1
|
Shang HH, Zelaya ZZ, Hamaker CG, Jones MA. Inhibitory Effects of Sulfur Derivatives on Leishmania tarentolae Cell Viability and Secreted Acid Phosphatase In Vitro. Microorganisms 2024; 12:2641. [PMID: 39770843 PMCID: PMC11676996 DOI: 10.3390/microorganisms12122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Sulfonamide drugs were the original class of antibiotics, demonstrating the antibacterial potential of dithiocarbazate and thiosemicarbazone Schiff base derivatives of syringaldehyde and 4-hydroxy-3,5-dimethylbenzaldehyde. We synthesized unique Schiff bases via the condensation of the aldehydes with hydrazine derivatives, which allows for the easy synthesis of several related compounds. These Schiff base derivatives were tested for antileishmanial properties against the parasitic protozoan Leishmania tarentolae. The inhibitory properties of these sulfur compounds were tested using a series of cell viability and secreted acid phosphatase (SAP) assays. The results demonstrated that compounds ZZ1-04 and ZZ1-20 had potent inhibitory effects on parasite cell viability and SAP, an enzyme that may play a role in infectivity. These results increase our understanding of the role of sulfur in inhibiting Leishmania, providing more knowledge of the structural activity relationships that may prove critical for their development into possible antileishmanial treatments.
Collapse
Affiliation(s)
| | | | | | - Marjorie A. Jones
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA (C.G.H.)
| |
Collapse
|
2
|
Brenda CT, Norma RF, Marcela RL, Nelly LV, Teresa F. Vanadium compounds as antiparasitic agents: An approach to their mechanisms of action. J Trace Elem Med Biol 2023; 78:127201. [PMID: 37210920 DOI: 10.1016/j.jtemb.2023.127201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Parasitic infections are a public health problem since they have high morbidity and mortality worldwide. In parasitosis such as malaria, leishmaniasis and trypanosomiasis it is necessary to develop new compounds for their treatment since an increase in drug resistance and toxic effects have been observed. Therefore, the use of different compounds that couple vanadium in their structure and that have a broad spectrum against different parasites have been proposed experimentally. OBJECTIVE Report the mechanisms of action exerted by vanadium in different parasites. CONCLUSION In this review, some of the targets that vanadium compounds have were identified and it was observed that they have a broad spectrum against different parasites, which represents an advance to continue investigating therapeutic options.
Collapse
Affiliation(s)
- Casarrubias-Tabarez Brenda
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Cellular and Tissue Biology, School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico; Posgrado en Ciencias Biologicas, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico
| | - Rivera-Fernández Norma
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Microbiology and Parasitology. School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico
| | - Rojas-Lemus Marcela
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Cellular and Tissue Biology, School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico
| | - López-Valdez Nelly
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Cellular and Tissue Biology, School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico
| | - Fortoul Teresa
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Cellular and Tissue Biology, School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico.
| |
Collapse
|
3
|
Kumari D, Mahajan S, Kour P, Singh K. Virulence factors of Leishmania parasite: Their paramount importance in unraveling novel vaccine candidates and therapeutic targets. Life Sci 2022; 306:120829. [PMID: 35872004 DOI: 10.1016/j.lfs.2022.120829] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is a neglected tropical disease and remains a global concern for healthcare. It is caused by an opportunistic protozoan parasite belonging to the genus Leishmania and affects millions worldwide. This disease is mainly prevalent in tropical and subtropical regions and is associated with a high risk of public morbidity and mortality if left untreated. Transmission of this deadly disease is aggravated by the bite of female sand-fly vectors (Phlebotomus and Lutzomyia). With time, significant advancement in leishmaniasis-related research has been carried out to cope with the disease burden. Still, the Leishmania parasite has also co-evolved with its host and adapted successfully within the host's lethal milieu/environment. Thus, understanding and knowledge of various leishmanial virulence factors responsible for the parasitic infection are essential for exploring drug targets and vaccine candidates. The present review elucidates the importance of virulence factors in pathogenesis and summarizes the major leishmanial virulence molecules contributing to the parasitic infection during host-pathogen interaction. Furthermore, we have also elaborated on the potential contribution of leishmanial virulence proteins in developing vaccine candidates and exploring novel therapeutics against this parasitic disease. We aim to represent a clearer picture of parasite pathogenesis within the human host that can further aid in unraveling new strategies to fight against the deadly infection of leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shavi Mahajan
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Parampreet Kour
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Oliveira LG, Souza-Testasicca MC, Ricotta TNQ, Vago JP, dos Santos LM, Crepaldi F, Lima KM, Queiroz-Junior C, Sousa LP, Fernandes AP. Temporary Shutdown of ERK1/2 Phosphorylation Is Associated With Activation of Adaptive Immune Cell Responses and Disease Progression During Leishmania amazonensis Infection in BALB/c Mice. Front Immunol 2022; 13:762080. [PMID: 35145518 PMCID: PMC8821891 DOI: 10.3389/fimmu.2022.762080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Leishmania spp. infection outcomes are dependent on both host and parasite factors. Manipulation of host signaling pathways involved in the generation of immune responses is thought to be one of the most common mechanisms used by parasites for persistence within the host. Considering the diversity of pathologies caused by different Leishmania spp., it is plausible that significant differences may exist in the mechanisms of host cell manipulation by each parasite species, which may have implications when developing new vaccine or treatment strategies. Here we show that in L. braziliensis-infection in BALB/c mice, a model of resistance, activation of ERK1/2 coincides with the peak of inflammatory responses and resolution of tissue parasitism. In contrast, in the susceptibility model of L. amazonensis-infection, an early silent phase of infection is observed, detected solely by quantification of parasite loads. At this early stage, only basal levels of P-ERK1/2 are observed. Later, after a brief shutdown of ERK1/2 phosphorylation, disease progression is observed and is associated with increased inflammation, lesion size and tissue parasitism. Moreover, the short-term down-regulation of ERK1/2 activation affected significantly downstream inflammatory pathways and adaptive T cell responses. Administration of U0126, a MEK/ERK inhibitor, confirmed this phenomenon, since bigger lesions and higher parasite loads were seen in infected mice that received U0126. To investigate how kinetics of ERK1/2 activation could affect the disease progression, U0126 was administered to L. amazonensis-infected animals earlier than the P-ERK1/2 switch off time-point. This intervention resulted in anticipation of the same effects on inflammatory responses and susceptibility phenotype seen in the natural course of infection. Additionally, in vitro inhibition of ERK1/2 affected the phagocytosis of L. amazonensis by BMDMs. Collectively, our findings reveal distinct temporal patterns of activation of inflammatory responses in L. braziliensis and L. amazonensis in the same animal background and a pivotal role for a brief and specific shutdown of ERK1/2 activation at late stages of L. amazonensis infection. Since activation of inflammatory responses is a crucial aspect for the control of infectious processes, these findings may be important for the search of new and specific strategies of vaccines and treatment for tegumentary leishmaniasis.
Collapse
Affiliation(s)
- Leandro G. Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Tiago Nery Queiroga Ricotta
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P. Vago
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Liliane M. dos Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico Crepaldi
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kátia M. Lima
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P. Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Ana Paula Fernandes,
| |
Collapse
|
5
|
Orrego PR, Serrano-Rodríguez M, Cortez M, Araya JE. In Silico Characterization of Calcineurin from Pathogenic Obligate Intracellular Trypanosomatids: Potential New Biological Roles. Biomolecules 2021; 11:biom11091322. [PMID: 34572535 PMCID: PMC8470620 DOI: 10.3390/biom11091322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022] Open
Abstract
Calcineurin (CaN) is present in all eukaryotic cells, including intracellular trypanosomatid parasites such as Trypanosoma cruzi (Tc) and Leishmania spp. (Lspp). In this study, we performed an in silico analysis of the CaN subunits, comparing them with the human (Hs) and looking their structure, post-translational mechanisms, subcellular distribution, interactors, and secretion potential. The differences in the structure of the domains suggest the existence of regulatory mechanisms and differential activity between these protozoa. Regulatory subunits are partially conserved, showing differences in their Ca2+-binding domains and myristoylation potential compared with human CaN. The subcellular distribution reveals that the catalytic subunits TcCaNA1, TcCaNA2, LsppCaNA1, LsppCaNA1_var, and LsppCaNA2 associate preferentially with the plasma membrane compared with the cytoplasmic location of HsCaNAα. For regulatory subunits, HsCaNB-1 and LsppCaNB associate preferentially with the nucleus and cytoplasm, and TcCaNB with chloroplast and cytoplasm. Calpain cleavage sites on CaNA suggest differential processing. CaNA and CaNB of these trypanosomatids have the potential to be secreted and could play a role in remote communication. Therefore, this background can be used to develop new drugs for protozoan pathogens that cause neglected disease.
Collapse
Affiliation(s)
- Patricio R. Orrego
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Correspondence: (P.R.O.); (J.E.A.); Tel.: +56-55-2637664 (J.E.A.)
| | - Mayela Serrano-Rodríguez
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile;
| | - Mauro Cortez
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jorge E. Araya
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile;
- Center for Biotechnology and Bioengineering, CeBIB, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Correspondence: (P.R.O.); (J.E.A.); Tel.: +56-55-2637664 (J.E.A.)
| |
Collapse
|
6
|
Apuzzo CF, Sullivan EC, Platt DC, Seger-Held I, Jones MA. Leishmania tarentolae novel responses to Bi 3+-doped strontium aluminum oxyfluorides. Heliyon 2021; 7:e07896. [PMID: 34504976 PMCID: PMC8414179 DOI: 10.1016/j.heliyon.2021.e07896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Novel therapeutics for the treatment of leishmaniasis are of interest as the disease not only is becoming more prevalent, but drug resistance is increasing in certain regions of the world. Reported here is the use of Bi3+-doped strontium aluminum oxyfluoride phosphors and protease inhibitors to test in vitro inhibitory activity against cultured promastigote Leishmania tarentolae and effects on L. tarentolae secreted acid phosphatase (SAP) activity. Cell viability did not significantly decrease in the presence of 50 μM anti-perovskite compounds, implying limited cytotoxicity. Yet SAP activity did increase in the cell free preparations with time in the presence of strontium compounds. Of interest was the observation that cell free SAP activity did not increase in the presence of protease inhibitors with or without added strontium compounds. Since secreted proteases may play a role in the maturation of Leishmania SAP and thus be involved with parasite-host infection establishment, this is in further need of evaluation. Nitric oxide production on day 4 post-addition of the strontium compounds was evaluated and showed an approximately 50% decrease in NO production in the presence of two test compounds relative to DMSO control cells. This is the first report of anti-perovskite compound inhibition of NO production by Leishmania.
Collapse
Affiliation(s)
- C. Fiore Apuzzo
- Department of Chemistry, Campus Box 4160, Illinois State University, Normal, IL, 61790, USA
| | - Eirin C. Sullivan
- Department of Chemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - David C. Platt
- Department of Chemistry, Campus Box 4160, Illinois State University, Normal, IL, 61790, USA
| | - Ian Seger-Held
- Department of Chemistry, Campus Box 4160, Illinois State University, Normal, IL, 61790, USA
| | - Marjorie A. Jones
- Department of Chemistry, Campus Box 4160, Illinois State University, Normal, IL, 61790, USA
| |
Collapse
|
7
|
Freitas-Mesquita AL, Dos-Santos ALA, Meyer-Fernandes JR. Involvement of Leishmania Phosphatases in Parasite Biology and Pathogeny. Front Cell Infect Microbiol 2021; 11:633146. [PMID: 33968798 PMCID: PMC8100340 DOI: 10.3389/fcimb.2021.633146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
In the Leishmania lifecycle, the motile promastigote form is transmitted from the sand fly vector to a mammalian host during a blood meal. Inside vertebrate host macrophages, the parasites can differentiate into the amastigote form and multiply, causing leishmaniasis, one of the most significant neglected tropical diseases. Leishmania parasites face different conditions throughout their development inside sand flies. Once in the mammalian host, the parasites have to overcome the microbicide repertoire of the cells of the immune system to successfully establish the infection. In this context, the expression of protein phosphatases is of particular interest. Several members of the serine/threonine-specific protein phosphatase (STP), protein tyrosine phosphatase (PTP), and histidine acid phosphatase (HAcP) families have been described in different Leishmania species. Although their physiological roles have not been fully elucidated, many studies suggest they have an involvement with parasite biology and pathogeny. Phosphatases play a role in adaptation to nutrient starvation during parasite passage through the sand fly midgut. They are also important to parasite virulence, mainly due to the modulation of host cytokine production and impairment of the microbiocidal potential of macrophages. Furthermore, recent whole-genome expression analyses have shown that different phosphatases are upregulated in metacyclic promastigotes, the infective form of the mammalian host. Leishmania phosphatases are also upregulated in drug-resistant strains, probably due to the increase in drug efflux related to the activation of ABC transporters. Throughout this review, we will describe the physiological roles that have been attributed to Leishmania endogenous phosphatases, including their involvement in the adaptation, survival, and proliferation of the parasites inside their hosts.
Collapse
Affiliation(s)
- Anita Leocadio Freitas-Mesquita
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Araújo Dos-Santos
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Heat Shock Proteins as the Druggable Targets in Leishmaniasis: Promises and Perils. Infect Immun 2021; 89:IAI.00559-20. [PMID: 33139381 DOI: 10.1128/iai.00559-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmania, the causative agent of leishmaniasis, is an intracellular pathogen that thrives in the insect gut and mammalian macrophages to complete its life cycle. Apart from temperature difference (26 to 37°C), it encounters several harsh conditions, including oxidative stress, inflammatory reactions, and low pH. Heat shock proteins (HSPs) play essential roles in cell survival by strategically reprogramming cellular processes and signaling pathways. HSPs assist cells in multiple functions, including differentiation, adaptation, virulence, and persistence in the host cell. Due to cyclical epidemiological patterns, limited chemotherapeutic options, drug resistance, and the absence of a vaccine, control of leishmaniasis remains a far-fetched dream. The essential roles of HSPs in parasitic differentiation and virulence and increased expression in drug-resistant strains highlight their importance in combating the disease. In this review, we highlighted the diverse physiological importance of HSPs present in Leishmania, emphasizing their significance in disease pathogenesis. Subsequently, we assessed the potential of HSPs as a chemotherapeutic target and underlined the challenges associated with it. Furthermore, we have summarized a few ongoing drug discovery initiatives that need to be explored further to develop clinically successful chemotherapeutic agents in the future.
Collapse
|
9
|
Ścibior A, Pietrzyk Ł, Plewa Z, Skiba A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J Trace Elem Med Biol 2020; 61:126508. [PMID: 32305626 PMCID: PMC7152879 DOI: 10.1016/j.jtemb.2020.126508] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Vanadium (V) is an element with a wide range of effects on the mammalian organism. The ability of this metal to form organometallic compounds has contributed to the increase in the number of studies on the multidirectional biological activity of its various organic complexes in view of their application in medicine. OBJECTIVE This review aims at summarizing the current state of knowledge of the pharmacological potential of V and the mechanisms underlying its anti-viral, anti-bacterial, anti-parasitic, anti-fungal, anti-cancer, anti-diabetic, anti-hypercholesterolemic, cardioprotective, and neuroprotective activity as well as the mechanisms of appetite regulation related to the possibility of using this element in the treatment of obesity. The toxicological potential of V and the mechanisms of its toxic action, which have not been sufficiently recognized yet, as well as key information about the essentiality of this metal, its physiological role, and metabolism with certain aspects on the timeline is collected as well. The report also aims to review the use of V in the implantology and industrial sectors emphasizing the human health hazard as well as collect data on the directions of further research on V and its interactions with Mg along with their character. RESULTS AND CONCLUSIONS Multidirectional studies on V have shown that further analyses are still required for this element to be used as a metallodrug in the fight against certain life-threatening diseases. Studies on interactions of V with Mg, which showed that both elements are able to modulate the response in an interactive manner are needed as well, as the results of such investigations may help not only in recognizing new markers of V toxicity and clarify the underlying interactive mechanism between them, thus improving the medical application of the metals against modern-age diseases, but also they may help in development of principles of effective protection of humans against environmental/occupational V exposure.
Collapse
Key Words
- 3-HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA
- AIDS, acquired immune deficiency syndrome
- ALB, albumin
- ALP, alkaline phosphatase
- AS, antioxidant status
- Akt, protein kinase B (PKB)
- AmD, Assoc American Dietetic Association
- Anti-B, anti-bacterial
- Anti-C, anti-cancer
- Anti-D, anti-diabetic
- Anti-F, anti-fungal
- Anti-O, anti-obesity
- Anti-P, anti-parasitic
- Anti-V, anti-viral
- Anti−HC, anti-hypercholesterolemic
- ApoA-I, apolipoprotein A
- ApoB, apolipoprotein B
- B, bone
- BCOV, bis(curcumino)oxavanadyl
- BEOV, bis(ethylmaltolato)oxovanadium
- BMOV, bis(maltolato)oxavanadium(IV)
- Bim, Blc-2 interacting mediator of cell death
- Biological role
- BrOP, bromoperoxidase
- C, cholesterol
- C/EBPα, CCAAT-enhancer-binding protein α
- CD4, CD4 receptor
- CH, cerebral hemisphere
- CHO-K1, Chinese hamster ovary cells
- CXCR-4, CXCR-4 chemokine co-receptor
- Cardio-P, cardioprotective
- Citrate-T, citrate transporter
- CoA, coenzyme A
- Cyt c, cytochrome c
- DM, diabetes mellitus
- ELI, extra low interstitial
- ERK, extracellular regulated kinase
- FHR, fructose hypertensive rats
- FKHR/FKHR1/AFX, class O members of the forkhead transcription factor family
- FLIP, FLICE-inhibitory protein
- FOXOs, forkhead box class O family member proteins
- FPP, farnesyl-pyrophosphate
- FasL, Fas ligand, FER: ferritin
- GI, gastrointestinal
- GLU, glucose
- GLUT-4, glucose transporter type 4
- GPP, geranyl-pyrophosphate
- GPT, glutamate-pyruvate transaminase
- GR, glutathione reductase
- GSH, reduced glutathione
- GSSG, disulfide glutathione
- HDL, high-density lipoproteins
- HDL-C, HDL cholesterol
- HIV, human immunodeficiency virus
- HMMF, high molecular mass fraction
- HOMA-IR, insulin resistance index
- Hb, hemoglobin
- HbF, hemoglobin fraction
- Hyper-LEP, hyperleptynemia
- IDDM, insulin-dependent diabetes mellitus
- IGF-IR, insulin-like growth factor receptor
- IL, interleukin
- INS, insulin
- INS-R, insulin resistance
- INS-S, insulin sensitivity
- IPP, isopentenyl-5-pyrophosphate
- IRS, insulin receptor tyrosine kinase substrate
- IgG, immunoglobulin G
- Industrial importance
- Interactions
- JAK2, Janus kinase 2
- K, kidney
- L, liver
- L-AA, L-ascorbic acid
- LDL, low-density lipoproteins
- LDL-C, LDL cholesterol
- LEP, leptin
- LEP-R, leptin resistance
- LEP-S, leptin sensitivity
- LEPS, the concentration of leptin in the serum
- LMMF, low molecular mass fraction
- LPL, lipoprotein lipase
- LPO, lipid peroxidation
- Lactate-T, lactate transporter
- M, mitochondrion
- MEK, ERK kinase activator
- MRC, mitochondrial respiratory chain
- NAC, N-acetylcysteine
- NEP, neutral endopeptidase
- NIDDM, noninsulin-dependent diabetes mellitus
- NO, nitric oxide
- NPY, neuropeptide Y
- NaVO3, sodium metavanadate
- Neuro-P, neuroprotective
- OXPHOS, oxidative phosphorylation
- Organic-AT, organic anion transporter
- Over-W, over-weight
- P, plasma
- PANC-1, pancreatic ductal adenocarcinoma cells
- PARP, poly (ADP-ribose) polymerase
- PLGA, (Poly)Lactide-co-Glycolide copolymer
- PO43−, phosphate ion
- PPARγ, peroxisome-activated receptor γ
- PTK, tyrosine protein kinase
- PTP, protein tyrosine phosphatase
- PTP-1B, protein tyrosine phosphatase 1B
- Pharmacological activity
- Pi3K, phosphoinositide 3-kinase (phosphatidylinositol 3-kinase)
- RBC, erythrocytes
- ROS, reactive oxygen species
- RT, reverse transcriptase
- SARS, severe acute respiratory syndrome
- SAcP, acid phosphatase secreted by Leshmania
- SC-Ti-6Al-4V, surface-coated Ti-6Al-4V
- SHR, spontaneously hypertensive rats
- SOD, superoxide dismutase
- STAT3, signal transducer/activator of transcription 3
- Sa, mean roughness
- Sq, root mean square roughness
- Sz, ten-point height
- TC, total cholesterol
- TG, triglycerides
- TS, transferrin saturation
- Tf, transferrin
- TfF, transferrin fraction
- TiO2, nHA:Ag-Ti-6Al-4V: titanium oxide-based coating containing hydroxyapatite nanoparticle and silver particles
- Top-IB, IB type topoisomerase
- Toxicological potential
- V, vanadium
- V-BrPO, vanadium bromoperoxidase
- V-DLC, diamond-like layer with vanadium
- V5+/V4+, pentavalent/tetravalent vanadium
- VO2+, vanadyl cation
- VO2+-FER, vanadyl-ferritin complex
- VO4-/VO3-, vanadate anion
- VO43-, vanadate ion
- VS, vanadyl sulfate
- Vanadium
- WB, whole blood
- ZDF rats, Zucker diabetic fatty rats
- ZF rats, Zucker fatty rats
- breakD, breakdown
- eNOS, endothelial nitric oxide synthase
- mo, months
- n-HA, nano-hydroxyapatite
- pRb, retinoblastoma protein
- wk, weeks
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
| | - Łukasz Pietrzyk
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
- Department of Didactics and Medical Simulation, Chair of Anatomy, Medical University of Lublin, Poland
| | - Zbigniew Plewa
- Department of General, Oncological, and Minimally Invasive Surgery, 1 Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| | - Andrzej Skiba
- Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| |
Collapse
|
10
|
Activity of Chitosan and Its Derivatives against Leishmania major and Leishmania mexicana In Vitro. Antimicrob Agents Chemother 2020; 64:AAC.01772-19. [PMID: 31871082 PMCID: PMC7038302 DOI: 10.1128/aac.01772-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
There is an urgent need for safe, efficacious, affordable, and field-adapted drugs for the treatment of cutaneous leishmaniasis, which newly affects around 1.5 million people worldwide annually. Chitosan, a biodegradable cationic polysaccharide, has previously been reported to have antimicrobial, antileishmanial, and immunostimulatory activities. There is an urgent need for safe, efficacious, affordable, and field-adapted drugs for the treatment of cutaneous leishmaniasis, which newly affects around 1.5 million people worldwide annually. Chitosan, a biodegradable cationic polysaccharide, has previously been reported to have antimicrobial, antileishmanial, and immunostimulatory activities. We investigated the in vitro activity of chitosan and several of its derivatives and showed that the pH of the culture medium plays a critical role in antileishmanial activity of chitosan against both extracellular promastigotes and intracellular amastigotes of Leishmania major and Leishmania mexicana. Chitosan and its derivatives were approximately 7 to 20 times more active at pH 6.5 than at pH 7.5, with high-molecular-weight chitosan being the most potent. High-molecular-weight chitosan stimulated the production of nitric oxide and reactive oxygen species by uninfected and Leishmania-infected macrophages in a time- and dose-dependent manner at pH 6.5. Despite the in vitro activation of bone marrow macrophages by chitosan to produce nitric oxide and reactive oxygen species, we showed that the antileishmanial activity of chitosan was not mediated by these metabolites. Finally, we showed that rhodamine-labeled chitosan is taken up by pinocytosis and accumulates in the parasitophorous vacuole of Leishmania-infected macrophages.
Collapse
|
11
|
Laha B, Verma AK, Biswas B, Sengodan SK, Rastogi A, Willard B, Ghosh M. Detection and characterization of an albumin-like protein in Leishmania donovani. Parasitol Res 2019; 118:1609-1623. [PMID: 30903348 DOI: 10.1007/s00436-019-06286-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
The protozoan parasite, Leishmania donovani, undergoes several molecular adaptations and secretes many effector molecules for host cell manipulation and successful parasitism. The current study identifies an albumin-like secretory protein, expressed in its extracellular promastigote forms. A leishmanial complementary DNA sequence of a partial gene has been cloned, and the encoded peptide (14 kD) is used for the production of polyclonal antibody. This targeted antibody identifies a large native protein (66.421 kD), expressed stage-specifically in promastigotes. Through electron microscopic studies, the native protein is found to be localized in the flagellar pocket and flagella and at the surface of the promastigotes. This native protein is purified with the same customized antibody for future characterization and sequencing. The sequence analysis reveals its homology with the mammalian serum albumin. It is evidenced from in silico studies that this albumin-like protein remains associated with long-chain fatty acids while in vitro studies indicate its close association with membrane cholesterol. Since antibody-mediated blocking compromises the parasite infectivity, these leishmanial albumin-like molecules are hereby proposed to play an instrumental role in the infectivity of L. donovani to peripheral blood monocyte cells. Thus, identification and characterization of an albumin-like protein in L. donovani promastigotes may be interpreted as a molecular adaptation candidate. It may be hypothesized that the parasite mimics the mammalian system for importing fatty acids into the intracellular amastigotes, facilitating its host cell infectivity.
Collapse
Affiliation(s)
- Bhakti Laha
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Amit Kumar Verma
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Bapi Biswas
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Satheesh Kumar Sengodan
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Akanksha Rastogi
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Belinda Willard
- Mass Spectrometry Laboratory for Protein Sequencing, Cleveland Clinic - Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Monidipa Ghosh
- Department of Biotechnology, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
12
|
Genomic Analysis of Colombian Leishmania panamensis strains with different level of virulence. Sci Rep 2018; 8:17336. [PMID: 30478412 PMCID: PMC6255768 DOI: 10.1038/s41598-018-35778-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
The establishment of Leishmania infection in mammalian hosts and the subsequent manifestation of clinical symptoms require internalization into macrophages, immune evasion and parasite survival and replication. Although many of the genes involved in these processes have been described, the genetic and genomic variability associated to differences in virulence is largely unknown. Here we present the genomic variation of four Leishmania (Viannia) panamensis strains exhibiting different levels of virulence in BALB/c mice and its application to predict novel genes related to virulence. De novo DNA sequencing and assembly of the most virulent strain allowed comparative genomics analysis with sequenced L. (Viannia) panamensis and L. (Viannia) braziliensis strains, and showed important variations at intra and interspecific levels. Moreover, the mutation detection and a CNV search revealed both base and structural genomic variation within the species. Interestingly, we found differences in the copy number and protein diversity of some genes previously related to virulence. Several machine-learning approaches were applied to combine previous knowledge with features derived from genomic variation and predict a curated set of 66 novel genes related to virulence. These genes can be prioritized for validation experiments and could potentially become promising drug and immune targets for the development of novel prophylactic and therapeutic interventions.
Collapse
|
13
|
Dorsey BM, Cass CL, Cedeño DL, Vallejo R, Jones MA. Effects of Specific Electric Field Stimulation on the Release and Activity of Secreted Acid Phosphatases from Leishmania tarentolae and Implications for Therapy. Pathogens 2018; 7:pathogens7040077. [PMID: 30261701 PMCID: PMC6313409 DOI: 10.3390/pathogens7040077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease with 1.6 million new cases reported each year. However, there are few safe, effective, and affordable treatments provided to those affected by this disease. Still under-appreciated as potential pharmaceutical targets, especially for cutaneous leishmaniasis infections, are the two isozymes of secreted acid phosphatase (SAP). These enzymes are involved in the survival of the parasite in the sand fly vector, and in infecting host macrophages. While the application of electric or electromagnetic fields as a medicinal therapeutic is not new, the utility of electric field application for the treatment of leishmaniasis is under studied. Studies involving the effects of electric fields on the cell secretion of SAP or the activity of SAP that has been secreted prior to electrical stimulation have not yet been reported. This work is the first report on the effect of specific electric fields on the activity of Leishmaniatarentolae secreted acid phosphatases and the modulation of this secretion from the cells. In addition, the kinetic constants for the enzyme isoforms were determined as a function of days in culture and removal of carbohydrate from the glycosylated enzymes, while using a glycosidase, was shown to affect these kinetic constants.
Collapse
Affiliation(s)
- Benjamin M Dorsey
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA.
| | - Cynthia L Cass
- Millennium Pain Center, Bloomington, IL 61704-0303, USA.
| | - David L Cedeño
- Millennium Pain Center, Bloomington, IL 61704-0303, USA.
| | | | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA.
| |
Collapse
|
14
|
Garg G, Singh K, Ali V. Proteomic approaches unravel the intricacy of secreted proteins of Leishmania: An updated review. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:913-923. [DOI: 10.1016/j.bbapap.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/16/2018] [Accepted: 05/22/2018] [Indexed: 02/03/2023]
|
15
|
Dorsey BM, McLauchlan CC, Jones MA. Evidence That Speciation of Oxovanadium Complexes Does Not Solely Account for Inhibition of Leishmania Acid Phosphatases. Front Chem 2018; 6:109. [PMID: 29707535 PMCID: PMC5906595 DOI: 10.3389/fchem.2018.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is an endemic disease affecting a diverse spectra of populations, with 1.6 million new cases reported each year. Current treatment options are costly and have harsh side effects. New therapeutic options that have been previously identified, but still underappreciated as potential pharmaceutical targets, are Leishmania secreted acid phosphatases (SAP). These acid phosphatases, which are reported to play a role in the survival of the parasite in the sand fly vector, and in homing to the host macrophage, are inhibited by orthovanadate and decavanadate. Here, we use L. tarentolae to further evaluate these inhibitors. Using enzyme assays, and UV-visible spectroscopy, we investigate which oxovanadium starting material (orthovanadate or decavanadate) is a better inhibitor of L. tarentolae secreted acid phosphatase activity in vitro at the same total moles of vanadium. Considering speciation and total vanadium concentration, decavanadate is a consistently better inhibitor of SAP in our conditions, especially at low substrate:inhibitor ratios.
Collapse
Affiliation(s)
- Benjamin M Dorsey
- Department of Chemistry, Illinois State University, Normal, IL, United States
| | - Craig C McLauchlan
- Department of Chemistry, Illinois State University, Normal, IL, United States
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL, United States
| |
Collapse
|
16
|
Soulat D, Bogdan C. Function of Macrophage and Parasite Phosphatases in Leishmaniasis. Front Immunol 2017; 8:1838. [PMID: 29312331 PMCID: PMC5743797 DOI: 10.3389/fimmu.2017.01838] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/05/2017] [Indexed: 01/23/2023] Open
Abstract
The kinetoplastid protozoan parasites belonging to the genus Leishmania are the causative agents of different clinical forms of leishmaniasis, a vector-borne infectious disease with worldwide prevalence. The protective host immune response against Leishmania parasites relies on myeloid cells such as dendritic cells and macrophages in which upon stimulation by cytokines (e.g., interferon-γ) a complex network of signaling pathways is switched on leading to strong antimicrobial activities directed against the intracellular parasite stage. The regulation of these pathways classically depends on post-translational modifications of proteins, with phosphorylation events playing a cardinal role. Leishmania parasites deactivate their phagocytic host cells by inducing specific mammalian phosphatases that are capable to impede signaling. On the other hand, there is now also evidence that Leishmania spp. themselves express phosphatases that might target host cell molecules and thereby facilitate the intracellular survival of the parasite. This review will present an overview on the modulation of host phosphatases by Leishmania parasites as well as on the known families of Leishmania phosphatases and their possible function as virulence factors. A more detailed understanding of the role of phosphatases in Leishmania–host cell interactions might open new avenues for the treatment of non-healing, progressive forms of leishmaniasis.
Collapse
Affiliation(s)
- Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| |
Collapse
|
17
|
Characterization of the Protein Tyrosine Phosphatase LmPRL-1 Secreted by Leishmania major via the Exosome Pathway. Infect Immun 2017; 85:IAI.00084-17. [PMID: 28507071 DOI: 10.1128/iai.00084-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/11/2017] [Indexed: 01/02/2023] Open
Abstract
Similar to other intracellular pathogens, Leishmania parasites are known to evade the antimicrobial effector functions of host immune cells. To date, however, only a few virulence factors have been described for Leishmania major, one of the causative agents of cutaneous leishmaniasis. Here, we have characterized the expression and function of an L. major phosphatase, which we termed LmPRL-1. This enzyme shows a strong structural similarity to the human phosphatases of regenerating liver (PRL-1, -2, and -3) that regulate the proliferation, differentiation, and motility of cells. The biochemical characterization of the L. major phosphatase revealed that the enzyme is redox sensitive. When analyzing the subcellular localization of LmPRL-1 in promastigotes, amastigotes, and infected macrophages, we found that the phosphatase was predominantly expressed and secreted by promastigotes via the exosome route. Finally, we observed that ectopic expression of LmPRL-1 in L. major led to an increased number of parasites in macrophages. From these data, we conclude that the L. major phosphatase LmPRL-1 contributes to the intracellular survival of the parasites in macrophages.
Collapse
|
18
|
Deep Insight into the Phosphatomes of Parasitic Protozoa and a Web Resource ProtozPhosDB. PLoS One 2016; 11:e0167594. [PMID: 27930683 PMCID: PMC5145157 DOI: 10.1371/journal.pone.0167594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/16/2016] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation dynamically regulates the function of proteins by maintaining a balance between protein kinase and phosphatase activity. A comprehensive understanding of the role phosphatases in cellular signaling is lacking in case of protozoans of medical and veterinary importance worldwide. The drugs used to treat protozoal diseases have many undesired effects and the development of resistance, highlights the need for new effective and safer antiprotozoal agents. In the present study we have analyzed phosphatomes of 15 protozoans of medical significance. We identified ~2000 phosphatases, out of which 21% are uncharacterized proteins. A significant positive correlation between phosphatome and proteome size was observed except for E. histolytica, having highest density of phosphatases irrespective of its proteome size. A difference in the number of phosphatases among different genera shows the variation in the signaling pathways they are involved in. The phosphatome of parasites is dominated by ser/thr phosphatases contrary to the vertebrate host dominated by tyrosine phosphatases. Phosphatases were widely distributed throughout the cell suggesting physiological adaptation of the parasite to regulate its host. 20% to 45% phosphatome of different protozoa consists of ectophosphatases, i.e. crucial for the survival of parasites. A database and a webserver "ProtozPhosDB" can be used to explore the phosphatomes of protozoans of medical significance.
Collapse
|
19
|
Leishmania mexicana: promastigotes and amastigotes secrete protein phosphatases and this correlates with the production of inflammatory cytokines in macrophages. Parasitology 2016; 143:1409-20. [PMID: 27220404 DOI: 10.1017/s0031182016000949] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Phosphatase activity of Leishmania spp. has been shown to deregulate the signalling pathways of the host cell. We here show that Leishmania mexicana promastigotes and amastigotes secrete proteins with phosphatase activity to the culture medium, which was higher in the Promastigote Secretion Medium (PSM) as compared with the Amastigote Secretion Medium (ASM) and was not due to cell lysis, since parasite viability was not affected by the secretion process. The biochemical characterization showed that the phosphatase activity present in PSM was higher in dephosphorylating the peptide END (pY) INASL as compared with the peptide RRA (pT)VA. In contrast, the phosphatase activity in ASM showed little dephosphorylating capacity for both peptides. Inhibition assays demonstrated that the phosphatase activity of both PSM and ASM was sensible only to protein tyrosine phosphatases inhibitors. An antibody against a protein phosphatase 2C (PP2C) of Leishmania major cross-reacted with a 44·9 kDa molecule in different cellular fractions of L. mexicana promastigotes and amastigotes, however, in PSM and ASM, the antibody recognized a protein about 70 kDa. By electron microscopy, the PP2C was localized in the flagellar pocket of amastigotes. PSM and ASM induced the production of tumor necrosis factor alpha, IL-1β, IL-12p70 and IL-10 in human macrophages.
Collapse
|
20
|
Imamura H, Downing T, Van den Broeck F, Sanders MJ, Rijal S, Sundar S, Mannaert A, Vanaerschot M, Berg M, De Muylder G, Dumetz F, Cuypers B, Maes I, Domagalska M, Decuypere S, Rai K, Uranw S, Bhattarai NR, Khanal B, Prajapati VK, Sharma S, Stark O, Schönian G, De Koning HP, Settimo L, Vanhollebeke B, Roy S, Ostyn B, Boelaert M, Maes L, Berriman M, Dujardin JC, Cotton JA. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. eLife 2016; 5. [PMID: 27003289 PMCID: PMC4811772 DOI: 10.7554/elife.12613] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 12/25/2022] Open
Abstract
Leishmania donovani causes visceral leishmaniasis (VL), the second most deadly vector-borne parasitic disease. A recent epidemic in the Indian subcontinent (ISC) caused up to 80% of global VL and over 30,000 deaths per year. Resistance against antimonial drugs has probably been a contributing factor in the persistence of this epidemic. Here we use whole genome sequences from 204 clinical isolates to track the evolution and epidemiology of L. donovani from the ISC. We identify independent radiations that have emerged since a bottleneck coincident with 1960s DDT spraying campaigns. A genetically distinct population frequently resistant to antimonials has a two base-pair insertion in the aquaglyceroporin gene LdAQP1 that prevents the transport of trivalent antimonials. We find evidence of genetic exchange between ISC populations, and show that the mutation in LdAQP1 has spread by recombination. Our results reveal the complexity of L. donovani evolution in the ISC in response to drug treatment. DOI:http://dx.doi.org/10.7554/eLife.12613.001 The parasite Leishmania donovani causes a disease called visceral leishmaniasis that affects many of the world's poorest people. Around half a million new cases develop every year, but health authorities lack safe and effective drugs to treat them. Up to 80% of these cases occur in the Indian subcontinent, where devastating epidemics have occurred in the last decades. One reason these epidemics continue to occur is that the parasites develop genetic mutations allowing them to adapt to and resist the drugs used to kill them. As there are few existing drugs that can kill L. donovani, it is crucial to understand how drug resistance emerges and spreads among parasite populations. Imamura, Downing, Van den Broeck et al. have now investigated the history of visceral leishmaniasis epidemics by characterising the complete genetic sequence – or genome – of 204 L. donovani parasite samples. This revealed that the majority of parasites in the Indian subcontinent first appeared in the nineteenth century, matching the first historical records of visceral leishmaniasis epidemics. The genomes show that most of the parasites are genetically similar and can be clustered into several closely related groups. These groups first appeared in the 1960s following the end of a regional campaign to eradicate malaria. The most common parasite group is particularly resistant to drugs called antimonials, which were the main treatment for leishmaniasis until recently. These parasites have a small genetic change that scrambles most of a protein known to be involved in the uptake of antimonials. Parasites may also be able to develop resistance to drugs through additional mechanisms that allow them to produce many copies of the same gene. These mechanisms could allow the parasites to rapidly adapt to new drugs or changes in the populations it infects. The work of Imamura et al. looks only at parasites isolated from patients then grown in the laboratory, so further research is now needed to explore how variable the Leishmania genome is in both of the parasite’s hosts: humans and sandflies. Imamura et al.’s study reveals how L. donovani has spread throughout the Indian subcontinent in fine detail. The genome data can be used to create simple molecular tools that could form an "early warning system" to track the success of disease control programs and to determine how well the current drugs are working. DOI:http://dx.doi.org/10.7554/eLife.12613.002
Collapse
Affiliation(s)
- Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tim Downing
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom.,School of Maths, Applied Maths and Statistics, National University of Ireland Galway, Galway, Ireland
| | | | | | - Suman Rijal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - An Mannaert
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Manu Vanaerschot
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Maya Berg
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Géraldine De Muylder
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Franck Dumetz
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bart Cuypers
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ilse Maes
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Saskia Decuypere
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Keshav Rai
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | | | | | - Vijay Kumar Prajapati
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Smriti Sharma
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Olivia Stark
- Institut für Mikrobiologie und Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriele Schönian
- Institut für Mikrobiologie und Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Harry P De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Luca Settimo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Benoit Vanhollebeke
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Syamal Roy
- Department of Infectious Diseases and Immunology, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata, India
| | - Bart Ostyn
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Louis Maes
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - James A Cotton
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
21
|
Djakpa H, Kulkarni A, Barrows-Murphy S, Miller G, Zhou W, Cho H, Török B, Stieglitz K. Identifying New Drug Targets for Potent Phospholipase D Inhibitors: Combining Sequence Alignment, Molecular Docking, and Enzyme Activity/Binding Assays. Chem Biol Drug Des 2016; 87:714-29. [DOI: 10.1111/cbdd.12705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/20/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Helene Djakpa
- STEM Biotechnology Division; Roxbury Community College; Roxbury MA USA
| | - Aditya Kulkarni
- Department of Chemistry; University of Massachusetts Boston; 100 Morrissey Blvd Boston MA 02125 USA
| | | | - Greg Miller
- STEM Biotechnology Division; Roxbury Community College; Roxbury MA USA
| | - Weihong Zhou
- Department of Chemistry; University of Massachusetts Boston; 100 Morrissey Blvd Boston MA 02125 USA
| | - Hyejin Cho
- Department of Chemistry; University of Massachusetts Boston; 100 Morrissey Blvd Boston MA 02125 USA
| | - Béla Török
- Department of Chemistry; University of Massachusetts Boston; 100 Morrissey Blvd Boston MA 02125 USA
| | | |
Collapse
|
22
|
Markikou-Ouni W, Drini S, Bahi-Jaber N, Chenik M, Meddeb-Garnaoui A. Immunomodulatory Effects of Four Leishmania infantum Potentially Excreted/Secreted Proteins on Human Dendritic Cells Differentiation and Maturation. PLoS One 2015; 10:e0143063. [PMID: 26581100 PMCID: PMC4651425 DOI: 10.1371/journal.pone.0143063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/07/2015] [Indexed: 11/18/2022] Open
Abstract
Leishmania parasites and some molecules they secrete are known to modulate innate immune responses through effects on dendritic cells (DCs) and macrophages. Here, we characterized four Leishmania infantum potentially excreted/secreted recombinant proteins (LipESP) identified in our laboratory: Elongation Factor 1 alpha (LiEF-1α), a proteasome regulatory ATPase (LiAAA-ATPase) and two novel proteins with unknown functions, which we termed LiP15 and LiP23, by investigating their effect on in vitro differentiation and maturation of human DCs and on cytokine production by DCs and monocytes. During DCs differentiation, LipESP led to a significant decrease in CD1a. LiP23 and LiEF-1α, induced a decrease of HLA-DR and an increase of CD86 surface expression, respectively. During maturation, an up-regulation of HLA-DR and CD80 was found in response to LiP15, LiP23 and LiAAA-ATPase, while an increase of CD40 expression was only observed in response to LiP15. All LipESP induced an over-expression of CD86 with significant differences between proteins. These proteins also induced significant IL-12p70 levels in immature DCs but not in monocytes. The LipESP-induced IL-12p70 production was significantly enhanced by a co-treatment with IFN-γ in both cell populations. TNF-α and IL-10 were induced in DCs and monocytes with higher levels observed for LiP15 and LiAAA-ATPase. However, LPS-induced cytokine production during DC maturation or in monocyte cultures was significantly down regulated by LipESP co-treatment. Our findings suggest that LipESP strongly interfere with DCs differentiation suggesting a possible involvement in mechanisms established by the parasite for its survival. These proteins also induce DCs maturation by up-regulating several costimulatory molecules and by inducing the production of proinflammatory cytokines, which is a prerequisite for T cell activation. However, the reduced ability of LipESP-stimulated DCs and monocytes to respond to lipopolysaccharide (LPS) that can be observed during human leishmaniasis, suggests that under certain circumstances LipESP may play a role in disease progression.
Collapse
Affiliation(s)
- Wafa Markikou-Ouni
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sima Drini
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
- Unité de Parasitologie moléculaire et Signalisation, Institut Pasteur, Paris, France
| | - Narges Bahi-Jaber
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
- UPSP EGEAL Institut Polytechnique LaSalle Beauvais, Beauvais, France
| | - Mehdi Chenik
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Amel Meddeb-Garnaoui
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Institut Pasteur de Tunis, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
23
|
The Leishmania donovani histidine acid ecto-phosphatase LdMAcP: insight into its structure and function. Biochem J 2015; 467:473-86. [PMID: 25695743 PMCID: PMC4687092 DOI: 10.1042/bj20141371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acid ecto-phosphatase activity has been implicated in Leishmania donovani promastigote virulence. In the present study, we report data contributing to the molecular/structural and functional characterization of the L. donovani LdMAcP (L. donovani membrane acid phosphatase), member of the histidine acid phosphatase (HAcP) family. LdMAcP is membrane-anchored and shares high sequence identity with the major secreted L. donovani acid phosphatases (LdSAcPs). Sequence comparison of the LdMAcP orthologues in Leishmania sp. revealed strain polymorphism and species specificity for the L. donovani complex, responsible for visceral leishmaniasis (Khala azar), proposing thus a potential value of LdMAcP as an epidemiological or diagnostic tool. The extracellular orientation of the LdMAcP catalytic domain was confirmed in L. donovani promastigotes, wild-type (wt) and transgenic overexpressing a recombinant LdMAcP–mRFP1 (monomeric RFP1) chimera, as well as in transiently transfected mammalian cells expressing rLdMAcP–His. For the first time it is demonstrated in the present study that LdMAcP confers tartrate resistant acid ecto-phosphatase activity in live L. donovani promastigotes. The latter confirmed the long sought molecular identity of at least one enzyme contributing to this activity. Interestingly, the L. donovani rLdMAcP–mRFP1 promastigotes generated in this study, showed significantly higher infectivity and virulence indexes than control parasites in the infection of J774 mouse macrophages highlighting thereby a role for LdMAcP in the parasite's virulence. Acid ecto-phosphatase activity has been linked to Leishmania donovani virulence. In the present study, we confirm the molecular identity and characterize molecular and functional properties of an enzyme contributing to this activity, the LdMAcP, an L. donovani specific membrane histidine acid phosphatase (HAcP).
Collapse
|
24
|
Trypanosoma cruzi-secreted vesicles have acid and alkaline phosphatase activities capable of increasing parasite adhesion and infection. Parasitol Res 2014; 113:2961-72. [DOI: 10.1007/s00436-014-3958-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/20/2014] [Indexed: 12/15/2022]
|
25
|
Bras-Gonçalves R, Petitdidier E, Pagniez J, Veyrier R, Cibrelus P, Cavaleyra M, Maquaire S, Moreaux J, Lemesre JL. Identification and characterization of new Leishmania promastigote surface antigens, LaPSA-38S and LiPSA-50S, as major immunodominant excreted/secreted components of L. amazonensis and L. infantum. INFECTION GENETICS AND EVOLUTION 2014; 24:1-14. [PMID: 24614507 DOI: 10.1016/j.meegid.2014.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/11/2022]
Abstract
We have previously demonstrated that sera from dogs vaccinated with excreted/secreted antigens (ESA) of Leishmania infantum promastigotes (LiESAp) mainly recognized an immunodominant antigen of 54 kDa. An anti-LiESAp-specific IgG2 humoral response was observed and associated to Th1-type response in vaccinated dogs. This response was highly correlated with a long-lasting and strong LiESAp-vaccine protection toward L. infantum experimental infection. In addition, it was also shown that dogs from the vaccinated group developed a selective IgG2 response against an immunodominant antigen of 45 kDa of Leishmania amazonensis ESA promastigotes (LaESAp). In order to identify and characterize these immunodominant antigens, a mouse monoclonal antibody (mAb F5) was produced by immunization against LaESAp. It was found to recognize the major antigenic targets of both LaESAp and LiESAp. Analysis with mAb F5 of L. amazonensis amastigote and promastigote cDNA expression libraries enabled the identification of clones encoding proteins with significant structural homology to the promastigote surface antigens named PSA-2/gp-46. Among them, one clone presented a full-length cDNA and encoded a novel L. amazonensis protein of 38.6 kDa calculated molecular mass (LaPSA-38S) sharing an amino acid sequence consistent with that of the PSA polymorphic family and a N-terminal signal peptide, characteristic of a secreted protein. We then screened a L. infantum promastigote DNA cosmid library using a cDNA probe derived from the LaPSA-38S gene and identified a full-length clone of a novel excreted/secreted protein of L. infantum with a calculated molecular mass of 49.2 kDa and named LiPSA-50S. The fact that a significant immunological reactivity was observed against PSA, suggests that these newly identified proteins could have an important immunoregulatory influence on the immune response. This hypothesis is supported by the fact that (i) these proteins were naturally excreted/secreted by viable Leishmania promastigotes and amastigotes, and (ii) they are selectively recognized by vaccinated and protected dogs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/immunology
- Antigens, Surface/immunology
- Base Sequence
- Dog Diseases/immunology
- Dog Diseases/parasitology
- Dogs/blood
- Dogs/parasitology
- Immunodominant Epitopes/immunology
- Immunoglobulin G/immunology
- Leishmania infantum/immunology
- Leishmania mexicana/immunology
- Leishmaniasis Vaccines
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/prevention & control
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/prevention & control
- Molecular Sequence Data
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Vaccination
Collapse
Affiliation(s)
- Rachel Bras-Gonçalves
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France.
| | - Elodie Petitdidier
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Julie Pagniez
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Renaud Veyrier
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Prisca Cibrelus
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Mireille Cavaleyra
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Sarah Maquaire
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Jérôme Moreaux
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Jean-Loup Lemesre
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| |
Collapse
|
26
|
Biochemical properties and possible roles of ectophosphatase activities in fungi. Int J Mol Sci 2014; 15:2289-304. [PMID: 24509700 PMCID: PMC3958851 DOI: 10.3390/ijms15022289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/27/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022] Open
Abstract
Ectophosphatases are surface membrane-bound proteins whose active sites face the extracellular medium. These enzymes have been reported in several microorganisms including a large number of medically relevant fungal species. An effective technique for identifying ectophosphatases is performing phosphatase activity assays using living intact cells. Biochemical characterization of these activities has shown their differential modulation by classical phosphatase inhibitors, divalent metals and pH range. The physiological roles of ectophosphatases are not well established; however, it has been suggested that these enzymes play important roles in nutrition, proliferation, differentiation, adhesion, virulence and infection. Adhesion to host cells is the first step in establishing a fungal infection and ectophosphatases may be one of the first parasite proteins that come into contact with the host cells. Several results indicate that ectophosphatase activities increase the capacity of fungi to adhere to the host cells. In this context, the present review provides an overview of recent discoveries related to the occurrence and possible roles of ectophosphatase activities in fungal cells.
Collapse
|
27
|
Freitas-Mesquita AL, Meyer-Fernandes JR. Ecto-nucleotidases and Ecto-phosphatases from Leishmania and Trypanosoma parasites. Subcell Biochem 2014; 74:217-252. [PMID: 24264248 DOI: 10.1007/978-94-007-7305-9_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ecto-enzymes can be defined as membrane-bound proteins that have their active site facing the extracellular millieu. In trypanosomatids, the physiological roles of these enzymes remain to be completed elucidated; however, many important events have already been related to them, such as the survival of parasites during their complex life cycle and the successful establishment of host infection. This chapter focuses on two remarkable classes of ecto-enzymes: ecto-nucleotidases and ecto-phosphatases, summarizing their occurrence and possible physiological roles in Leishmania and Trypanosoma genera. Ecto-nucleotidases are characterized by their ability to hydrolyze extracellular nucleotides, playing an important role in purinergic signaling. By the action of these ecto-enzymes, parasites are capable of modulating the host immune system, which leads to a successful parasite infection. Furthermore, ecto-nucleotidases are also involved in the purine salvage pathway, acting in the generation of nucleosides that are able to cross plasma membrane via specialized transporters. Another important ecto-enzyme present in a vast number of pathogenic organisms is the ecto-phosphatase. These enzymes are able to hydrolyze extracellular phosphorylated substrates, releasing free inorganic phosphate that can be internalized by the cell, crossing the plasma membrane through a Pi-transporter. Ecto-phosphatases are also involved in the invasion and survival of parasite in the host cells. Several alternative functions have been suggested for these enzymes in parasites, such as participation in their proliferation, differentiation, nutrition and protection. In this context, the present chapter provides an overview of recent discoveries related to the occurrence of ecto-nucleotidase and ecto-phosphatase activities in Leishmania and Trypanosoma parasites.
Collapse
|
28
|
Freitas-Mesquita AL, Fonseca-de-Souza AL, Meyer-Fernandes JR. Leishmania amazonensis: characterization of an ecto-pyrophosphatase activity. Exp Parasitol 2013; 137:8-13. [PMID: 24316462 DOI: 10.1016/j.exppara.2013.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 01/30/2023]
Abstract
Several ecto-enzymatic activities have been described in the plasma membrane of the protozoan Leishmania amazonensis, which is the major etiological agent of diffuse cutaneous leishmaniasis in South America. These enzymes, including ecto-phosphatases, contribute to the survival of the parasite by participating in phosphate metabolism. This work identifies and characterizes the extracellular hydrolysis of inorganic pyrophosphate related to an ecto-pyrophosphatase activity of the promastigote form of L. amazonensis. This ecto-pyrophosphatase activity is insensitive to MnCl2 but is strongly stimulated by MgCl2. This stimulation was not observed during the hydrolysis of p-nitrophenyl phosphate (p-NPP) or β-glycerophosphate, two substrates for different ecto-phosphatases present in the L. amazonensis plasma membrane. Furthermore, extracellular PPi hydrolysis is more efficient at alkaline pHs, while p-NPP hydrolysis occurs mainly at acidic pHs. These results led us to conclude that extracellular PPi is hydrolyzed not by non-specific ecto-phosphatases but rather by a genuine ecto-pyrophosphatase. In the presence of 5mM MgCl2, the ecto-pyrophosphatase activity from L. amazonensis is sensitive to micromolar concentrations of NaF and millimolar concentrations of CaCl2. Moreover, this activity is significantly higher during the first days of L. amazonensis culture, which suggests a possible role for this enzyme in parasite growth.
Collapse
Affiliation(s)
- Anita Leocadio Freitas-Mesquita
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, 21941-590 Rio de Janeiro, RJ, Brazil
| | - André Luiz Fonseca-de-Souza
- Laboratório de Terapia e Fisiologia Celular e Molecular, Centro Universitário Estadual da Zona Oeste, 23070-200 Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, 21941-590 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|