1
|
Chakraborty S, Ganguli D, Nagaraja T, Gope A, Dey S, Pal A, Mandal RS, Das SS, Das S. Salmonella Typhi serine threonine kinase T4519 induces lysosomal membrane permeabilization by manipulating Toll-like receptor 2-Cystatin B-Cathepsin B-NF-κB-reactive oxygen species pathway and promotes survival within human macrophages. PLoS Pathog 2025; 21:e1013041. [PMID: 40168426 PMCID: PMC11984733 DOI: 10.1371/journal.ppat.1013041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/10/2025] [Accepted: 03/12/2025] [Indexed: 04/03/2025] Open
Abstract
Intracellular pathogens of Salmonella spp. survive and replicate within the phagosomes, called Salmonella-containing vacuoles (SCVs) inside macrophages by manipulating phagosomal maturation and phagolysosome formation. While controversies exist about the phagosomal traffic of Salmonella Typhimurium, little studies were carried out with the intracellular survival mechanisms of Salmonella Typhi (S. Typhi). We had previously reported that a eukaryote-like serine/threonine kinase of S. Typhi (T4519) contributes to survival within macrophages and activates host pro-inflammatory signaling pathways regulated by NF-κB. However, neither the mechanisms underlying NF-κB activation nor how it contributes to intracellular survival of S. Typhi were studied. Here we show, by using antibody-mediated blocking and gene knockdown studies that T4519 activates Toll-like receptor 2 (TLR2) signals in the human monocyte-derived macrophages. We computationally predicted the NH2-terminal glycine rich repeat domain of T4519 as the TLR2-binding moiety and confirmed the interaction by co-immunoprecipitation experiment. TLR2-T4519 interaction transcriptionally repressed cystatin B, a cathepsin B inhibitor, leading to the activation of cytosolic cathepsin B, leaked from the lysosomes of the infected cells. Through a series of RT-qPCR, western blotting, gene knockdown, flow cytometry and confocal microscopy experiments, we have shown that active cytosolic cathepsin B cleaves IKB-α, resulting in nuclear translocation of NF-κB and transactivation of its target genes, including reactive oxygen species (ROS), which in turn induces lysosomal membrane permeabilization (LMP). TLR2-dependent targeting of the cystatin B-cathepsin B-NF-κB-ROS pathways by T4519, leading to LMP promotes phagosomal survival of S. Typhi. This study describes a unique mechanism of the exploitation of host NF-κB signaling pathways by bacterial pathogens to promote its own persistence within macrophage cells.
Collapse
Affiliation(s)
- Swarnali Chakraborty
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
| | - Debayan Ganguli
- Division of Infectious Diseases, Washington school of medicine, St. Louis, Missouri, United States of America
| | - Theeya Nagaraja
- Biocon Biologics Limited- R&D centre, Chennai, Tamil Nadu, India
| | - Animesh Gope
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
| | - Sudip Dey
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
| | - Ananda Pal
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sudipta Sekhar Das
- Department of Cancer, Apollo Multispeciality Hospitals Limited, Kolkata, West Bengal, India
| | - Santasabuj Das
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
- ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| |
Collapse
|
2
|
Lu J, Wu H, Wu S, Wang S, Fan H, Ruan H, Qiao J, Caiyin Q, Wen M. Salmonella: Infection mechanism and control strategies. Microbiol Res 2025; 292:128013. [PMID: 39675139 DOI: 10.1016/j.micres.2024.128013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Salmonella is a foodborne pathogen that predominantly resides in the intestinal tract of humans and animals. Infections caused by Salmonella can lead to various illnesses, including gastroenteritis, bacteremia, septicemia, and focal infections, with severe cases potentially resulting in host mortality. The mechanisms by which Salmonella invades host cells and disseminates throughout the body are partly understood, but there are still many scientific questions to be solved. This review aims to synthesize existing research on the interactions between Salmonella and hosts, detailing a comprehensive infection mechanism from adhesion and invasion to intracellular propagation and systemic spread. Overuse of antibiotics contributes to the emergence of drug-resistant Salmonella strains. An in-depth analysis of the mechanism of Salmonella infection will provide a theoretical basis for the development of novel Salmonella control strategies. These innovative control strategies include antibiotic adjuvants, small molecules, phages, attenuated vaccines, and probiotic therapies, which show huge potential in controlling Salmonella infection.
Collapse
Affiliation(s)
- Juane Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Hongfei Fan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Mingzhang Wen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Singh K, Vashishtha S, Chakraborty A, Kumar A, Thakur S, Kundu B. The Salmonella typhi Cell Division Activator Protein StCAP Impacts Pathogenesis by Influencing Critical Molecular Events. ACS Infect Dis 2024; 10:1990-2001. [PMID: 38815059 DOI: 10.1021/acsinfecdis.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Conserved molecular signatures in multidrug-resistant Salmonella typhi can serve as novel therapeutic targets for mitigation of infection. In this regard, we present the S. typhi cell division activator protein (StCAP) as a conserved target across S. typhi variants. From in silico and fluorimetric assessments, we found that StCAP is a DNA-binding protein. Replacement of the identified DNA-interacting residue Arg34 of StCAP with Ala34 showed a dramatic (15-fold) increase in Kd value compared to the wild type (Kd 546 nm) as well as a decrease in thermal stability (10 °C shift). Out of the two screened molecules against the DNA-binding pocket of StCAP, eltrombopag, and nilotinib, the former displayed better binding. Eltrombopag inhibited the stand-alone S. typhi culture with an IC50 of 38 μM. The effect was much more pronounced on THP-1-derived macrophages (T1Mac) infected with S. typhi where colony formation was severely hindered with IC50 reduced further to 10 μM. Apoptotic protease activating factor1 (Apaf1), a key molecule for intrinsic apoptosis, was identified as an StCAP-interacting partner by pull-down assay against T1Mac. Further, StCAP-transfected T1Mac showed a significant increase in LC3 II (autophagy marker) expression and downregulation of caspase 3 protein. From these experiments, we conclude that StCAP provides a crucial survival advantage to S. typhi during infection, thereby making it a potent alternative therapeutic target.
Collapse
Affiliation(s)
- Kritika Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Ankan Chakraborty
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Ashish Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Sheetal Thakur
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
4
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Ahmetzyanova AA, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN. Ligilactobacillus salivarius 7247 Strain: Probiotic Properties and Anti- Salmonella Effect with Prebiotics. Antibiotics (Basel) 2023; 12:1535. [PMID: 37887236 PMCID: PMC10604316 DOI: 10.3390/antibiotics12101535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
The Ligilactobacillus salivarius 7247 (LS7247) strain, originally isolated from a healthy woman's intestines and reproductive system, has been studied for its probiotic potential, particularly against Salmonella Enteritidis (SE) and Salmonella Typhimurium (ST) as well as its potential use in synbiotics. LS7247 showed high tolerance to gastric and intestinal stress and effectively adhered to human and animal enterocyte monolayers, essential for realizing its probiotic properties. LS7247 showed high anti-Salmonella activity. Additionally, the cell-free culture supernatant (CFS) of LS7247 exhibited anti-Salmonella activity, with a partial reduction upon neutralization with NaOH (p < 0.05), suggesting the presence of anti-Salmonella factors such as lactic acid (LA) and bacteriocins. LS7247 produced a high concentration of LA, reaching 124.0 ± 2.5 mM after 48 h of cultivation. Unique gene clusters in the genome of LS7247 contribute to the production of Enterolysin A and metalloendopeptidase. Notably, LS7247 carries a plasmid with a gene cluster identical to human intestinal strain L. salivarius UCC118, responsible for class IIb bacteriocin synthesis, and a gene cluster identical to porcine strain L. salivarius P1ACE3, responsible for nisin S synthesis. Co-cultivation of LS7247 with SE and ST pathogens reduced their viability by 1.0-1.5 log, attributed to cell wall damage and ATP leakage caused by the CFS. For the first time, the CFS of LS7247 has been shown to inhibit adhesion of SE and ST to human and animal enterocytes (p < 0.01). The combination of Actigen prebiotic and the CFS of LS7247 demonstrated a significant combined effect in inhibiting the adhesion of SE and ST to human and animal enterocytes (p < 0.001). These findings highlight the potential of using the LS7247 as a preventive strategy and employing probiotics and synbiotics to combat the prevalence of salmonellosis in animals and humans caused by multidrug resistant (MDR) strains of SE and ST pathogens.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
| | - Irina O. Chikileva
- Laboratory of Cell Immunity, Blokhin National Research Center of Oncology, Ministry of Health RF, 115478 Moscow, Russia;
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
| | - Anna A. Ahmetzyanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
| | | | - Ilia N. Nikonov
- Federal State Educational Institution of Higher Professional Education Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
5
|
Manyi-Loh CE, Lues R. A South African Perspective on the Microbiological and Chemical Quality of Meat: Plausible Public Health Implications. Microorganisms 2023; 11:2484. [PMID: 37894142 PMCID: PMC10608972 DOI: 10.3390/microorganisms11102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Meat comprises proteins, fats, vitamins, and trace elements, essential nutrients for the growth and development of the body. The increased demand for meat necessitates the use of antibiotics in intensive farming to sustain and raise productivity. However, the high water activity, the neutral pH, and the high protein content of meat create a favourable milieu for the growth and the persistence of bacteria. Meat serves as a portal for the spread of foodborne diseases. This occurs because of contamination. This review presents information on animal farming in South Africa, the microbial and chemical contamination of meat, and the consequential effects on public health. In South Africa, the sales of meat can be operated both formally and informally. Meat becomes exposed to contamination with different categories of microbes, originating from varying sources during preparation, processing, packaging, storage, and serving to consumers. Apparently, meat harbours diverse pathogenic microorganisms and antibiotic residues alongside the occurrence of drug resistance in zoonotic pathogens, due to the improper use of antibiotics during farming. Different findings obtained across the country showed variations in prevalence of bacteria and multidrug-resistant bacteria studied, which could be explained by the differences in the manufacturer practices, handling processes from producers to consumers, and the success of the hygienic measures employed during production. Furthermore, variation in the socioeconomic and political factors and differences in bacterial strains, geographical area, time, climatic factors, etc. could be responsible for the discrepancy in the level of antibiotic resistance between the provinces. Bacteria identified in meat including Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, Campylobacter spp., Salmonella spp., etc. are incriminated as pathogenic agents causing serious infections in human and their drug-resistant counterparts can cause prolonged infection plus long hospital stays, increased mortality and morbidity as well as huge socioeconomic burden and even death. Therefore, uncooked meat or improperly cooked meat consumed by the population serves as a risk to human health.
Collapse
Affiliation(s)
- Christy E. Manyi-Loh
- Centre of Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein 9301, South Africa;
| | | |
Collapse
|
6
|
Zhou S, Lin Y, Zhao Z, Lai Y, Lu M, Shao Z, Mo X, Mu Y, Liang Z, Wang X, Qu J, Shen H, Li F, Zhao AZ. Targeted deprivation of methionine with engineered Salmonella leads to oncolysis and suppression of metastasis in broad types of animal tumor models. Cell Rep Med 2023:101070. [PMID: 37269826 DOI: 10.1016/j.xcrm.2023.101070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2022] [Accepted: 05/10/2023] [Indexed: 06/05/2023]
Abstract
The strong dependency of almost all malignant tumors on methionine potentially offers a pathway for cancer treatment. We engineer an attenuated strain of Salmonella typhimurium to overexpress an L-methioninase with the aim of specifically depriving tumor tissues of methionine. The engineered microbes target solid tumors and induce a sharp regression in several very divergent animal models of human carcinomas, cause a significant decrease in tumor cell invasion, and essentially eliminate the growth and metastasis of these tumors. RNA sequencing analyses reveal that the engineered Salmonella reduce the expression of a series of genes promoting cell growth, cell migration, and invasion. These findings point to a potential treatment modality for many metastatic solid tumors, which warrants further tests in clinical trials.
Collapse
Affiliation(s)
- Sujin Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China
| | - Yan Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhenggang Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China
| | - Yunhao Lai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China
| | - Mengmeng Lu
- Guangzhou Sinogen Pharmaceutical Co., Ltd., Guangzhou, Guangdong Province, China
| | - Zishen Shao
- Guangzhou Sinogen Pharmaceutical Co., Ltd., Guangzhou, Guangdong Province, China
| | - Xinyu Mo
- Guangzhou Sinogen Pharmaceutical Co., Ltd., Guangzhou, Guangdong Province, China
| | - Yunping Mu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China
| | - Zhipeng Liang
- Department of Radiology, Sir Ruan-Ruan Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xinxing Wang
- Department of Oncology, Sir Ruan-Ruan Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jingming Qu
- Department of Thoracic and Heart Surgery, Xuzhou Cancer Hospital, Jiangsu University, Xuzhou, Jiangsu Province, China
| | - Hua Shen
- Department of Oncology, Sir Ruan-Ruan Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China.
| | - Allan Z Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Fleeman R. Repurposing Inhibitors of Phosphoinositide 3-kinase as Adjuvant Therapeutics for Bacterial Infections. FRONTIERS IN ANTIBIOTICS 2023; 2:1135485. [PMID: 38983593 PMCID: PMC11233138 DOI: 10.3389/frabi.2023.1135485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 07/11/2024]
Abstract
The rise in antimicrobial resistance and the decline in new antibiotics has created a great need for novel approaches to treat drug resistant bacterial infections. Increasing the burden of antimicrobial resistance, bacterial virulence factors allow for survival within the host, where they can evade host killing and antimicrobial therapy within their intracellular niches. Repurposing host directed therapeutics has great potential for adjuvants to allow for more effective bacterial killing by the host and antimicrobials. To this end, phosphoinositide 3-kinase inhibitors are FDA approved for cancer therapy, but also have potential to eliminate intracellular survival of pathogens. This review describes the PI3K pathway and its potential as an adjuvant target to treat bacterial infections more effectively.
Collapse
|
8
|
Li Z, Mo F, Wang Y, Li W, Chen Y, Liu J, Chen-Mayfield TJ, Hu Q. Enhancing Gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response. Nat Commun 2022; 13:6321. [PMID: 36280674 PMCID: PMC9592600 DOI: 10.1038/s41467-022-34036-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Pore-forming Gasdermin protein-induced pyroptosis in tumor cells promotes anti-tumor immune response through the release of pro-inflammatory cytokines and immunogenic substances after cell rupture. However, endosomal sorting complexes required for transport (ESCRT) III-mediated cell membrane repair significantly diminishes the tumor cell pyroptosis by repairing and subsequently removing gasdermin pores. Here, we show that blocking calcium influx-triggered ESCRT III-dependent membrane repair through a biodegradable nanoparticle-mediated sustained release of calcium chelator (EI-NP) strongly enhances the intracellularly delivered GSDMD-induced tumor pyroptosis via a bacteria-based delivery system (VNP-GD). An injectable hydrogel and a lyophilized hydrogel-based cell patch are developed for peritumoral administration for treating primary and metastatic tumors, and implantation for treating inoperable tumors respectively. The hydrogels, functioning as the local therapeutic reservoirs, can sustainedly release VNP-GD to effectively trigger tumor pyroptosis and EI-NP to prevent the ESCRT III-induced plasma membrane repair to boost the pyroptosis effects, working synergistically to augment the anti-tumor immune response.
Collapse
Affiliation(s)
- Zhaoting Li
- grid.14003.360000 0001 2167 3675Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA ,grid.14003.360000 0001 2167 3675Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 USA ,grid.14003.360000 0001 2167 3675Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Fanyi Mo
- grid.14003.360000 0001 2167 3675Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Yixin Wang
- grid.14003.360000 0001 2167 3675Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA ,grid.14003.360000 0001 2167 3675Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 USA ,grid.14003.360000 0001 2167 3675Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Wen Li
- grid.14003.360000 0001 2167 3675Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Yu Chen
- grid.14003.360000 0001 2167 3675Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA ,grid.14003.360000 0001 2167 3675Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 USA ,grid.14003.360000 0001 2167 3675Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Jun Liu
- grid.14003.360000 0001 2167 3675Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA ,grid.14003.360000 0001 2167 3675Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 USA ,grid.14003.360000 0001 2167 3675Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Ting-Jing Chen-Mayfield
- grid.14003.360000 0001 2167 3675Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Quanyin Hu
- grid.14003.360000 0001 2167 3675Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA ,grid.14003.360000 0001 2167 3675Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 USA ,grid.14003.360000 0001 2167 3675Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
9
|
Dietary Acrylamide Intake Alters Gut Microbiota in Mice and Increases Its Susceptibility to Salmonella Typhimurium Infection. Foods 2021; 10:foods10122990. [PMID: 34945541 PMCID: PMC8700958 DOI: 10.3390/foods10122990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
Acrylamide (AA) has been extensively examined for its potential toxicological effects on humans and animals, but its impacts on gut microbiota and effects on hosts’ susceptibility to enteric infection remain elusive. The present study was designed to evaluate the effect of AA on gut microbiota of mice and susceptibility of mice to S. Typhimurium infection. After four weeks’ intervention, mice fed with AA exhibited significantly decreased body weight. Meanwhile, 16S rRNA gene sequencing showed reduced relative abundance of Firmicutes and increased abundance of Bacteroidetes in AA-treated mice prior to infection. In addition, we observed high relative abundance of Burkholderiales and Erysipelotrichales, more specifically the genus Sutterella and Allobaculum, respectively, in AA-treated mice before infection. Subsequently, the mice were orally infected with S. Typhimurium. The histological changes, systemic dissemination of S. Typhimurium, and inflammatory responses were examined. Compared to mice fed with normal diet, mice fed AA exhibited higher level of bacterial counts in liver, spleen, and ileum, which was consistent with exacerbated tissue damage determined by histological analyses. In addition, higher expression of pro-inflammaroty cytokines, p-IκBα, and p-P65 and lower mRNA expressions of mucin2, occludin, zo-1, claudin-1, and E-cadherin were detected in AA-treated mice. These findings provide novel insights into the potential health impact of AA consumption and the detailed mechanism for its effect on S. Typhimurium infection merit further exploration.
Collapse
|
10
|
Formulation strategies for bacteriophages to target intracellular bacterial pathogens. Adv Drug Deliv Rev 2021; 176:113864. [PMID: 34271022 DOI: 10.1016/j.addr.2021.113864] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Bacteriophages (Phages) are antibacterial viruses that are unaffected by antibiotic drug resistance. Many Phase I and Phase II phage therapy clinical trials have shown acceptable safety profiles. However, none of the completed trials could yield data supporting the promising observations noted in the experimental phage therapy. These trials have mainly focused on phage suspensions without enough attention paid to the stability of phage during processing, storage, and administration. This is important because in vivo studies have shown that the effectiveness of phage therapy greatly depends on the ratio of phage to bacterial concentrations (multiplicity of infection) at the infection site. Additionally, bacteria can evade phages through the development of phage-resistance and intracellular residence. This review focuses on the use of phage therapy against bacteria that survive within the intracellular niches. Recent research on phage behavior reveals that some phage can directly interact with, get internalized into, and get transcytosed across mammalian cells, prompting further research on the governing mechanisms of these interactions and the feasibility of harnessing therapeutic phage to target intracellular bacteria. Advances to improve the capability of phage attacking intracellular bacteria using formulation approaches such as encapsulating/conjugating phages into/with vector carriers via liposomes, polymeric particles, inorganic nanoparticles, and cell penetrating peptides, are summarized. While promising progress has been achieved, research in this area is still in its infancy and warrants further attention.
Collapse
|
11
|
den Hartog G, Butcher LD, Ablack AL, Pace LA, Ablack JNG, Xiong R, Das S, Stappenbeck TS, Eckmann L, Ernst PB, Crowe SE. Apurinic/Apyrimidinic Endonuclease 1 Restricts the Internalization of Bacteria Into Human Intestinal Epithelial Cells Through the Inhibition of Rac1. Front Immunol 2021; 11:553994. [PMID: 33603730 PMCID: PMC7884313 DOI: 10.3389/fimmu.2020.553994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pathogenic intestinal bacteria lead to significant disease in humans. Here we investigated the role of the multifunctional protein, Apurinic/apyrimidinic endonuclease 1 (APE1), in regulating the internalization of bacteria into the intestinal epithelium. Intestinal tumor-cell lines and primary human epithelial cells were infected with Salmonella enterica serovar Typhimurium or adherent-invasive Escherichia coli. The effects of APE1 inhibition on bacterial internalization, the regulation of Rho GTPase Rac1 as well as the epithelial cell barrier function were assessed. Increased numbers of bacteria were present in APE1-deficient colonic tumor cell lines and primary epithelial cells. Activation of Rac1 was augmented following infection but negatively regulated by APE1. Pharmacological inhibition of Rac1 reversed the increase in intracellular bacteria in APE1-deficient cells whereas overexpression of constitutively active Rac1 augmented the numbers in APE1-competent cells. Enhanced numbers of intracellular bacteria resulted in the loss of barrier function and a delay in its recovery. Our data demonstrate that APE1 inhibits the internalization of invasive bacteria into human intestinal epithelial cells through its ability to negatively regulate Rac1. This activity also protects epithelial cell barrier function.
Collapse
Affiliation(s)
- Gerco den Hartog
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States
| | - Lindsay D Butcher
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States
| | - Amber L Ablack
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States
| | - Laura A Pace
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States
| | - Jailal N G Ablack
- Department of Medicine, Division of Rheumatology, University of California San Diego, La Jolla, CA, United States
| | - Richard Xiong
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States
| | - Soumita Das
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, La Jolla, CA, United States
| | | | - Lars Eckmann
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States
| | - Peter B Ernst
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, La Jolla, CA, United States.,Center for Mucosal Immunology, Allergy and Vaccine Development, Department of Pathology, University of California San Diego, La Jolla, CA, United States.,Department of Immunology, Chiba University, Chiba, Japan
| | - Sheila E Crowe
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States.,Division of ImmunoBiology, Washington University, St. Louis, MO, United States
| |
Collapse
|
12
|
Campos Muzquiz LG, Martínez Gómez D, Reyes Cruz T, Méndez Olvera ET. Evaluation of intracellular survival of Campylobacter fetus subsp. fetus in bovine endometrial cells by qPCR. IRANIAN JOURNAL OF VETERINARY RESEARCH 2021; 22:94-99. [PMID: 34306105 PMCID: PMC8294819 DOI: 10.22099/ijvr.2021.38693.5632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/02/2021] [Accepted: 02/28/2021] [Indexed: 09/30/2022]
Abstract
BACKGROUND Campylobacter fetus subsp. fetus is the causal agent of sporadic abortion and infertility in bovines that produces economic losses in livestock. AIMS This study evaluates the capability of C. fetus subsp. fetus to invade and survive in bovine endometrial epithelial cells and attempts to describe a pathogenic mechanism of this microorganism. METHODS Primary culture of bovine endometrial epithelial cells was challenged with C. fetus subsp. fetus. Intracellular bacteria, represented by the number of genomic copies (g.c.) were quantified at 0, 2, 4, 10, and 24 hours post-infection (h.p.i.), by quantitative polymerase chain reaction (qPCR). The presence of intracellular bacteria was evaluated by immunofluorescence and immunohistochemistry. RESULTS The results showed that only viable C. fetus subsp. fetus could invade endometrial cells. The g.c. number in assays with viable C. fetus subsp. fetus reached an average value of 656 g.c., remained constant until 4 h.p.i., then decreased to 100 g.c, at 24 h.p.i. In assays with non-viable microorganisms, the average value of g.c. was less than 1 g.c. and never changed. The intracellular presence of this bacteria was confirmed at 2 h.p.i. by immunofluorescence and immunohistochemistry. CONCLUSION The results suggest that only C. fetus subsp. fetus viable can invade bovine endometrial epithelial cells but will not replicate in them, indicating that the endometrial cells do not represent a replication niche for this pathogen. Nonetheless, this invasion capability suggests that this type of cell could be employed by the pathogen to spread to other tissues.
Collapse
Affiliation(s)
- L. G. Campos Muzquiz
- Department of Genetics and Virology, Faculty of Chemical Sciences, Autonomous University of Coahuila, Saltillo, Mexico
| | - D. Martínez Gómez
- Laboratory of Agricultural Microbiology, Department of Agricultural and Animal Production, Metropolitan Autonomous University-Xochimilco, Mexico City, Mexico
| | - T. Reyes Cruz
- Biological and Health Sciences Division, Department of Agricultural and Animal Production, Metropolitan Autonomous University-Xochimilco, Mexico City, Mexico
| | - E. T. Méndez Olvera
- Laboratory of Molecular Biology, Department of Agricultural and Animal Production, Metropolitan Autonomous University-Xochimilco, Mexico City, Mexico
| |
Collapse
|
13
|
Kirthika P, Senevirathne A, Jawalagatti V, Park S, Lee JH. Deletion of the lon gene augments expression of Salmonella Pathogenicity Island (SPI)-1 and metal ion uptake genes leading to the accumulation of bactericidal hydroxyl radicals and host pro-inflammatory cytokine-mediated rapid intracellular clearance. Gut Microbes 2020; 11:1695-1712. [PMID: 32567462 PMCID: PMC7524146 DOI: 10.1080/19490976.2020.1777923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/03/2023] Open
Abstract
In the present study, we characterized the involvement of Lon protease in bacterial virulence and intracellular survival in Salmonella under abiotic stress conditions resembling the conditions of a natural infection. Wild type (JOL401) and the lon mutant (JOL909) Salmonella Typhimurium were exposed to low temperature, pH, osmotic, and oxidative stress conditions and changes in gene expression profiles related to virulence and metal ion uptake were investigated. Expression of candidate genes invF and hilC of Salmonella Pathogenicity Island (SPI)-1 and sifA and sseJ of SPI-2 revealed that Lon protease controls SPI-1 genes and not SPI-2 genes under all stress conditions tested. The lon mutant exhibited increased accumulation of hydroxyl (OH·) ions that lead to cell damage due to oxidative stress. This oxidative damage can also be linked to an unregulated influx of iron due to the upregulation of ion channel genes such as fepA in the lon mutant. The deletion of lon from the Salmonella genome causes oxidative damage and increased expression of virulence genes. It also prompts the secretion of host pro-inflammatory cytokines leading to early clearance of the bacteria from host cells. We conclude that poor bacterial recovery from mice infected with the lon mutant is a result of disrupted bacterial intracellular equilibrium and rapid activation of cytokine expression leading to bacterial lysis.
Collapse
Affiliation(s)
- Perumalraja Kirthika
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | | | - SungWoo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
14
|
Khaitlina S, Bozhokina E, Tsaplina O, Efremova T. Bacterial Actin-Specific Endoproteases Grimelysin and Protealysin as Virulence Factors Contributing to the Invasive Activities of Serratia. Int J Mol Sci 2020; 21:E4025. [PMID: 32512842 PMCID: PMC7311988 DOI: 10.3390/ijms21114025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
The article reviews the discovery, properties and functional activities of new bacterial enzymes, proteases grimelysin (ECP 32) of Serratia grimesii and protealysin of Serratia proteamaculans, characterized by both a highly specific "actinase" activity and their ability to stimulate bacterial invasion. Grimelysin cleaves the only polypeptide bond Gly42-Val43 in actin. This bond is not cleaved by any other proteases and leads to a reversible loss of actin polymerization. Similar properties were characteristic for another bacterial protease, protealysin. These properties made grimelysin and protealysin a unique tool to study the functional properties of actin. Furthermore, bacteria Serratia grimesii and Serratia proteamaculans, producing grimelysin and protealysin, invade eukaryotic cells, and the recombinant Escherichia coli expressing the grimelysin or protealysins gene become invasive. Participation of the cellular c-Src and RhoA/ROCK signaling pathways in the invasion of eukaryotic cells by S. grimesii was shown, and involvement of E-cadherin in the invasion has been suggested. Moreover, membrane vesicles produced by S. grimesii were found to contain grimelysin, penetrate into eukaryotic cells and increase the invasion of bacteria into eukaryotic cells. These data indicate that the protease is a virulence factor, and actin can be a target for the protease upon its translocation into the host cell.
Collapse
Affiliation(s)
- Sofia Khaitlina
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (E.B.); (O.T.); (T.E.)
| | | | | | | |
Collapse
|
15
|
Development of Oxytolerant Salmonella typhimurium Using Radiation Mutation Technology (RMT) for Cancer Therapy. Sci Rep 2020; 10:3764. [PMID: 32111878 PMCID: PMC7048768 DOI: 10.1038/s41598-020-60396-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/05/2020] [Indexed: 02/02/2023] Open
Abstract
A critical limitation of Salmonella typhimurium (S. typhimurium) as an anti-cancer agent is the loss of their invasive or replicative activities, which results in no or less delivery of anti-cancer agents inside cancer cells in cancer therapy. Here we developed an oxytolerant attenuated Salmonella strain (KST0650) from the parental KST0649 (ΔptsIΔcrr) strain using radiation mutation technology (RMT). The oxytolerant KST0650 strain possessed 20-times higher replication activity in CT26 cancer cells and was less virulent than KST0649. Furthermore, KST0650 migrated effectively into tumor tissues in mice. KST0650 was further equipped with a plasmid harboring a spliced form of the intracellular pro-apoptotic protein sATF6, and the expression of sATF6 was controlled by the radiation-inducible recN promoter. The new strain was named as KST0652, in which sATF6 protein expression was induced in response to radiation in a dose-dependent manner. This strain was effectively delivered inside cancer cells and tumor tissues via the Salmonella type III secretion system (T3SS). In addition, combination treatment with KST0652 and radiation showed a synergistic anti-tumor effect in murine tumor model with complete inhibition of tumor growth and protection against death. In conclusion, we showed that RMT can be used to effectively develop an anti-tumor Salmonella strain for delivering anti-cancer agents inside tumors.
Collapse
|
16
|
Bozhokina ES, Tsaplina OA, Khaitlina SY. The Opposite Effects of ROCK and Src Kinase Inhibitors on Susceptibility of Eukaryotic Cells to Invasion by Bacteria Serratia grimesii. BIOCHEMISTRY (MOSCOW) 2019; 84:663-671. [DOI: 10.1134/s0006297919060099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Chowdhury R, Das S, Ta A, Das S. Epithelial invasion by Salmonella Typhi using STIV-Met interaction. Cell Microbiol 2018; 21:e12982. [PMID: 30426648 DOI: 10.1111/cmi.12982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
Typhoid is a life-threatening febrile illness that affects ~24.2 million people worldwide and is caused by the intracellular bacteria Salmonella Typhi (S. Typhi). Intestinal epithelial invasion by S. Typhi is essential for the establishment of successful infection and is traditionally believed to depend on Salmonella pathogenicity island 1-encoded type 3 secretion system 1 (T3SS-1). We had previously reported that bacterial outer membrane protein T2942/STIV functions as a standalone invasin and contributes to the pathogenesis of S. Typhi by promoting epithelial invasion independent of T3SS-1 (Cell Microbiol, 2015). Here, we show that STIV, by using its 20-amino-acid extracellular loop, interacts with receptor tyrosine kinase, Met, of host intestinal epithelial cells. This interaction leads to Met phosphorylation and activation of a downstream signalling cascade, involving Src, phosphatidylinositol 3-kinase/Akt, and Rac1, which culminates into localized actin polymerisation and bacterial engulfment by the cell. Inhibition of Met tyrosine kinase activity severely limited intestinal invasion and systemic infection by S. Typhi in vivo, highlighting the importance of this invasion pathway in disease progression. This is the first report elucidating the mechanism of T3SS-1-independent epithelial invasion of S. Typhi, and this crucial host-pathogen interaction may be targeted therapeutically to restrict pathogenesis.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sayan Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Atri Ta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Santasabuj Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
18
|
Fredlund J, Santos JC, Stévenin V, Weiner A, Latour-Lambert P, Rechav K, Mallet A, Krijnse-Locker J, Elbaum M, Enninga J. The entry ofSalmonellain a distinct tight compartment revealed at high temporal and ultrastructural resolution. Cell Microbiol 2018; 20. [DOI: 10.1111/cmi.12816] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jennifer Fredlund
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | - José Carlos Santos
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | - Virginie Stévenin
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | - Allon Weiner
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | | | - Katya Rechav
- Department of Interfaces; The Weizmann Institute of Sciences; Rehovot Israel
| | | | | | - Michael Elbaum
- Department of Interfaces; The Weizmann Institute of Sciences; Rehovot Israel
| | - Jost Enninga
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| |
Collapse
|
19
|
Effect of Pseudomonas graminis strain CPA-7 on the ability of Listeria monocytogenes and Salmonella enterica subsp. enterica to colonize Caco-2 cells after pre-incubation on fresh-cut pear. Int J Food Microbiol 2017; 262:55-62. [DOI: 10.1016/j.ijfoodmicro.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/11/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
|
20
|
Castanheira S, García-Del Portillo F. Salmonella Populations inside Host Cells. Front Cell Infect Microbiol 2017; 7:432. [PMID: 29046870 PMCID: PMC5632677 DOI: 10.3389/fcimb.2017.00432] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the Salmonella genus cause diseases ranging from gastroenteritis to life-threatening typhoid fever and are among the most successful intracellular pathogens known. After the invasion of the eukaryotic cell, Salmonella exhibits contrasting lifestyles with different replication rates and subcellular locations. Although Salmonella hyper-replicates in the cytosol of certain host cell types, most invading bacteria remain within vacuoles in which the pathogen proliferates at moderate rates or persists in a dormant-like state. Remarkably, these cytosolic and intra-vacuolar intracellular lifestyles are not mutually exclusive and can co-exist in the same infected host cell. The mechanisms that direct the invading bacterium to follow the cytosolic or intra-vacuolar “pathway” remain poorly understood. In vitro studies show predominance of either the cytosolic or the intra-vacuolar population depending on the host cell type invaded by the pathogen. The host and pathogen factors controlling phagosomal membrane integrity and, as consequence, the egress into the cytosol, are intensively investigated. Other aspects of major interest are the host defenses that may affect differentially the cytosolic and intra-vacuolar populations and the strategies used by the pathogen to circumvent these attacks. Here, we summarize current knowledge about these Salmonella intracellular subpopulations and discuss how they emerge during the interaction of this pathogen with the eukaryotic cell.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
21
|
Dutra V, Silva AC, Cabrita P, Peres C, Malcata X, Brito L. Lactobacillus plantarum LB95 impairs the virulence potential of Gram-positive and Gram-negative food-borne pathogens in HT-29 and Vero cell cultures. J Med Microbiol 2016; 65:28-35. [DOI: 10.1099/jmm.0.000196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Virna Dutra
- LEAF (Linking Landscape, Environment, Agriculture and Food)/DRAT (Departamento dos Recursos Naturais, Ambiente e Território), Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Ana Carla Silva
- LEAF (Linking Landscape, Environment, Agriculture and Food)/DRAT (Departamento dos Recursos Naturais, Ambiente e Território), Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| | - Paula Cabrita
- LEAF (Linking Landscape, Environment, Agriculture and Food)/DRAT (Departamento dos Recursos Naturais, Ambiente e Território), Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, IP, Av. República, Quinta do Marquês, Nova Oeiras, 2784-505 Oeiras, Portugal
| | - Cidália Peres
- Instituto Nacional de Investigação Agrária e Veterinária, IP, Av. República, Quinta do Marquês, Nova Oeiras, 2784-505 Oeiras, Portugal
| | - Xavier Malcata
- LEPABE (Laboratory for Process Engineering, Environment, Biotechnology and Energy), Rua Dr Roberto Frias, 4200-264 Porto, Portugal
- Department of Chemical Engineering, University of Porto, Rua Dr Roberto Frias, 4200-264 Porto, Portugal
| | - Luisa Brito
- LEAF (Linking Landscape, Environment, Agriculture and Food)/DRAT (Departamento dos Recursos Naturais, Ambiente e Território), Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal
| |
Collapse
|