non-exposed site. Higher abundances of the genes of methanogenesis were also observed in the metagenomes from other ecosystems with a long history of oil exposure, compared to short-term exposed environments. CONCLUSIONS The analysis of Keri Lake metagenomes revealed that microbiomes in the oil-exposed sediment have a higher potential for methanogenesis over denitrification/sulfate reduction, compared to those in the non-exposed site. Comparison with metagenomes from various oil-impacted environments suggests that syntrophic interactions of hydrocarbon degraders with methanogens are favored in the ecosystems with a long-term presence of oil.
Collapse
Affiliation(s)
- Antonios Michas
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| | - Gisle Vestergaard
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| | - Kathleen Trautwein
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Pavlos Avramidis
- Department of Geology, University of Patras, Panepistimioupoli Patron, 26504 Rio-Patras, Greece
| | - Dimitris G. Hatzinikolaou
- Department of Biology, National and Kapodistrian University of Athens, Zografou University Campus, 15784 Athens, Greece
| | - Constantinos E. Vorgias
- Department of Biology, National and Kapodistrian University of Athens, Zografou University Campus, 15784 Athens, Greece
| | - Heinz Wilkes
- Organic Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| | - Anne Schöler
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
17
|
Abstract
Constraint-based metabolic modelling (CBMM) consists in the use of computational methods and tools to perform genome-scale simulations and predict metabolic features at the whole cellular level. This approach is rapidly expanding in microbiology, as it combines reliable predictive abilities with conceptually and technically simple frameworks. Among the possible outcomes of CBMM, the capability to i) guide a focused planning of metabolic engineering experiments and ii) provide a system-level understanding of (single or community-level) microbial metabolic circuits also represent primary aims in present-day marine microbiology. In this work we briefly introduce the theoretical formulation behind CBMM and then review the most recent and effective case studies of CBMM of marine microbes and communities. Also, the emerging challenges and possibilities in the use of such methodologies in the context of marine microbiology/biotechnology are discussed. As the potential applications of CBMM have a very broad range, the topics presented in this review span over a large plethora of fields such as ecology, biotechnology and evolution.
Collapse
Affiliation(s)
- Marco Fondi
- Dep. of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| | - Renato Fani
- Dep. of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
18
|
Akmirza I, Pascual C, Carvajal A, Pérez R, Muñoz R, Lebrero R. Anoxic biodegradation of BTEX in a biotrickling filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:457-465. [PMID: 28256317 DOI: 10.1016/j.scitotenv.2017.02.130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/03/2017] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
Emissions of BTEX (benzene, toluene, ethylbenzene and xylene) from the petrochemical industry are characterized by a low pollutants concentration and the absence of oxygen. Biodegradation of these pollutants using nitrate as the electron acceptor is of key interest to reuse the residual gas for inertization purposes. However, the biological mineralization of BTEX is often limited by their recalcitrant nature and the toxicity of the secondary metabolites produced. The potential of an anoxic biotrickling filter for the treatment of a model O2-free BTEX-laden emission at inlet individual concentrations of ~700mgm-3 was here evaluated. A UV oxidation step was also tested both in the recycling liquid and in the inlet gas emission prior to biofiltration. Removal efficiencies >90% were achieved for both toluene and ethylbenzene, corresponding to elimination capacities (ECs) of 1.4±0.2gm-3h-1 and 1.5±0.3gm-3h-1, respectively, while ~45% of xylene (EC=0.6±0.1g m-3h-1) was removed at a liquid recycling rate of 2mh-1. Benzene biodegradation was however limited by the accumulation of toxic metabolites in the liquid phase. The oxidation of these intermediates in the recycling liquid by UV photolysis boosted benzene abatement, achieving an average EC of 0.5±0.2gm-3h-1 and removals of ~40%. However, the implementation of UV oxidation as a pretreatment step in the inlet gas emission resulted in the deterioration of the BTEX biodegradation capacity of the biotrickling filter. Finally, a high bacterial diversity was observed throughout the entire experiment, the predominant phyla being Proteobacteria and Deinococcus-thermus.
Collapse
Affiliation(s)
- Ilker Akmirza
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Department of Environmental Engineering, Technical University of Istanbul, 34469 Istanbul, Turkey
| | - Celia Pascual
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Andrea Carvajal
- Department of Chemical Engineering and Environmental Technology, Technical University Federico Santa Maria, Chile
| | - Rebeca Pérez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
| |
Collapse
|
19
|
Ranchou‐Peyruse M, Gasc C, Guignard M, Aüllo T, Dequidt D, Peyret P, Ranchou‐Peyruse A. The sequence capture by hybridization: a new approach for revealing the potential of mono-aromatic hydrocarbons bioattenuation in a deep oligotrophic aquifer. Microb Biotechnol 2017; 10:469-479. [PMID: 27766749 PMCID: PMC5328808 DOI: 10.1111/1751-7915.12426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 01/04/2023] Open
Abstract
The formation water of a deep aquifer (853 m of depth) used for geological storage of natural gas was sampled to assess the mono-aromatic hydrocarbons attenuation potential of the indigenous microbiota. The study of bacterial diversity suggests that Firmicutes and, in particular, sulphate-reducing bacteria (Peptococcaceae) predominate in this microbial community. The capacity of the microbial community to biodegrade toluene and m- and p-xylenes was demonstrated using a culture-based approach after several hundred days of incubation. In order to reveal the potential for biodegradation of these compounds within a shorter time frame, an innovative approach named the solution hybrid selection method, which combines sequence capture by hybridization and next-generation sequencing, was applied to the same original water sample. The bssA and bssA-like genes were investigated as they are considered good biomarkers for the potential of toluene and xylene biodegradation. Unlike a PCR approach which failed to detect these genes directly from formation water, this innovative strategy demonstrated the presence of the bssA and bssA-like genes in this oligotrophic ecosystem, probably harboured by Peptococcaceae. The sequence capture by hybridization shows significant potential to reveal the presence of genes of functional interest which have low-level representation in the biosphere.
Collapse
Affiliation(s)
- Magali Ranchou‐Peyruse
- Université de Pau et des Pays de l'AdourEquipe Environnement et Microbiologie, IPREM‐CNRS 5254F‐64013PauFrance
| | - Cyrielle Gasc
- Université d'AuvergneEA 4678 CIDAM63001Clermont‐FerrandFrance
| | - Marion Guignard
- Université de Pau et des Pays de l'AdourEquipe Environnement et Microbiologie, IPREM‐CNRS 5254F‐64013PauFrance
| | - Thomas Aüllo
- TIGF – Transport et Infrastructures Gaz France40 Avenue de l'Europe, CS2052264000PauFrance
| | - David Dequidt
- STORENGY – Geosciences DepartmentBois‐ColombesFrance
| | - Pierre Peyret
- Université d'AuvergneEA 4678 CIDAM63001Clermont‐FerrandFrance
| | - Anthony Ranchou‐Peyruse
- Université de Pau et des Pays de l'AdourEquipe Environnement et Microbiologie, IPREM‐CNRS 5254F‐64013PauFrance
| |
Collapse
|
20
|
Zargar A, Quan DN, Abutaleb N, Choi E, Terrell JL, Payne GF, Bentley WE. Constructing "quantized quorums" to guide emergent phenotypes through quorum quenching capsules. Biotechnol Bioeng 2016; 114:407-415. [PMID: 27543759 DOI: 10.1002/bit.26080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/17/2016] [Indexed: 11/10/2022]
Abstract
Microbial cells have for many years been engineered to facilitate efficient production of biologics, chemicals, and other compounds. As the "metabolic" burden of synthetic genetic components can impair cell performance, microbial consortia are being developed to piece together specialized subpopulations that collectively produce desired products. Their use, however, has been limited by the inability to control their composition and function. One approach to leverage advantages of the division of labor within consortia is to link microbial subpopulations together through quorum sensing (QS) molecules. Previously, we directed the assembly of "quantized quorums," microbial subpopulations that are parsed through QS activation, by the exogenous addition of QS signal molecules to QS synthase mutants. In this work, we develop a more facile and general platform for creating "quantized quorums." Moreover, the methodology is not restricted to QS-mutant populations. We constructed quorum quenching capsules that partition QS-mediated phenotypes into discrete subpopulations. This compartmentalization guides QS subpopulations in a dose-dependent manner, parsing cell populations into activated or deactivated groups. The capsular "devices" consist of polyelectrolyte alginate-chitosan beads that encapsulate high-efficiency (HE) "controller cells" that, in turn, provide rapid uptake of the QS signal molecule AI-2 from culture fluids. In this methodology, instead of adding AI-2 to parse QS-mutants into subpopulations, we engineered cells to encapsulate them into compartments, and they serve to deplete AI-2 from wild-type populations. These encapsulated bacteria therefore, provide orthogonal control of population composition while allowing only minimal interaction with the product-producing cell population or consortia. We envision that compartmentalized control of QS should have applications in both metabolic engineering and human disease. Biotechnol. Bioeng. 2017;114: 407-415. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amin Zargar
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - David N Quan
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Nadia Abutaleb
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Erica Choi
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Jessica L Terrell
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
21
|
Lueders T. The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers. FEMS Microbiol Ecol 2016; 93:fiw220. [PMID: 27810873 PMCID: PMC5400083 DOI: 10.1093/femsec/fiw220] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/10/2016] [Indexed: 12/24/2022] Open
Abstract
The degradation of benzene, toluene, ethylbenzene and xylene (BTEX) contaminants in groundwater relies largely on anaerobic processes. While the physiology and biochemistry of selected relevant microbes have been intensively studied, research has now started to take the generated knowledge back to the field, in order to trace the populations truly responsible for the anaerobic degradation of BTEX hydrocarbons in situ and to unravel their ecology in contaminated aquifers. Here, recent advances in our knowledge of the identity, diversity and ecology of microbes involved in these important ecosystem services are discussed. At several sites, distinct lineages within the Desulfobulbaceae, the Rhodocyclaceae and the Gram-positive Peptococcaceae have been shown to dominate the degradation of different BTEX hydrocarbons. Especially for the functional guild of anaerobic toluene degraders, specific molecular detection systems have been developed, allowing researchers to trace their diversity and distribution in contaminated aquifers. Their populations appear enriched in hot spots of biodegradation in situ. 13C-labelling experiments have revealed unexpected pathways of carbon sharing and obligate syntrophic interactions to be relevant in degradation. Together with feedback mechanisms between abiotic and biotic habitat components, this promotes an enhanced ecological perspective of the anaerobic degradation of BTEX hydrocarbons, as well as its incorporation into updated concepts for site monitoring and bioremediation.
Collapse
Affiliation(s)
- Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
22
|
Sarkar J, Kazy SK, Gupta A, Dutta A, Mohapatra B, Roy A, Bera P, Mitra A, Sar P. Biostimulation of Indigenous Microbial Community for Bioremediation of Petroleum Refinery Sludge. Front Microbiol 2016; 7:1407. [PMID: 27708623 PMCID: PMC5030240 DOI: 10.3389/fmicb.2016.01407] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022] Open
Abstract
Nutrient deficiency severely impairs the catabolic activity of indigenous microorganisms in hydrocarbon rich environments (HREs) and limits the rate of intrinsic bioremediation. The present study aimed to characterize the microbial community in refinery waste and evaluate the scope for biostimulation based in situ bioremediation. Samples recovered from the wastewater lagoon of Guwahati refinery revealed a hydrocarbon enriched [high total petroleum hydrocarbon (TPH)], oxygen-, moisture-limited, reducing environment. Intrinsic biodegradation ability of the indigenous microorganisms was enhanced significantly (>80% reduction in TPH by 90 days) with nitrate amendment. Preferred utilization of both higher- (>C30) and middle- chain (C20-30) length hydrocarbons were evident from GC-MS analysis. Denaturing gradient gel electrophoresis and community level physiological profiling analyses indicated distinct shift in community's composition and metabolic abilities following nitrogen (N) amendment. High throughput deep sequencing of 16S rRNA gene showed that the native community was mainly composed of hydrocarbon degrading, syntrophic, methanogenic, nitrate/iron/sulfur reducing facultative anaerobic bacteria and archaebacteria, affiliated to γ- and δ-Proteobacteria and Euryarchaeota respectively. Genes for aerobic and anaerobic alkane metabolism (alkB and bssA), methanogenesis (mcrA), denitrification (nirS and narG) and N2 fixation (nifH) were detected. Concomitant to hydrocarbon degradation, lowering of dissolve O2 and increase in oxidation-reduction potential (ORP) marked with an enrichment of N2 fixing, nitrate reducing aerobic/facultative anaerobic members [e.g., Azovibrio, Pseudoxanthomonas and Comamonadaceae members] was evident in N amended microcosm. This study highlighted that indigenous community of refinery sludge was intrinsically diverse, yet appreciable rate of in situ bioremediation could be achieved by supplying adequate N sources.
Collapse
Affiliation(s)
- Jayeeta Sarkar
- Department of Biotechnology, Indian Institute of TechnologyKharagpur, India
| | - Sufia K. Kazy
- Department of Biotechnology, National Institute of TechnologyDurgapur, India
| | - Abhishek Gupta
- Department of Biotechnology, Indian Institute of TechnologyKharagpur, India
| | - Avishek Dutta
- School of Bioscience, Indian Institute of TechnologyKharagpur, India
| | - Balaram Mohapatra
- Department of Biotechnology, Indian Institute of TechnologyKharagpur, India
| | - Ajoy Roy
- Department of Biotechnology, National Institute of TechnologyDurgapur, India
| | - Paramita Bera
- Department of Agricultural and Food Engineering, Indian Institute of TechnologyKharagpur, India
| | - Adinpunya Mitra
- Department of Agricultural and Food Engineering, Indian Institute of TechnologyKharagpur, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of TechnologyKharagpur, India
| |
Collapse
|
23
|
Lueders T, Dumont MG, Bradford L, Manefield M. RNA-stable isotope probing: from carbon flow within key microbiota to targeted transcriptomes. Curr Opin Biotechnol 2016; 41:83-89. [PMID: 27269505 DOI: 10.1016/j.copbio.2016.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/27/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
Stable isotope probing of RNA has enthused researchers right from its first introduction in 2002. The concept of a labelling-based detection of process-targeted microbes independent of cellular replication or growth has allowed for a much more direct handle on functionally relevant microbiota than by labelling of other biomarkers. This has led to a widespread application of the technology, and breakthroughs in our understanding of carbon flow in natural microbiomes, autotrophic and heterotrophic physiologies, microbial food webs, host-microbe interactions and environmental biotechnology. Recent studies detecting labelled mRNA demonstrate that RNA-SIP is not limited to the analysis of rRNA, but is currently developing towards an approach for accessing targeted transcriptomes. In combination with next-generation sequencing and other methodological advances, RNA-SIP will continue to deliver invaluable insights into the functioning of microbial communities.
Collapse
Affiliation(s)
- Tillmann Lueders
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Groundwater Ecology, Neuherberg, Germany.
| | - Marc G Dumont
- Centre for Biological Sciences (CfBS), University of Southampton, Southampton, United Kingdom
| | - Lauren Bradford
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Groundwater Ecology, Neuherberg, Germany
| | - Mike Manefield
- Centre for Marine Bioinnovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
24
|
Fowler SJ, Toth CRA, Gieg LM. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments. Front Microbiol 2016; 7:562. [PMID: 27148240 PMCID: PMC4840303 DOI: 10.3389/fmicb.2016.00562] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/04/2016] [Indexed: 11/17/2022] Open
Abstract
The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge, but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates on microbial community composition and retention of hydrocarbon biodegradation genes. 16S rRNA gene sequencing showed that a reduction in substrate diversity resulted in a corresponding loss of microbial diversity, but that hydrocarbon biodegradation genes (such as assA/masD encoding alkylsuccinate synthase) could be retained within a community even in the absence of hydrocarbon substrates. Despite substrate-related diversity changes, all communities were dominated by hydrogenotrophic and acetotrophic methanogens along with bacteria including Clostridium sp., members of the Deltaproteobacteria, and a number of other phyla. Microbial co-occurrence network analysis revealed a dense network of interactions amongst syntrophic bacteria and methanogens that were maintained despite changes in the substrates for methanogenesis. Our results reveal the effect of substrate diversity loss on microbial community diversity, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic interactions amongst bacteria themselves are as important as interactions between bacteria and methanogens in complex methanogenic communities.
Collapse
Affiliation(s)
- S Jane Fowler
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| | - Courtney R A Toth
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| | - Lisa M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| |
Collapse
|
25
|
Vogt C, Lueders T, Richnow HH, Krüger M, von Bergen M, Seifert J. Stable Isotope Probing Approaches to Study Anaerobic Hydrocarbon Degradation and Degraders. J Mol Microbiol Biotechnol 2016; 26:195-210. [DOI: 10.1159/000440806] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stable isotope probing (SIP) techniques have become state-of-the-art in microbial ecology over the last 10 years, allowing for the targeted detection and identification of organisms, metabolic pathways and elemental fluxes active in specific processes within complex microbial communities. For studying anaerobic hydrocarbon-degrading microbial communities, four stable isotope techniques have been used so far: DNA/RNA-SIP, PLFA (phospholipid-derived fatty acids)-SIP, protein-SIP, and single-cell-SIP by nanoSIMS (nanoscale secondary ion mass spectrometry) or confocal Raman microscopy. DNA/RNA-SIP techniques are most frequently applied due to their most meaningful phylogenetic resolution. Especially using <sup>13</sup>C-labeled benzene and toluene as model substrates, many new hydrocarbon degraders have been identified by SIP under various electron acceptor conditions. This has extended the current perspective of the true diversity of anaerobic hydrocarbon degraders relevant in the environment. Syntrophic hydrocarbon degradation was found to be a common mechanism for various electron acceptors. Fundamental concepts and recent advances in SIP are reflected here. A discussion is presented concerning how these techniques generate direct insights into intrinsic hydrocarbon degrader populations in environmental systems and how useful they are for more integrated approaches in the monitoring of contaminated sites and for bioremediation.
Collapse
|
26
|
Jiménez N, Richnow HH, Vogt C, Treude T, Krüger M. Methanogenic Hydrocarbon Degradation: Evidence from Field and Laboratory Studies. J Mol Microbiol Biotechnol 2016; 26:227-42. [PMID: 26959375 DOI: 10.1159/000441679] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microbial transformation of hydrocarbons to methane is an environmentally relevant process taking place in a wide variety of electron acceptor-depleted habitats, from oil reservoirs and coal deposits to contaminated groundwater and deep sediments. Methanogenic hydrocarbon degradation is considered to be a major process in reservoir degradation and one of the main processes responsible for the formation of heavy oil deposits and oil sands. In the absence of external electron acceptors such as oxygen, nitrate, sulfate or Fe(III), fermentation and methanogenesis become the dominant microbial metabolisms. The major end product under these conditions is methane, and the only electron acceptor necessary to sustain the intermediate steps in this process is CO2, which is itself a net product of the overall reaction. We are summarizing the state of the art and recent advances in methanogenic hydrocarbon degradation research. Both the key microbial groups involved as well as metabolic pathways are described, and we discuss the novel insights into methanogenic hydrocarbon-degrading populations studied in laboratory as well as environmental systems enabled by novel cultivation-based and molecular approaches. Their possible implications on energy resources, bioremediation of contaminated sites, deep-biosphere research, and consequences for atmospheric composition and ultimately climate change are also addressed.
Collapse
Affiliation(s)
- Núria Jiménez
- Department of Resource Geochemistry, BGR - Federal Institute for Geosciences and Natural Resources, Hannover, Germany
| | | | | | | | | |
Collapse
|
27
|
von Netzer F, Kuntze K, Vogt C, Richnow HH, Boll M, Lueders T. Functional Gene Markers for Fumarate-Adding and Dearomatizing Key Enzymes in Anaerobic Aromatic Hydrocarbon Degradation in Terrestrial Environments. J Mol Microbiol Biotechnol 2016; 26:180-94. [PMID: 26959523 DOI: 10.1159/000441946] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Anaerobic degradation is a key process in many environments either naturally or anthropogenically exposed to petroleum hydrocarbons. Considerable advances into the biochemistry and physiology of selected anaerobic degraders have been achieved over the last decades, especially for the degradation of aromatic hydrocarbons. However, researchers have only recently begun to explore the ecology of complex anaerobic hydrocarbon degrader communities directly in their natural habitats, as well as in complex laboratory systems using tools of molecular biology. These approaches have mainly been facilitated by the establishment of a suite of targeted marker gene assays, allowing for rapid and directed insights into the diversity as well as the identity of intrinsic degrader populations and degradation potentials established at hydrocarbon-impacted sites. These are based on genes encoding either peripheral or central key enzymes in aromatic compound breakdown, such as fumarate-adding benzylsuccinate synthases or dearomatizing aryl-coenzyme A reductases, or on aromatic ring-cleaving hydrolases. Here, we review recent advances in this field, explain the different detection methodologies applied, and discuss how the detection of site-specific catabolic gene markers has improved the understanding of processes at contaminated sites. Functional marker gene-based strategies may be vital for the development of a more elaborate population-based assessment and prediction of aromatic degradation potentials in hydrocarbon-impacted environments.
Collapse
Affiliation(s)
- Frederick von Netzer
- Helmholtz Zentrum Mx00FC;nchen - German Research Center for Environmental Health, Institute of Groundwater Ecology, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Heider J, Szaleniec M, Martins BM, Seyhan D, Buckel W, Golding BT. Structure and Function of Benzylsuccinate Synthase and Related Fumarate-Adding Glycyl Radical Enzymes. J Mol Microbiol Biotechnol 2016; 26:29-44. [PMID: 26959246 DOI: 10.1159/000441656] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pathway of anaerobic toluene degradation is initiated by a remarkable radical-type enantiospecific addition of the chemically inert methyl group to the double bond of a fumarate cosubstrate to yield (R)-benzylsuccinate as the first intermediate, as catalyzed by the glycyl radical enzyme benzylsuccinate synthase. In recent years, it has become clear that benzylsuccinate synthase is the prototype enzyme of a much larger family of fumarate-adding enzymes, which play important roles in the anaerobic metabolism of further aromatic and even aliphatic hydrocarbons. We present an overview on the biochemical properties of benzylsuccinate synthase, as well as its recently solved structure, and present the results of an initial structure-based modeling study on the reaction mechanism. Moreover, we compare the structure of benzylsuccinate synthase with those predicted for different clades of fumarate-adding enzymes, in particular the paralogous enzymes converting p-cresol, 2-methylnaphthalene or n-alkanes.
Collapse
Affiliation(s)
- Johann Heider
- Laboratory of Microbial Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Cupples AM. Contaminant-Degrading Microorganisms Identified Using Stable Isotope Probing. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Acosta-González A, Martirani-von Abercron SM, Rosselló-Móra R, Wittich RM, Marqués S. The effect of oil spills on the bacterial diversity and catabolic function in coastal sediments: a case study on the Prestige oil spill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15200-14. [PMID: 25869434 DOI: 10.1007/s11356-015-4458-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/27/2015] [Indexed: 05/20/2023]
Abstract
The accident of the Prestige oil tanker in 2002 contaminated approximately 900 km of the coastline along the northern Spanish shore, as well as parts of Portugal and France coast, with a mixture of heavy crude oil consisting of polycyclic aromatic hydrocarbons, alkanes, asphaltenes and resins. The capacity of the autochthonous bacterial communities to respond to the oil spill was assessed indirectly by determining the hydrocarbon profiles of weathered oil samples collected along the shore, as well as through isotope ratios of seawater-dissolved CO2, and directly by analyses of denaturing gradient gel electrophoresis fingerprints and 16S rRNA gene libraries. Overall, the results evidenced biodegradation of crude oil components mediated by natural bacterial communities, with a bias towards lighter and less substituted compounds. The changes observed in the Proteobacteria, the most abundant phylum in marine sediments, were related to the metabolic profiles of the sediment. The presence of crude oil in the supratidal and intertidal zones increased the abundance of Alpha- and Gammaproteobacteria, dominated by the groups Sphingomonadaceae, Rhodobacteraceae and Chromatiales, whilst Gamma- and Deltaproteobacteria were more relevant in subtidal zones. The phylum Actinobacteria, and particularly the genus Rhodococcus, was a key player in the microbial response to the spill, especially in the degradation of the alkane fraction. The addition of inorganic fertilizers enhanced total biodegradation rates, suggesting that, in these environments, nutrients were insufficient to support significant growth after the huge increase in carbon sources, as evidenced in other spills. The presence of bacterial communities able to respond to a massive oil input in this area was consistent with the important history of pollution of the region by crude oil.
Collapse
Affiliation(s)
- Alejandro Acosta-González
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, 18008, Granada, Spain
- Facultad de Ingeniería, Universidad de La Sabana, Autopista Norte km 7, Chía, Cundinamarca, Colombia
| | - Sophie-Marie Martirani-von Abercron
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, 18008, Granada, Spain
| | - Ramon Rosselló-Móra
- Institut Mediterrani d'Estudis Avançats, IMEDEA, CSIC-UIB, C/. Miquel Marqués 21, 07190, Esporles, Illes Balears, Spain
| | - Regina-Michaela Wittich
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, 18008, Granada, Spain
| | - Silvia Marqués
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
31
|
Ponomarova O, Patil KR. Metabolic interactions in microbial communities: untangling the Gordian knot. Curr Opin Microbiol 2015. [DOI: 10.1016/j.mib.2015.06.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil. Sci Rep 2015; 5:14295. [PMID: 26399549 PMCID: PMC4585845 DOI: 10.1038/srep14295] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/24/2015] [Indexed: 11/08/2022] Open
Abstract
Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions.
Collapse
|
33
|
Tan B, Jane Fowler S, Laban NA, Dong X, Sensen CW, Foght J, Gieg LM. Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples. THE ISME JOURNAL 2015; 9:2028-45. [PMID: 25734684 PMCID: PMC4542035 DOI: 10.1038/ismej.2015.22] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 11/09/2022]
Abstract
Methanogenic hydrocarbon metabolism is a key process in subsurface oil reservoirs and hydrocarbon-contaminated environments and thus warrants greater understanding to improve current technologies for fossil fuel extraction and bioremediation. In this study, three hydrocarbon-degrading methanogenic cultures established from two geographically distinct environments and incubated with different hydrocarbon substrates (added as single hydrocarbons or as mixtures) were subjected to metagenomic and 16S rRNA gene pyrosequencing to test whether these differences affect the genetic potential and composition of the communities. Enrichment of different putative hydrocarbon-degrading bacteria in each culture appeared to be substrate dependent, though all cultures contained both acetate- and H2-utilizing methanogens. Despite differing hydrocarbon substrates and inoculum sources, all three cultures harbored genes for hydrocarbon activation by fumarate addition (bssA, assA, nmsA) and carboxylation (abcA, ancA), along with those for associated downstream pathways (bbs, bcr, bam), though the cultures incubated with hydrocarbon mixtures contained a broader diversity of fumarate addition genes. A comparative metagenomic analysis of the three cultures showed that they were functionally redundant despite their enrichment backgrounds, sharing multiple features associated with syntrophic hydrocarbon conversion to methane. In addition, a comparative analysis of the culture metagenomes with those of 41 environmental samples (containing varying proportions of methanogens) showed that the three cultures were functionally most similar to each other but distinct from other environments, including hydrocarbon-impacted environments (for example, oil sands tailings ponds and oil-affected marine sediments). This study provides a basis for understanding key functions and environmental selection in methanogenic hydrocarbon-associated communities.
Collapse
Affiliation(s)
- Boonfei Tan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - S Jane Fowler
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Nidal Abu Laban
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoli Dong
- Visual Genomics Centre, Faculty of Medicine, Calgary, Alberta, Canada
| | | | - Julia Foght
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
35
|
Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation. Appl Microbiol Biotechnol 2015; 99:8751-64. [DOI: 10.1007/s00253-015-6748-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/27/2015] [Accepted: 05/31/2015] [Indexed: 11/25/2022]
|
36
|
Laban NA, Dao A, Foght J. DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions. FEMS Microbiol Ecol 2015; 91:fiv039. [PMID: 25873466 DOI: 10.1093/femsec/fiv039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 11/14/2022] Open
Abstract
Oil sands tailings ponds are anaerobic repositories of fluid wastes produced by extraction of bitumen from oil sands ores. Diverse indigenous microbiota biodegrade hydrocarbons (including toluene) in situ, producing methane, carbon dioxide and/or hydrogen sulfide, depending on electron acceptor availability. Stable-isotope probing of cultures enriched from tailings associated specific taxa and functional genes to (13)C6- and (12)C7-toluene degradation under methanogenic and sulfate-reducing conditions. Total DNA was subjected to isopycnic ultracentrifugation followed by gradient fraction analysis using terminal restriction fragment length polymorphism (T-RFLP) and construction of 16S rRNA, benzylsuccinate synthase (bssA) and dissimilatory sulfite reductase (dsrB) gene clone libraries. T-RFLP analysis plus sequencing and in silico digestion of cloned taxonomic and functional genes revealed that Clostridiales, particularly Desulfosporosinus (136 bp T-RF) contained bssA genes and were key toluene degraders during methanogenesis dominated by Methanosaeta. Deltaproteobacterial Desulfobulbaceae (157 bp T-RF) became dominant under sulfidogenic conditions, likely because the Desulfosporosinus T-RF 136 apparently lacks dsrB and therefore, unlike its close relatives, is presumed incapable of dissimilatory sulfate reduction. We infer incomplete oxidation of toluene by Desulfosporosinus in syntrophic association with Methanosaeta under methanogenic conditions, and complete toluene oxidation by Desulfobulbaceae during sulfate reduction.
Collapse
Affiliation(s)
- Nidal Abu Laban
- CW-405 Biological Sciences Centre, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 Canada
| | - Anh Dao
- CW-405 Biological Sciences Centre, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 Canada
| | - Julia Foght
- CW-405 Biological Sciences Centre, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 Canada
| |
Collapse
|
37
|
Draft Genome Sequence of Uncultivated Desulfosporosinus sp. Strain Tol-M, Obtained by Stable Isotope Probing Using [13C6]Toluene. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01422-14. [PMID: 25593260 PMCID: PMC4299902 DOI: 10.1128/genomea.01422-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A draft Desulfosporosinus genome was assembled from the metagenome of a methanogenic [(13)C6]toluene-degrading community. The Desulfosporosinus sp. strain Tol-M genome is distinguished from that of previously published Desulfosporosinus strain by containing bss, bbs, and bam genes encoding enzymes for anaerobic biodegradation of monoaromatic hydrocarbons and lacking dsrAB genes for dissimilatory sulfate reduction.
Collapse
|