1
|
Aphaiso B, Piromyou P, Boonchuen P, Songwattana P, Wongdee J, Greetatorn T, Teamtisong K, Camuel A, Tittabutr P, Boonkerd N, Giraud E, Teaumroong N. A new type III effector from Bradyrhizobium sp. DOA9 encoding a putative SUMO-protease blocks nodulation in Arachis hypogaea L. Sci Rep 2024; 14:31646. [PMID: 39738104 PMCID: PMC11685577 DOI: 10.1038/s41598-024-78913-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/05/2024] [Indexed: 01/01/2025] Open
Abstract
Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T3SS of Bradyrhizobium sp. DOA9 plays negative effects on Arachis hypogaea symbiosis. In this study, we characterized the symbiotic role of 4 effector proteins (p0490, p0871, SkP48, and p0903) containing the small ubiquitin-like modifier (SUMO) protease domain identified in DOA9 during symbiosis. While the DOA9 strain and the two mutants of SUMO-proteases, p0490 and p0871, induced inefficient nodulation in A. hypogaea, the mutation of SUMO-proteases SkP48 or p0903 promoted efficient symbiosis comparable to the type strain Bradyrhizobium arachidis CCBAU051107. Complementation study of ∆p0903 with various mutated forms of p0903 highlighted importance of ubiquitin-like protein (ULP) domain in restriction of nodulation in A. hypogaea. We observed the accumulation of jasmonic acid (JA) and upregulation of several defence genes involved in the JA/ethylene (ET) signalling pathway at the early stage of infection in roots inoculated with DOA9 strain compared with those inoculated with the DOA9-∆p0903 strain. Our data highlight the importance of SUMO-protease effectors during the symbiotic interaction between bradyrhizobia and A. hypogaea, which could be useful for the development of high-performance inocula to improve its growth.
Collapse
Affiliation(s)
- Beedou Aphaiso
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
- Deparment of plant science, Faculty of Agriculture and environment, Savannakhet University, Savannakhet 14, Kaysone Phomvihane, Laos
| | - Pongdet Piromyou
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pongpan Songwattana
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Jenjira Wongdee
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Teerana Greetatorn
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Alicia Camuel
- IRD/CIRAD/INRAE, PHIM, Plant Health Institute of Montpellier, UMR-PHIM, Université de Montpellier/Institut Agro, Montpellier, 34398, France
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Eric Giraud
- IRD/CIRAD/INRAE, PHIM, Plant Health Institute of Montpellier, UMR-PHIM, Université de Montpellier/Institut Agro, Montpellier, 34398, France.
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
2
|
Waller AA, Ribardo DA, Hendrixson DR. FlaG competes with FliS-flagellin complexes for access to FlhA in the flagellar T3SS to control Campylobacter jejuni filament length. Proc Natl Acad Sci U S A 2024; 121:e2414393121. [PMID: 39441631 PMCID: PMC11536152 DOI: 10.1073/pnas.2414393121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Bacteria power rotation of an extracellular flagellar filament for swimming motility. Thousands of flagellin subunits compose the flagellar filament, which extends several microns from the bacterial surface. It is unclear whether bacteria actively control filament length. Many polarly flagellated bacteria produce shorter flagellar filaments than peritrichous bacteria, and FlaG has been reported to limit flagellar filament length in polar flagellates. However, a mechanism for how FlaG may function is unknown. We observed that deletion of flaG in the polarly flagellated pathogens Vibrio cholerae, Pseudomonas aeruginosa, and Campylobacter jejuni caused extension of flagellar filaments to lengths comparable to peritrichous bacteria. Using C. jejuni as a model to understand how FlaG controls flagellar filament length, we found that FlaG and FliS chaperone-flagellin complexes antagonize each other for interactions with FlhA in the flagellar type III secretion system (fT3SS) export gate. FlaG interacted with an understudied region of FlhA, and this interaction appeared to be enhanced in ΔfliS and FlhA FliS-binding mutants. Our data support that FlaG evolved in polarly flagellated bacteria as an antagonist to interfere with the ability of FliS to interact with and deliver flagellins to FlhA in the fT3SS export gate to control flagellar filament length so that these bacteria produce relatively shorter flagella than peritrichous counterparts. This mechanism is similar to how some gatekeepers in injectisome T3SSs prevent chaperones from delivering effector proteins until completion of the T3SS and host contact occurs. Thus, flagellar and injectisome T3SSs have convergently evolved protein antagonists to negatively impact respective T3SSs to secrete their major terminal substrates.
Collapse
Affiliation(s)
- Alexis A. Waller
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390-9048
| | - Deborah A. Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390-9048
| | - David R. Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390-9048
| |
Collapse
|
3
|
Zeng YH, Li W, Xu H, Gong XX, Zhang YM, Long H, Xie ZY. Dual RNA-Seq Unveils Candidate Key Virulence Genes of Vibrio harveyi at the Early Stage of Infection in Hybrid Grouper (♀ Epinephelus polyphekadion × ♂ E. fuscoguttatus). Microorganisms 2024; 12:2113. [PMID: 39597503 PMCID: PMC11596792 DOI: 10.3390/microorganisms12112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Vibrio harveyi is a major bacterial pathogen that causes disease in aquaculture animals worldwide. Although V. harveyi consistently harbors a range of traditional virulence genes, it remains unclear which specific genes are crucial for virulence at different infection stages. Dual RNA-seq is a cutting-edge RNA sequencing technology that is ideal for investigating the gene expression patterns of pathogens within the host, which is highly effective in identifying key virulence genes. In previous artificial infection experiments, we have identified the liver of hybrid grouper (♀ Epinephelus polyphekadion × ♂ E. fuscoguttatus) as the main target organ for pathogenic V. harveyi GDH11385 during the initial infection phase. To further explore the key virulence factors of V. harveyi at the early stage of infection, the liver of the hybrid grouper infected with strain GDH11385 was analyzed here by dual RNA-seq. The transcriptome data were compared with that of in vitro cultured bacteria. The results showed that 326 and 1140 DEGs (differentially expressed genes) were significantly up- and down-regulated, respectively, at 4 h post-infection (hpi). Further pathway enrichment analyses revealed that these up-regulated DEGs in vivo were mainly enriched in siderophore biosynthesis and transport, type VI secretion system (T6SS), flagellar assembly, glycolysis/gluconeogenesis, and ribosome. Notably, all genes involved in the metabolism and utilization of vibrioferrin (a carboxylate class of siderophore produced by Vibrio), and most of the genes within one of three T6SSs, were significantly up-regulated in vivo. This indicates that siderophore-dependent iron competition and T6SS-mediated delivery of virulence factors are vital for the successful colonization of V. harveyi at the early stage of infection. This study provides more precise clues to reveal the virulence mechanism of V. harveyi during the initial phase of infection.
Collapse
Affiliation(s)
- Yan-Hua Zeng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Wen Li
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - He Xu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Xiao-Xiao Gong
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Yu-Mei Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Hao Long
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Zhen-Yu Xie
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
5
|
Manisha Y, Srinivasan M, Jobichen C, Rosenshine I, Sivaraman J. Sensing for survival: specialised regulatory mechanisms of Type III secretion systems in Gram-negative pathogens. Biol Rev Camb Philos Soc 2024; 99:837-863. [PMID: 38217090 DOI: 10.1111/brv.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
For centuries, Gram-negative pathogens have infected the human population and been responsible for numerous diseases in animals and plants. Despite advancements in therapeutics, Gram-negative pathogens continue to evolve, with some having developed multi-drug resistant phenotypes. For the successful control of infections caused by these bacteria, we need to widen our understanding of the mechanisms of host-pathogen interactions. Gram-negative pathogens utilise an array of effector proteins to hijack the host system to survive within the host environment. These proteins are secreted into the host system via various secretion systems, including the integral Type III secretion system (T3SS). The T3SS spans two bacterial membranes and one host membrane to deliver effector proteins (virulence factors) into the host cell. This multifaceted process has multiple layers of regulation and various checkpoints. In this review, we highlight the multiple strategies adopted by these pathogens to regulate or maintain virulence via the T3SS, encompassing the regulation of small molecules to sense and communicate with the host system, as well as master regulators, gatekeepers, chaperones, and other effectors that recognise successful host contact. Further, we discuss the regulatory links between the T3SS and other systems, like flagella and metabolic pathways including the tricarboxylic acid (TCA) cycle, anaerobic metabolism, and stringent cell response.
Collapse
Affiliation(s)
- Yadav Manisha
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
6
|
Gershberg J, Morhaim M, Rostrovsky I, Eichler J, Sal-Man N. The sequence of events of enteropathogenic E. coli's type III secretion system translocon assembly. iScience 2024; 27:109108. [PMID: 38375228 PMCID: PMC10875159 DOI: 10.1016/j.isci.2024.109108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Many bacterial pathogens employ the type III secretion system (T3SS), a specialized complex that transports effector proteins that manipulate various cellular processes. The T3SS forms a translocon pore within the host-cell membrane consisting of two secreted proteins that transition from a soluble state into a transmembrane complex. Still, the exact sequence of events leading to the formation of a membranous functional pore remains uncertain. Here, we utilized the translocon proteins of enteropathogenic E. coli (EPEC) to investigate the sequence of those steps leading to translocon assembly, including self-oligomerization, hetero-oligomerization, interprotein interaction, and membrane insertion. We found that in EPEC, EspD (SctE) plays a dominant role in pore formation as it assembles into an oligomeric state, regardless of pH, membrane contact, or the presence of EspB (SctB). Subsequently, EspB subunits integrate into EspD homo-oligomers to create EspB-EspD hetero-oligomers that adopt a transmembrane orientation to create a functional pore complex.
Collapse
Affiliation(s)
- Jenia Gershberg
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - May Morhaim
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Irina Rostrovsky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Borkar SB, Negi M, Acharya TR, Lamichhane P, Kaushik N, Choi EH, Kaushik NK. Mitigation of T3SS-mediated virulence in waterborne pathogenic bacteria by multi-electrode cylindrical-DBD plasma-generated nitric oxide water. CHEMOSPHERE 2024; 350:140997. [PMID: 38128737 DOI: 10.1016/j.chemosphere.2023.140997] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
S. enterica, S. flexneri, and V. parahaemolyticus bacteria are globally recognized to cause severe diarrheal diseases, consisting of Type III Secretion System (T3SS) effectors that help in bacterial infection and virulence in host cells. This study investigates the properties of multi-electrode cylindrical DBD plasma-generated nitric oxide water (MCDBD-PG-NOW) treatment on the survival and virulence of S. enterica, S. flexneri, and V. parahaemolyticus bacteria. The Colony Forming Unit (CFU) assay, live/dead cell staining, lipid peroxidation assay, and bacteria morphological analysis showed substantial growth inhibition of bacteria. Moreover, to confirm the interaction of reactive nitrogen species (RNS) with bacterial membrane biotin switch assay, DAF-FM, and FTIR analysis were carried out, which established the formation of S-nitrosothiols in the cell membrane, intracellular accumulation of RNS, and changes in the cell composition post-PG-NOW treatment. Furthermore, the conventional culture-based method and a quantitative PCR using propidium monoazide showed minimal VBNC induction under similar condition. The efficiency of bacteria to adhere to mammalian colon cells was significantly reduced. In addition, the infection rate was also controlled by disrupting the virulent genes, leading to the collapse of the infection mechanism. This study provides insights into whether RNS generated from PG-NOW might be beneficial for preventing diarrheal infections.
Collapse
Affiliation(s)
- Shweta B Borkar
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Manorma Negi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Tirtha Raj Acharya
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Prajwal Lamichhane
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea.
| | - Eun Ha Choi
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics /Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.
| |
Collapse
|
8
|
Wimmi S, Fleck M, Helbig C, Brianceau C, Langenfeld K, Szymanski WG, Angelidou G, Glatter T, Diepold A. Pilotins are mobile T3SS components involved in assembly and substrate specificity of the bacterial type III secretion system. Mol Microbiol 2024; 121:304-323. [PMID: 38178634 DOI: 10.1111/mmi.15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
In animal pathogens, assembly of the type III secretion system injectisome requires the presence of so-called pilotins, small lipoproteins that assist the formation of the secretin ring in the outer membrane. Using a combination of functional assays, interaction studies, proteomics, and live-cell microscopy, we determined the contribution of the pilotin to the assembly, function, and substrate selectivity of the T3SS and identified potential new downstream roles of pilotin proteins. In absence of its pilotin SctG, Yersinia enterocolitica forms few, largely polar injectisome sorting platforms and needles. Accordingly, most export apparatus subcomplexes are mobile in these strains, suggesting the absence of fully assembled injectisomes. Remarkably, while absence of the pilotin all but prevents export of early T3SS substrates, such as the needle subunits, it has little effect on secretion of late T3SS substrates, including the virulence effectors. We found that although pilotins interact with other injectisome components such as the secretin in the outer membrane, they mostly localize in transient mobile clusters in the bacterial membrane. Together, these findings provide a new view on the role of pilotins in the assembly and function of type III secretion injectisomes.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Moritz Fleck
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Carlos Helbig
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Corentin Brianceau
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Langenfeld
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Witold G Szymanski
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georgia Angelidou
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
9
|
Arasakumar N, Loganathan V, Natesh R, Ponnuraj K. HrpY protein of Ralstonia solanacearum exhibits spontaneous formation of pilus like assembly: analysis of its stability. J Biomol Struct Dyn 2024:1-12. [PMID: 38230438 DOI: 10.1080/07391102.2024.2304678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
Type 3 secretory system (T3SS), a complex protein machinery has a unique virulence mechanism that involves injecting effector proteins directly into host cells. The T3SS effector proteins are transported through an extracellular long hollow needle made up of multiple copies of a small protein. In T3SS of the plant pathogen Ralstonia solanacearum, the 8.6 kDa HrpY protein assembles into a large needle like apparatus (pilus) for transporting effector proteins. To study structural details of HrpY, we recombinantly expressed and purified HrpY in E. coli. The dynamic light scattering (DLS) analysis showed that rHrpY has spontaneously formed oligomers of large order (>100 nm). Transmission electron microscopy of rHrpY samples revealed that the large structures are tube like assembly having dimensions 86.3-166.6 nm and 5.8-6.8 nm in length and width respectively. Different molecular sizes of the purified rHrpY hindered the crystallization of the protein. The stability of oligomer assembly was studied with denaturants and surfactants. Denaturants like urea and guanidine HCl could not break them apart; however, detergents like SDS, sarkosyl, Octyl-β-Glucoside, CHAPS, Tween 20, Tween 80 and Triton X-100 showed disassembly of the oligomer. rHrpY assembly was found to withstand up to 50 °C and the circular dichroism analysis revealed that there is no significant change in the secondary structural composition with increase in temperature. However, change in the secondary structure was observed with the addition of SDS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Naveen Arasakumar
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Vikraam Loganathan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Ramanathan Natesh
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Trivandrum, India
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
10
|
Einenkel R, Halte M, Erhardt M. Quantifying Substrate Protein Secretion via the Type III Secretion System of the Bacterial Flagellum. Methods Mol Biol 2024; 2715:577-592. [PMID: 37930553 DOI: 10.1007/978-1-0716-3445-5_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Protein transport across the cytoplasmic membrane is coupled to energy derived from ATP hydrolysis or the proton motive force. A sophisticated, multi-component type III secretion system (T3SS) exports substrate proteins of both the bacterial flagellum and virulence-associated injectisome system of many Gram-negative pathogens. The T3SS is primarily a proton motive force-driven protein exporter. Here, we describe a method to investigate the export of substrate proteins of the flagellar T3SS into the culture supernatant under conditions that manipulate the proton motive force. Further, we describe methods to precisely quantify flagellar protein export into the culture supernatant using a split NanoLuc luciferase, and how fluorescence labeling of the extracellular flagellar filament can bring insights into the protein export rate of individual flagellar T3SS.
Collapse
Affiliation(s)
| | | | - Marc Erhardt
- Humboldt Universität zu Berlin, Berlin, Germany.
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.
| |
Collapse
|
11
|
Wimmi S, Balinovic A, Brianceau C, Pintor K, Vielhauer J, Turkowyd B, Helbig C, Fleck M, Langenfeld K, Kahnt J, Glatter T, Endesfelder U, Diepold A. Cytosolic sorting platform complexes shuttle type III secretion system effectors to the injectisome in Yersinia enterocolitica. Nat Microbiol 2024; 9:185-199. [PMID: 38172622 PMCID: PMC10769875 DOI: 10.1038/s41564-023-01545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Bacteria use type III secretion injectisomes to inject effector proteins into eukaryotic target cells. Recruitment of effectors to the machinery and the resulting export hierarchy involve the sorting platform. These conserved proteins form pod structures at the cytosolic interface of the injectisome but are also mobile in the cytosol. Photoactivated localization microscopy in Yersinia enterocolitica revealed a direct interaction of the sorting platform proteins SctQ and SctL with effectors in the cytosol of live bacteria. These proteins form larger cytosolic protein complexes involving the ATPase SctN and the membrane connector SctK. The mobility and composition of these mobile pod structures are modulated in the presence of effectors and their chaperones, and upon initiation of secretion, which also increases the number of injectisomes from ~5 to ~18 per bacterium. Our quantitative data support an effector shuttling mechanism, in which sorting platform proteins bind to effectors in the cytosol and deliver the cargo to the export gate at the membrane-bound injectisome.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Alexander Balinovic
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
- Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Corentin Brianceau
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katherine Pintor
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Vielhauer
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Bartosz Turkowyd
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
- Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Carlos Helbig
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Moritz Fleck
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Langenfeld
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Kahnt
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany.
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA.
- Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
12
|
Abstract
Type III secretion systems (T3SSs) are utilized by Gram-negative pathogens to enhance their pathogenesis. This secretion system is associated with the delivery of effectors through a needle-like structure from the bacterial cytosol directly into a target eukaryotic cell. These effector proteins then manipulate specific eukaryotic cell functions to benefit pathogen survival within the host. The obligate intracellular pathogens of the family Chlamydiaceae have a highly evolutionarily conserved nonflagellar T3SS that is an absolute requirement for their survival and propagation within the host with about one-seventh of the genome dedicated to genes associated with the T3SS apparatus, chaperones, and effectors. Chlamydiae also have a unique biphasic developmental cycle where the organism alternates between an infectious elementary body (EB) and replicative reticulate body (RB). T3SS structures have been visualized on both EBs and RBs. And there are effector proteins that function at each stage of the chlamydial developmental cycle, including entry and egress. This review will discuss the history of the discovery of chlamydial T3SS and the biochemical characterization of components of the T3SS apparatus and associated chaperones in the absence of chlamydial genetic tools. These data will be contextualized into how the T3SS apparatus functions throughout the chlamydial developmental cycle and the utility of heterologous/surrogate models to study chlamydial T3SS. Finally, there will be a targeted discussion on the history of chlamydial effectors and recent advances in the field.
Collapse
Affiliation(s)
- Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Durham Research Center II, Omaha, Nebraska, USA
| |
Collapse
|
13
|
Navarrete KM, Bumba L, Prudnikova T, Malcova I, Allsop TR, Sebo P, Kamanova J. BopN is a Gatekeeper of the Bordetella Type III Secretion System. Microbiol Spectr 2023; 11:e0411222. [PMID: 37036369 PMCID: PMC10269732 DOI: 10.1128/spectrum.04112-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
The classical Bordetella species infect the respiratory tract of mammals. While B. bronchiseptica causes rather chronic respiratory infections in a variety of mammals, the human-adapted species B. pertussis and B. parapertussisHU cause an acute respiratory disease known as whooping cough or pertussis. The virulence factors include a type III secretion system (T3SS) that translocates effectors BteA and BopN into host cells. However, the regulatory mechanisms underlying the secretion and translocation activity of T3SS in bordetellae are largely unknown. We have solved the crystal structure of BopN of B. pertussis and show that it is similar to the structures of gatekeepers that control access to the T3SS channel from the bacterial cytoplasm. We further found that BopN accumulates at the cell periphery at physiological concentrations of calcium ions (2 mM) that inhibit the secretion of BteA and BopN. Deletion of the bopN gene in B. bronchiseptica increased secretion of the BteA effector into calcium-rich medium but had no effect on secretion of the T3SS translocon components BopD and BopB. Moreover, the ΔbopN mutant secreted approximately 10-fold higher amounts of BteA into the medium of infected cells than the wild-type bacteria, but it translocated lower amounts of BteA into the host cell cytoplasm. These data demonstrate that BopN is a Bordetella T3SS gatekeeper required for regulated and targeted translocation of the BteA effector through the T3SS injectisome into host cells. IMPORTANCE The T3SS is utilized by many Gram-negative bacteria to deliver effector proteins from bacterial cytosol directly into infected host cell cytoplasm in a regulated and targeted manner. Pathogenic bordetellae use the T3SS to inject the BteA and BopN proteins into infected cells and upregulate the production of the anti-inflammatory cytokine interleukin-10 (IL-10) to evade host immunity. Previous studies proposed that BopN acted as an effector in host cells. In this study, we report that BopN is a T3SS gatekeeper that regulates the secretion and translocation activity of Bordetella T3SS.
Collapse
Affiliation(s)
- Kevin Munoz Navarrete
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Bumba
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tatyana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Ivana Malcova
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tania Romero Allsop
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Kamanova
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Schott S, Scheuer R, Ermoli F, Glatter T, Evguenieva-Hackenberg E, Diepold A. A ParDE toxin-antitoxin system is responsible for the maintenance of the Yersinia virulence plasmid but not for type III secretion-associated growth inhibition. Front Cell Infect Microbiol 2023; 13:1166077. [PMID: 37228670 PMCID: PMC10203498 DOI: 10.3389/fcimb.2023.1166077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Many Gram-negative pathogens utilize the type III secretion system (T3SS) to translocate virulence-promoting effector proteins into eukaryotic host cells. The activity of this system results in a severe reduction of bacterial growth and division, summarized as secretion-associated growth inhibition (SAGI). In Yersinia enterocolitica, the T3SS and related proteins are encoded on a virulence plasmid. We identified a ParDE-like toxin-antitoxin system on this virulence plasmid in genetic proximity to yopE, encoding a T3SS effector. Effectors are strongly upregulated upon activation of the T3SS, indicating a potential role of the ParDE system in the SAGI or maintenance of the virulence plasmid. Expression of the toxin ParE in trans resulted in reduced growth and elongated bacteria, highly reminiscent of the SAGI. Nevertheless, the activity of ParDE is not causal for the SAGI. T3SS activation did not influence ParDE activity; conversely, ParDE had no impact on T3SS assembly or activity itself. However, we found that ParDE ensures the presence of the T3SS across bacterial populations by reducing the loss of the virulence plasmid, especially under conditions relevant to infection. Despite this effect, a subset of bacteria lost the virulence plasmid and regained the ability to divide under secreting conditions, facilitating the possible emergence of T3SS-negative bacteria in late acute and persistent infections.
Collapse
Affiliation(s)
- Saskia Schott
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Robina Scheuer
- Department of Microbiology and Molecular Biology, Justus Liebig University Gießen, Gießen, Germany
| | - Francesca Ermoli
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
15
|
Gupta RK, Singh AK, Bajaj A, Khardenavis AA, Purohit HJ. Phylogenomic analysis of Citrobacter sp. strain AAK_AS5 and its metabolic capabilities to support nitrogen removal behavior. J Basic Microbiol 2023; 63:359-376. [PMID: 36453555 DOI: 10.1002/jobm.202200323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/02/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2022]
Abstract
Despite the ubiquity of the genus Citrobacter in clinical, industrial, and environmental scenarios, a large number of Citrobacter strains have not been explored at the genome-scale level. In this study, accurate taxonomic assignment of strain AAK_AS5 isolated from activated sludge was achieved by in-silico genomic comparison using Overall Genome-based Relatedness Indices (ANI(OAT): 97.55%, ANIb:97.28%, and ANIm: 97.83%) that indicated its closest identity to the related strain Citrobacter portucalensis A60T . Results were consistent with a digital DNA-DNA hybridization value of 80% with C. portucalensis A60T which was greater than the species boundary value >70% for delineating closely related bacterial species. Gene mining through Kyoto Encyclopedia of Genes and Genomes (KEGG), and annotation using rapid annotation subsystem technology (RAST) revealed the notable gene contents for nitrogen metabolism and other pathways associated with nitrate/nitrite ammonification (28 genes), ammonia assimilation (22 genes), and denitrification pathways (14 genes). Furthermore, the strain AAK_AS5 also exhibited a high soluble chemical oxygen demand (sCOD), NH4 + -N, and NO3 - -N removal efficiency of 91.4%, 90%, and 93.6%, respectively thus validating its genetic capability for utilizing both (NH4 )2 SO4 and KNO3 as the nitrogen source. The study provided deeper insights into the phylogenomics and the genetic potential of Citrobacter, sp. strain AAK AS5 associated with nitrogen metabolism thus signifying the potential application of the isolate for treating nitrogen-rich wastewaters.
Collapse
Affiliation(s)
- Rakesh K Gupta
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish K Singh
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anshuman A Khardenavis
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| |
Collapse
|
16
|
Schwan M, Khaledi A, Willger S, Papenfort K, Glatter T, Häußler S, Thormann KM. FlrA-independent production of flagellar proteins is required for proper flagellation in Shewanella putrefaciens. Mol Microbiol 2022; 118:670-682. [PMID: 36285560 DOI: 10.1111/mmi.14993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 01/18/2023]
Abstract
Flagella are multiprotein complexes whose assembly and positioning require complex spatiotemporal control. Flagellar assembly is thought to be controlled by several transcriptional tiers, which are mediated through various master regulators. Here, we revisited the regulation of flagellar genes in polarly flagellated gammaproteobacteria by the regulators FlrA, RpoN (σ54 ) and FliA (σ28 ) in Shewanella putrefaciens CN-32 at the transcript and protein level. We found that a number of regulatory and structural proteins were present in the absence of the main regulators, suggesting that initiation of flagella assembly and motor activation relies on the abundance control of only a few structural key components that are required for the formation of the MS- and C-ring and the flagellar type III secretion system. We identified FlrA-independent promoters driving expression of the regulators of flagellar number and positioning, FlhF and FlhG. Reduction of the gene expression levels from these promoters resulted in the emergence of hyperflagellation. This finding indicates that basal expression is required to adjust the flagellar counter in Shewanella. This is adding a deeper layer to the regulation of flagellar synthesis and assembly.
Collapse
Affiliation(s)
- Meike Schwan
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Ariane Khaledi
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sven Willger
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kai Papenfort
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Mass Spectrometry and Proteomics, Marburg, Germany
| | - Susanne Häußler
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kai M Thormann
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| |
Collapse
|
17
|
Kumar R, Roy C, Datta S. Delineating specific regions of N- terminal domain of T3SS ATPase YsaN of Yersinia enterocolitica governing its different oligomerization states. Front Mol Biosci 2022; 9:967974. [PMID: 36158578 PMCID: PMC9493007 DOI: 10.3389/fmolb.2022.967974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Oligomerization of YsaN, a putative T3SS-ATPase is a necessary and crucial event for T3SS functioning in Y. enterocolitica. Different oligomeric states have been proposed for similar ATPases, yet, the true nature of its activation and formation of different oligomers is still poorly understood. In-vitro studies of YsaN reveal that its activation and oligomerization depend on its N-terminal region and occur as a result of active catalysis of ATP in an ATP concentration-dependent manner following two-step cooperative kinetics. Also, the N-terminal 83 amino acid residues of YsaN are crucial for higher-order oligomer formation while YsaN∆83 is capable of hexamer formation upon oligomerization. Enzyme kinetics study shows reduced ATPase activity of YsaN∆83 (3.19 ± 0.09 μmol/min/mg) in comparison to YsaN (9.076 ± 0.72 μmol/min/mg). Negative-TEM study of YsaN and YsaN∆83 oligomer suggests that the formation of higher-order oligomer (probably dodecamer) occurs by stacking of two hexamers through their N-terminal faces involving N-terminal 83 amino acid residues which have been further supported by the docking of two hexamers during the in-silico study. These results suggest that YsaN is an oligomerization-activated T3SS ATPase, where distinct regions of its N-terminal domain regulate its different oligomeric nature and is essential for its activation.
Collapse
|
18
|
Selim H, Radwan TEE, Reyad AM. Regulation of T3SS synthesis, assembly and secretion in Pseudomonas aeruginosa. Arch Microbiol 2022; 204:468. [PMID: 35810403 PMCID: PMC9271453 DOI: 10.1007/s00203-022-03068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
Abstract
AbstractT3SS is an important virulence factor of Pseudomonas aeruginosa and has a central role in the infection process. However, the functional regulation of the T3SS by environmental signals is poorly understood. In our lab, we use fluorescence microscopy to study protein kinetics in real-time in live cells. In P. aeruginosa, results have shown that T3SS appears as bright foci at the cell membrane with no specific arrangement. In addition, T3SS is tightly controlled as it appears under a limited time period with the highest intensity at 3 h then disappears. Surprisingly, only 2.5% of the all assembled T3SS in the population have detectable ExoS synthesis. While T3SS assembly and ExoS synthesis increased under high salt concentration, they unexpectedly were not affected by different cyclic di-GMP levels. On the other hand, T3SS itself has an effect on the cyclic di-GMP levels inside the cell. Data have shown that despite T3SS in P. aeruginosa and Yersinia enterocolitica belong to the same the group, the two systems differentiate greatly in activity and regulation. We can conclude that every T3SS is unique and thus further studies are needed to elucidate the functional regulation of each system to better help effective inhibitor design.
Collapse
|
19
|
RNA thermometer-coordinated assembly of the Yersinia injectisome. J Mol Biol 2022; 434:167667. [PMID: 35667470 DOI: 10.1016/j.jmb.2022.167667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022]
Abstract
The type III secretion system (T3SS) is indispensable for successful host cell infection by many Gram-negative pathogens. The molecular syringe delivers effector proteins that suppress the host immune response. Synthesis of T3SS components in Yersinia pseudotuberculosis relies on host body temperature, which induces the RNA thermometer (RNAT)-controlled translation of lcrF coding for a virulence master regulator that activates transcription of the T3SS regulon. The assembly of the secretion machinery follows a strict coordinated succession referred to as outside-in assembly, in which the membrane ring complex and the export apparatus represent the nucleation points. Two components essential for the initial assembly are YscJ and YscT. While YscJ connects the membrane ring complex with the export apparatus in the inner membrane, YscT is required for a functional export apparatus. Previous transcriptome-wide RNA structuromics data suggested the presence of unique intercistronic RNATs upstream of yscJ and yscT. Here, we show by reporter gene fusions that both upstream regions confer translational control. Moreover, we demonstrate the temperature-induced opening of the Shine-Dalgarno region, which facilitates ribosome binding, by in vitro structure probing and toeprinting methods. Rationally designed thermostable RNAT variants of the yscJ and yscT thermometers confirmed their physiological relevance with respect to T3SS assembly and host infection. Since we have shown in a recent study that YopN, the gatekeeper of type III secretion, also is under RNAT control, it appears that the synthesis, assembly and functionality of the Yersinia T3S machinery is coordinated by RNA-based temperature sensors at multiple levels.
Collapse
|
20
|
Filloux A. Bacterial protein secretion systems: Game of types. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35536734 DOI: 10.1099/mic.0.001193] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein trafficking across the bacterial envelope is a process that contributes to the organisation and integrity of the cell. It is the foundation for establishing contact and exchange between the environment and the cytosol. It helps cells to communicate with one another, whether they establish symbiotic or competitive behaviours. It is instrumental for pathogenesis and for bacteria to subvert the host immune response. Understanding the formation of envelope conduits and the manifold strategies employed for moving macromolecules across these channels is a fascinating playground. The diversity of the nanomachines involved in this process logically resulted in an attempt to classify them, which is where the protein secretion system types emerged. As our knowledge grew, so did the number of types, and their rightful nomenclature started to be questioned. While this may seem a semantic or philosophical issue, it also reflects scientific rigour when it comes to assimilating findings into textbooks and science history. Here I give an overview on bacterial protein secretion systems, their history, their nomenclature and why it can be misleading for newcomers in the field. Note that I do not try to suggest a new nomenclature. Instead, I explore the reasons why naming could have escaped our control and I try to reiterate basic concepts that underlie protein trafficking cross membranes.
Collapse
Affiliation(s)
- Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
21
|
Raman V, Rojas CM, Vasudevan B, Dunning K, Kolape J, Oh S, Yun J, Yang L, Li G, Pant BD, Jiang Q, Mysore KS. Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation. Nat Commun 2022; 13:2581. [PMID: 35546550 PMCID: PMC9095702 DOI: 10.1038/s41467-022-30180-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/20/2022] [Indexed: 01/07/2023] Open
Abstract
Agrobacterium-mediated plant transformation (AMT) is the basis of modern-day plant biotechnology. One major drawback of this technology is the recalcitrance of many plant species/varieties to Agrobacterium infection, most likely caused by elicitation of plant defense responses. Here, we develop a strategy to increase AMT by engineering Agrobacterium tumefaciens to express a type III secretion system (T3SS) from Pseudomonas syringae and individually deliver the P. syringae effectors AvrPto, AvrPtoB, or HopAO1 to suppress host defense responses. Using the engineered Agrobacterium, we demonstrate increase in AMT of wheat, alfalfa and switchgrass by ~250%-400%. We also show that engineered A. tumefaciens expressing a T3SS can deliver a plant protein, histone H2A-1, to enhance AMT. This strategy is of great significance to both basic research and agricultural biotechnology for transient and stable transformation of recalcitrant plant species/varieties and to deliver proteins into plant cells in a non-transgenic manner.
Collapse
Affiliation(s)
- Vidhyavathi Raman
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Clemencia M Rojas
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | | | - Kevin Dunning
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | | | - Sunhee Oh
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Jianfei Yun
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Lishan Yang
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Guangming Li
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Bikram D Pant
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Kirankumar S Mysore
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA.
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA.
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
22
|
Ravi K, Falkowski NR, Scales BS, Akulava VD, Valentovich LN, Huffnagle GB. The Psychrotrophic Pseudomonas lundensis, a Non- aeruginosa Pseudomonad, Has a Type III Secretion System of the Ysc Family, Which Is Transcriptionally Active at 37°C. mBio 2022; 13:e0386921. [PMID: 35189702 PMCID: PMC8903896 DOI: 10.1128/mbio.03869-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 01/14/2023] Open
Abstract
The type III secretion system (T3SS) is a needle-like structure found in Gram-negative pathogens that directly delivers virulence factors like toxins and effector molecules into eukaryotic cells. The T3SS is classified into different families according to the type of effector and host. Of these, the Ysc family T3SS, found in Yersinia species and Pseudomonas aeruginosa, confers high virulence to bacteria against eukaryotic hosts. Here, we present the first identification and transcriptional analyses of a Ysc T3SS in a non-aeruginosa Pseudomonas species, Pseudomonas lundensis, an environmental psychrotrophic bacterium and important agent of frozen food spoilage. We have identified and sequenced isolates of P. lundensis from three very distinct ecological niches (Antarctic temporary meltwater pond, U.S. supermarket 1% pasteurized milk, and cystic fibrosis lungs) and compared these to previously reported food spoilage isolates in Europe. In this paper, we show that strains of P. lundensis isolated from these diverse environments with ambient temperatures ranging from below freezing to 37°C all possess a Ysc family T3SS secretion system and a T3S effector, ExoU. Using in vitro and in vivo transcriptomics, we show that the T3SS in P. lundensis is transcriptionally active, is expressed more highly at mammalian body temperature (37°C) than 4°C, and has even higher expression levels when colonizing a host environment (mouse intestine). Thus, this Ysc T3SS-expressing psychrotrophic Pseudomonad has an even greater range of growth niches than previously appreciated, including diseased human airways. IMPORTANCE P. lundensis strains have been isolated from environments that are distinct and diverse in both nutrient availability and environmental pressures (cold food spoilage, Antarctic melt ponds, cystic fibrosis lungs). As a species, this bacterium can grow in diverse niches that markedly vary in available nutrients and temperature, and in our study, we show that these various strains share greater than 99% sequence similarity. In addition, all isolates studied here encoded complete homologs of the Ysc family T3SS seen in P. aeruginosa. Until recently, P. aeruginosa has remained as the only Pseudomonas species to have a characterized functional Ysc (Psc) family T3SS. With the identification of a complete Ysc T3SS in P. lundensis that is expressed at 37°C in vivo, it is intriguing to wonder whether this bacterium may indeed have some level of symbiotic activity, of yet unknown type, when consumed by a mammalian host.
Collapse
Affiliation(s)
- Keerthikka Ravi
- Department of Molecular, Cellular & Developmental Biology, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole R. Falkowski
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Brittan S. Scales
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Volha D. Akulava
- Faculty of Biology, Belarusian State University, Minsk, Belarus
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Leonid N. Valentovich
- Faculty of Biology, Belarusian State University, Minsk, Belarus
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Gary B. Huffnagle
- Department of Molecular, Cellular & Developmental Biology, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Sedillo-Torres IY, Hernández-Rangel ÁO, Gómez-y-Gómez Y, Cortés-Avalos D, García-Pérez BE, Villalobos-Rocha JC, Hernández-Rodríguez CH, Zepeda-Vallejo LG, Estrada-de los Santos P, Vargas-Díaz ME, Ibarra JA. Hibiscus Acid from Hibiscus sabdariffa L. Inhibits Flagellar Motility and Cell Invasion in Salmonella enterica. Molecules 2022; 27:molecules27030655. [PMID: 35163919 PMCID: PMC8839027 DOI: 10.3390/molecules27030655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 01/13/2023] Open
Abstract
Extracts of Hibiscus sabdariffa L. (commonly called Rosselle or "Jamaica flower" in Mexico) have been shown to have antibiotic and antivirulence properties in several bacteria. Here, an organic extract of H. sabdariffa L. is shown to inhibit motility in Salmonella enterica serovars Typhi and Typhimurium. The compound responsible for this effect was purified and found to be the hibiscus acid. When tested, this compound also inhibited motility and reduced the secretion of both flagellin and type III secretion effectors. Purified hibiscus acid was not toxic in tissue-cultured eukaryotic cells, and it was able to reduce the invasion of Salmonella Typhimurium in epithelial cells. Initial steps to understand its mode of action showed it might affect membrane proton balance.
Collapse
Affiliation(s)
- Ixchell Y. Sedillo-Torres
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico; (I.Y.S.-T.); (D.C.-A.); (B.E.G.-P.); (J.C.V.-R.); (C.H.H.-R.); (P.E.-d.l.S.)
| | - Álvaro O. Hernández-Rangel
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico; (Á.O.H.-R.); (L.G.Z.-V.); (M.E.V.-D.)
| | - Yolanda Gómez-y-Gómez
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n Barrio La Laguna, Ticomán, Alc. Gustavo A. Madero, Ciudad de México 07340, Mexico;
| | - Daniel Cortés-Avalos
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico; (I.Y.S.-T.); (D.C.-A.); (B.E.G.-P.); (J.C.V.-R.); (C.H.H.-R.); (P.E.-d.l.S.)
| | - Blanca Estela García-Pérez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico; (I.Y.S.-T.); (D.C.-A.); (B.E.G.-P.); (J.C.V.-R.); (C.H.H.-R.); (P.E.-d.l.S.)
| | - Juan C. Villalobos-Rocha
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico; (I.Y.S.-T.); (D.C.-A.); (B.E.G.-P.); (J.C.V.-R.); (C.H.H.-R.); (P.E.-d.l.S.)
| | - César H. Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico; (I.Y.S.-T.); (D.C.-A.); (B.E.G.-P.); (J.C.V.-R.); (C.H.H.-R.); (P.E.-d.l.S.)
| | - Luis Gerardo Zepeda-Vallejo
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico; (Á.O.H.-R.); (L.G.Z.-V.); (M.E.V.-D.)
| | - Paulina Estrada-de los Santos
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico; (I.Y.S.-T.); (D.C.-A.); (B.E.G.-P.); (J.C.V.-R.); (C.H.H.-R.); (P.E.-d.l.S.)
| | - María Elena Vargas-Díaz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico; (Á.O.H.-R.); (L.G.Z.-V.); (M.E.V.-D.)
| | - Jose Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico; (I.Y.S.-T.); (D.C.-A.); (B.E.G.-P.); (J.C.V.-R.); (C.H.H.-R.); (P.E.-d.l.S.)
- Correspondence: or ; Tel.: +52-55-5729-6000 (ext. 62482)
| |
Collapse
|
24
|
Gurung JM, Amer AAA, Chen S, Diepold A, Francis MS. Type III secretion by Yersinia pseudotuberculosis is reliant upon an authentic N-terminal YscX secretor domain. Mol Microbiol 2022; 117:886-906. [PMID: 35043994 PMCID: PMC9303273 DOI: 10.1111/mmi.14880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
YscX was discovered as an essential part of the Yersinia type III secretion system about 20 years ago. It is required for substrate secretion and is exported itself. Despite this central role, its precise function and mode of action remains unknown. In order to address this knowledge gap, this present study refocused attention on YscX to build on the recent advances in the understanding of YscX function. Our experiments identified a N-terminal secretion domain in YscX promoting its secretion, with the first five codons constituting a minimal signal capable of promoting secretion of the signalless β-lactamase reporter. Replacing the extreme YscX N-terminus with known secretion signals of other Ysc-Yop substrates revealed that the YscX N-terminal segment contains non-redundant information needed for YscX function. Further, both in cis deletion of the YscX N-terminus in the virulence plasmid and ectopic expression of epitope tagged YscX variants again lead to stable YscX production but not type III secretion of Yop effector proteins. Mislocalisation of the needle components, SctI and SctF, accompanied this general defect in Yops secretion. Hence, a coupling exists between YscX secretion permissiveness and the assembly of an operational secretion system.
Collapse
Affiliation(s)
- Jyoti M Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Ayad A A Amer
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Shiyun Chen
- Wuhan Institute of Virology, The Chinese Academy of Sciences, Wuhan, China
| | - Andreas Diepold
- Max Planck Institute for Terrestrial Microbiology, Department of Ecophysiology, Marburg, Germany
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Tseytin I, Lezerovich S, David N, Sal-Man N. Interactions and substrate selectivity within the SctRST complex of the type III secretion system of enteropathogenic Escherichia coli. Gut Microbes 2022; 14:2013763. [PMID: 34965187 PMCID: PMC8726614 DOI: 10.1080/19490976.2021.2013763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 02/04/2023] Open
Abstract
Many bacterial pathogens employ a protein complex, termed the type III secretion system (T3SS), to inject bacterial effectors into host cells. These effectors manipulate various cellular processes to promote bacterial growth and survival. The T3SS complex adopts a nano-syringe shape that is assembled across the bacterial membranes, with an extracellular needle extending toward the host cell membrane. The assembly of the T3SS is initiated by the association of three proteins, known as SctR, SctS, and SctT, which create an entry portal to the translocation channel within the bacterial inner membrane. Using the T3SS of enteropathogenic Escherichia coli, we investigated, by mutational and functional analyses, the role of two structural construction sites formed within the SctRST complex and revealed that they are mutation-resistant components that are likely to act as seals preventing leakage of ions and metabolites rather than as substrate gates. In addition, we identified two residues in the SctS protein, Pro23, and Lys54, that are critical for the proper activity of the T3SS. We propose that Pro23 is critical for the physical orientation of the SctS transmembrane domains that create the tip of the SctRST complex and for their positioning with regard to other T3SS substructures. Surprisingly, we found that SctS Lys54, which was previously suggested to mediate the SctS self-oligomerization, is critical for T3SS activity due to its essential role in SctS-SctT hetero-interactions.
Collapse
Affiliation(s)
- Irit Tseytin
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shir Lezerovich
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nofar David
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
26
|
Genetic Potential of Dissulfurimicrobium hydrothermale, an Obligate Sulfur-Disproportionating Thermophilic Microorganism. Microorganisms 2021; 10:microorganisms10010060. [PMID: 35056509 PMCID: PMC8780430 DOI: 10.3390/microorganisms10010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/12/2022] Open
Abstract
The biochemical pathways of anaerobic sulfur disproportionation are only partially deciphered, and the mechanisms involved in the first step of S0-disproportionation remain unknown. Here, we present the results of sequencing and analysis of the complete genome of Dissulfurimicrobium hydrothermale strain Sh68T, one of two strains isolated to date known to grow exclusively by anaerobic disproportionation of inorganic sulfur compounds. Dissulfurimicrobium hydrothermale Sh68T is a motile, thermophilic, anaerobic, chemolithoautotrophic microorganism isolated from a hydrothermal pond at Uzon caldera, Kamchatka, Russia. It is able to produce energy and grow by disproportionation of elemental sulfur, sulfite and thiosulfate. Its genome consists of a circular chromosome of 2,025,450 base pairs, has a G + C content of 49.66% and a completion of 97.6%. Genomic data suggest that CO2 assimilation is carried out by the Wood–Ljungdhal pathway and that central anabolism involves the gluconeogenesis pathway. The genome of strain Sh68T encodes the complete gene set of the dissimilatory sulfate reduction pathway, some of which are likely to be involved in sulfur disproportionation. A short sequence protein of unknown function present in the genome of strain Sh68T is conserved in the genomes of a large panel of other S0-disproportionating bacteria and was absent from the genomes of microorganisms incapable of elemental sulfur disproportionation. We propose that this protein may be involved in the first step of elemental sulfur disproportionation, as S0 is poorly soluble and unable to cross the cytoplasmic membrane in this form.
Collapse
|
27
|
Wu HP, Derilo RC, Chen HL, Li TR, Lagitnay RBJS, Chan YC, Chuang Y, Chuang DY. Injectisome T3SS subunits as potential chaperones in the extracellular export of Pectobacterium carotovorum subsp. carotovorum bacteriocins Carocin S1 and Carocin S3 secreted via flagellar T3SS. BMC Microbiol 2021; 21:345. [PMID: 34911446 PMCID: PMC8672553 DOI: 10.1186/s12866-021-02405-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum (Pcc) causes soft-rot disease in a wide variety of plants resulting in economic losses worldwide. It produces various types of bacteriocin to compete against related plant pathogens. Studies on how bacteriocins are extracellularly secreted are conducted to understand the mechanism of interbacterial competition. In this study, the secretion of the low-molecular-weight bacteriocins (LMWB) Carocin S1 and Carocin S3 produced by a multiple-bacteriocin producing strain of Pcc, 89-H-4, was investigated. Tn5 insertional mutagenesis was used to generate a mutant, TH22-6, incapable of LMWBs secretion. Sequence and homology analyses of the gene disrupted by transposon Tn5 insertion revealed that the gene sctT, an essential component of the injectisome type III secretion machinery (T3aSS), is required for the secretion of the bacteriocins. This result raised a question regarding the nature of the secretion mechanism of Pcc bacteriocins which was previously discovered to be secreted via T3bSS, a system that utilizes the bacterial flagellum for extracellular secretions. Our previous report has shown that bacteriocin Carocin S1 cannot be secreted by mutants that are defective of T3bSS-related genes such as flhA, flhC, flhD and fliC. We knocked out several genes making up the significant structural components of both T3aSS and T3bSS. The findings led us to hypothesize the potential roles of the T3aSS-related proteins, SctT, SctU and SctV, as flagellar T3SS chaperones in the secretion of Pcc bacteriocins. This current discovery and the findings of our previous study helped us to conceptualize a unique Type III secretion system for bacteriocin extracellular export which is a hybrid of the injectisome and flagellar secretion systems.
Collapse
Affiliation(s)
- Huang-Pin Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Reymund C Derilo
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
- College of Teacher Education, Nueva Vizcaya State University Bambang Campus, Bambang, Nueva Vizcaya, Philippines
| | - Han-Ling Chen
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
| | - Tzu-Rung Li
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
| | - Ruchi Briam James S Lagitnay
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
- College of Arts and Sciences, Nueva Vizcaya State University Bayombong Campus, Bayombong, Nueva Vizcaya, Philippines
| | - Yung-Chieh Chan
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
| | - Yutin Chuang
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan
| | - Duen-Yau Chuang
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan.
| |
Collapse
|
28
|
Guse A, Halte M, Hüsing S, Erhardt M. Hook-basal-body assembly state dictates substrate specificity of the flagellar type-III secretion system. Mol Microbiol 2021; 116:1189-1200. [PMID: 34467587 DOI: 10.1111/mmi.14805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/01/2022]
Abstract
The assembly of the bacterial flagellum is orchestrated by the secretion of distinct early and late secretion substrates via the flagellar-specific type-III secretion system (fT3SS). However, how the fT3SS is able to distinguish between the different (early and late) substrate classes during flagellar assembly remains poorly understood. In this study, we investigated the substrate selectivity and specificity of the fT3SS of Salmonella enterica at different assembly stages. For this, we developed an experimental setup that allowed us to synchronize hook-basal-body assembly and to monitor early and late substrate secretion of fT3SSs operating in either early or late secretion mode, respectively. Our results demonstrate that the fT3SS features a remarkable specificity for only the substrates required at the respective assembly stage. No crosstalk of substrates was observed for fT3SSs operating in the opposing secretion mode. We further found that a substantial fraction of fT3SS surprisingly remained in early secretion mode. Our results thus suggest that the secretion substrate specificity switch of the fT3SS is unidirectional and irreversible. The developed secretion substrate reporter system further provides a platform for future investigations of the underlying molecular mechanisms of the elusive substrate recognition of the T3SS.
Collapse
Affiliation(s)
- Alina Guse
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Manuel Halte
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Svenja Hüsing
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marc Erhardt
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Max Planck Unit for the Science of Pathogens, Berlin, Germany
| |
Collapse
|
29
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
30
|
Sun Y, Ma Y, Guan H, Liang H, Zhao X, Wang D. Adhesion mechanism and biofilm formation of Escherichia coli O157:H7 in infected cucumber (Cucumis sativus L.). Food Microbiol 2021; 105:103885. [DOI: 10.1016/j.fm.2021.103885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
|
31
|
Hussain S, Ouyang P, Zhu Y, Khalique A, He C, Liang X, Shu G, Yin L. Type 3 secretion system 1 of Salmonella typhimurium and its inhibitors: a novel strategy to combat salmonellosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34154-34166. [PMID: 33966165 DOI: 10.1007/s11356-021-13986-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Unsuccessful vaccination against Salmonella due to a large number of serovars, and antibiotic resistance, necessitates the development of novel therapeutics to treat salmonellosis. The development of anti-virulence agents against multi-drug-resistant bacteria is a novel strategy because of its non-bacterial feature. Hence, a thorough study of the type three secretion system (T3SS) of Salmonella would help us better understand its role in bacterial pathogenesis and development of anti-virulence agents. However, T3SS can be inhibited by different chemicals at different stages of infection and sequenced delivery of effectors can be blocked to restrict the progression of disease. This review highlights the role of T3SS-1 in the internalization, survival, and replication of Salmonella within the intestinal epithelium and T3SS inhibitors. We concluded that the better we understand the structures and functions of T3SS, the more we have chances to develop anti-virulence agents. Furthermore, greater insights into the T3SS inhibitors of Salmonella would help in the mitigation of the antibiotic resistance problem and would lead us to the era of new therapeutics against salmonellosis.
Collapse
Affiliation(s)
- Sajjad Hussain
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Yingkun Zhu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China.
| |
Collapse
|
32
|
Developing Cyclic Peptomers as Broad-Spectrum Type III Secretion System Inhibitors in Gram-Negative Bacteria. Antimicrob Agents Chemother 2021; 65:e0169020. [PMID: 33875435 PMCID: PMC8373237 DOI: 10.1128/aac.01690-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antibiotic-resistant bacteria are an emerging global health threat. New antimicrobials are urgently needed. The injectisome type III secretion system (T3SS), required by dozens of Gram-negative bacteria for virulence but largely absent from nonpathogenic bacteria, is an attractive antimicrobial target. We previously identified synthetic cyclic peptomers, inspired by the natural product phepropeptin D, that inhibit protein secretion through the Yersinia Ysc and Pseudomonas aeruginosa Psc T3SSs but do not inhibit bacterial growth. Here, we describe the identification of an isomer, 4EpDN, that is 2-fold more potent (50% inhibitory concentration [IC50] of 4 μM) than its parental compound. Furthermore, 4EpDN inhibited the Yersinia Ysa and the Salmonella SPI-1 T3SSs, suggesting that this cyclic peptomer has broad efficacy against evolutionarily distant injectisome T3SSs. Indeed, 4EpDN strongly inhibited intracellular growth of Chlamydia trachomatis in HeLa cells, which requires the T3SS. 4EpDN did not inhibit the unrelated twin arginine translocation (Tat) system, nor did it impact T3SS gene transcription. Moreover, although the injectisome and flagellar T3SSs are evolutionarily and structurally related, the 4EpDN cyclic peptomer did not inhibit secretion of substrates through the Salmonella flagellar T3SS, indicating that cyclic peptomers broadly but specifically target the injectisome T3SS. 4EpDN reduced the number of T3SS needles detected on the surface of Yersinia pseudotuberculosis as detected by microscopy. Collectively, these data suggest that cyclic peptomers specifically inhibit the injectisome T3SS from a variety of Gram-negative bacteria, possibly by preventing complete T3SS assembly.
Collapse
|
33
|
Matthews-Palmer TRS, Gonzalez-Rodriguez N, Calcraft T, Lagercrantz S, Zachs T, Yu XJ, Grabe GJ, Holden DW, Nans A, Rosenthal PB, Rouse SL, Beeby M. Structure of the cytoplasmic domain of SctV (SsaV) from the Salmonella SPI-2 injectisome and implications for a pH sensing mechanism. J Struct Biol 2021; 213:107729. [PMID: 33774138 PMCID: PMC8223533 DOI: 10.1016/j.jsb.2021.107729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
CryoEM of a full-length type III secretion system SctV resolves cytoplasmic but not transmembrane domains. MD simulations show SctV protomers flexibly hinge. Acidification expands the SctV ring by altering interprotomer interactions.
Bacterial type III secretion systems assemble the axial structures of both injectisomes and flagella. Injectisome type III secretion systems subsequently secrete effector proteins through their hollow needle into a host, requiring co-ordination. In the Salmonella enterica serovar Typhimurium SPI-2 injectisome, this switch is triggered by sensing the neutral pH of the host cytoplasm. Central to specificity switching is a nonameric SctV protein with an N-terminal transmembrane domain and a toroidal C-terminal cytoplasmic domain. A ‘gatekeeper’ complex interacts with the SctV cytoplasmic domain in a pH dependent manner, facilitating translocon secretion while repressing effector secretion through a poorly understood mechanism. To better understand the role of SctV in SPI-2 translocon-effector specificity switching, we purified full-length SctV and determined its toroidal cytoplasmic region’s structure using cryo-EM. Structural comparisons and molecular dynamics simulations revealed that the cytoplasmic torus is stabilized by its core subdomain 3, about which subdomains 2 and 4 hinge, varying the flexible outside cleft implicated in gatekeeper and substrate binding. In light of patterns of surface conservation, deprotonation, and structural motion, the location of previously identified critical residues suggest that gatekeeper binds a cleft buried between neighboring subdomain 4s. Simulations suggest that a local pH change from 5 to 7.2 stabilizes the subdomain 3 hinge and narrows the central aperture of the nonameric torus. Our results are consistent with a model of local pH sensing at SctV, where pH-dependent dynamics of SctV cytoplasmic domain affect binding of gatekeeper complex.
Collapse
Affiliation(s)
| | | | - Thomas Calcraft
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom; Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Signe Lagercrantz
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tobias Zachs
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiu-Jun Yu
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Grzegorz J Grabe
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Andrea Nans
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
34
|
Gershberg J, Braverman D, Sal-Man N. Transmembrane domains of type III-secreted proteins affect bacterial-host interactions in enteropathogenic E. coli. Virulence 2021; 12:902-917. [PMID: 33729090 PMCID: PMC7993127 DOI: 10.1080/21505594.2021.1898777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many bacterial pathogens utilize a specialized secretion system, termed type III secretion system (T3SS), to translocate effector proteins into host cells and establish bacterial infection. The T3SS is anchored within the bacterial membranes and contains a long needle/filament that extends toward the host-cell and forms, at its distal end, a pore complex within the host membrane. The T3SS pore complex consists of two bacterial proteins, termed SctB and SctE, which have conflicting targeting indications; a signal sequence that targets to secretion to the extracellular environment via the T3SS, and transmembrane domains (TMDs) that target to membrane localization. In this study, we investigate whether the TMD sequences of SctB and SctE have special features that differentiate them from classical TMDs and allow them to escape bacterial membrane integration. For this purpose, we exchanged the SctB and SctE native TMDs for alternative hydrophobic sequences and found that the TMD sequences of SctB and SctE dictate membrane destination (bacterial versus host membrane). Moreover, we examined the role of the SctB TMD sequence in the activity of the full-length protein, post secretion, and found that the TMD does not serve only as a hydrophobic segment, but is also involved in the ability of the protein to translocate itself and other proteins into and across the host cell membrane.
Collapse
Affiliation(s)
- Jenia Gershberg
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dor Braverman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
35
|
Wimmi S, Balinovic A, Jeckel H, Selinger L, Lampaki D, Eisemann E, Meuskens I, Linke D, Drescher K, Endesfelder U, Diepold A. Dynamic relocalization of cytosolic type III secretion system components prevents premature protein secretion at low external pH. Nat Commun 2021; 12:1625. [PMID: 33712575 PMCID: PMC7954860 DOI: 10.1038/s41467-021-21863-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
Many bacterial pathogens use a type III secretion system (T3SS) to manipulate host cells. Protein secretion by the T3SS injectisome is activated upon contact to any host cell, and it has been unclear how premature secretion is prevented during infection. Here we report that in the gastrointestinal pathogens Yersinia enterocolitica and Shigella flexneri, cytosolic injectisome components are temporarily released from the proximal interface of the injectisome at low external pH, preventing protein secretion in acidic environments, such as the stomach. We show that in Yersinia enterocolitica, low external pH is detected in the periplasm and leads to a partial dissociation of the inner membrane injectisome component SctD, which in turn causes the dissociation of the cytosolic T3SS components. This effect is reversed upon restoration of neutral pH, allowing a fast activation of the T3SS at the native target regions within the host. These findings indicate that the cytosolic components form an adaptive regulatory interface, which regulates T3SS activity in response to environmental conditions.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Alexander Balinovic
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hannah Jeckel
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Lisa Selinger
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dimitrios Lampaki
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg, Germany
| | - Emma Eisemann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- James Madison University, Harrisonburg, VA, USA
| | - Ina Meuskens
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Ulrike Endesfelder
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
36
|
The Shigella Type III Secretion System: An Overview from Top to Bottom. Microorganisms 2021; 9:microorganisms9020451. [PMID: 33671545 PMCID: PMC7926512 DOI: 10.3390/microorganisms9020451] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Shigella comprises four species of human-restricted pathogens causing bacillary dysentery. While Shigella possesses multiple genetic loci contributing to virulence, a type III secretion system (T3SS) is its primary virulence factor. The Shigella T3SS nanomachine consists of four major assemblies: the cytoplasmic sorting platform; the envelope-spanning core/basal body; an exposed needle; and a needle-associated tip complex with associated translocon that is inserted into host cell membranes. The initial subversion of host cell activities is carried out by the effector functions of the invasion plasmid antigen (Ipa) translocator proteins, with the cell ultimately being controlled by dedicated effector proteins that are injected into the host cytoplasm though the translocon. Much of the information now available on the T3SS injectisome has been accumulated through collective studies on the T3SS from three systems, those of Shigella flexneri, Salmonella typhimurium and Yersinia enterocolitica/Yersinia pestis. In this review, we will touch upon the important features of the T3SS injectisome that have come to light because of research in the Shigella and closely related systems. We will also briefly highlight some of the strategies being considered to target the Shigella T3SS for disease prevention.
Collapse
|
37
|
Hotinger JA, Pendergrass HA, May AE. Molecular Targets and Strategies for Inhibition of the Bacterial Type III Secretion System (T3SS); Inhibitors Directly Binding to T3SS Components. Biomolecules 2021; 11:biom11020316. [PMID: 33669653 PMCID: PMC7922566 DOI: 10.3390/biom11020316] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023] Open
Abstract
The type III secretion system (T3SS) is a virulence apparatus used by many Gram-negative pathogenic bacteria to cause infections. Pathogens utilizing a T3SS are responsible for millions of infections yearly. Since many T3SS knockout strains are incapable of causing systemic infection, the T3SS has emerged as an attractive anti-virulence target for therapeutic design. The T3SS is a multiprotein molecular syringe that enables pathogens to inject effector proteins into host cells. These effectors modify host cell mechanisms in a variety of ways beneficial to the pathogen. Due to the T3SS’s complex nature, there are numerous ways in which it can be targeted. This review will be focused on the direct targeting of components of the T3SS, including the needle, translocon, basal body, sorting platform, and effector proteins. Inhibitors will be considered a direct inhibitor if they have a binding partner that is a T3SS component, regardless of the inhibitory effect being structural or functional.
Collapse
|
38
|
Sun M, Gao X, Zhao K, Ma J, Yao H, Pan Z. Insight Into the Virulence Related Secretion Systems, Fimbriae, and Toxins in O2:K1 Escherichia coli Isolated From Bovine Mastitis. Front Vet Sci 2021; 8:622725. [PMID: 33644149 PMCID: PMC7904677 DOI: 10.3389/fvets.2021.622725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Mastitis remains a major infection of dairy cows and an important issue for the dairy farmers, and Escherichia coli (E. coli) bovine mastitis is a disease of significant economic importance in the dairy industry. Our study identified six isolates belong to phylogroup B2 from 69 bovine mastitis E. coli strains. Except for one serotype O1 strain, all group B2 isolates were identified into serotype O2 and showed significantly higher mortality in the mouse infection than other phylogroups' strains. Genomic analyses and further tests were performed to examine the role of secretion systems, fimbriae, and toxins during the systemic infection of O2:K1 strain BCE049. Two integral T6SS loci and three predicted effectors clusters were found to assemble the functional T6SS complex and deliver diverse toxic effectors to modulate bacterial virulence in the mouse infection model. A total of four T4SS loci were harbored in the BCE049 genome, three of them are encoded in different plasmids, respectively, whereas the last one locates within the bacterial chromosome at FQU84_16715 to FQU84_16760, and was significantly involved in the bacterial pathogenicity. Numerous predicted pilus biosynthesis gene loci were found in the BCE049 genome, whereas most of them lost long fragments encoding key genes for the pili assembly. Unexpectedly, a type IV pilus gene locus locating at FQU84_01405 to FQU84_01335 in the plasmid 2, was found to be required for the full virulence of mastitis strain BCE049. It should be noted that a genetic neighborhood inserted with diverse genes is encoded by the plasmid 1, which harbors three prominent toxins including β-hemolysin, cytotoxic necrotizing factor 2 and cytolethal distending toxin type III. Consequent studies verified that these toxins significantly contributed to the bacterial pathogenicity. These findings provide a molecular blueprint for understanding the underlying mechanisms employed by the bovine mastitis E. coli to colonize in host and cause systemic infection.
Collapse
Affiliation(s)
- Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xing Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Kejie Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
39
|
Structure of the Yersinia injectisome in intracellular host cell phagosomes revealed by cryo FIB electron tomography. J Struct Biol 2021; 213:107701. [PMID: 33549695 DOI: 10.1016/j.jsb.2021.107701] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 02/03/2023]
Abstract
Many pathogenic bacteria use the type III secretion system (T3SS), or injectisome, to secrete toxins into host cells. These protruding systems are primary targets for drug and vaccine development. Upon contact between injectisomes and host membranes, toxin secretion is triggered. How this works structurally and functionally is yet unknown. Using cryo-focused ion beam milling and cryo-electron tomography, we visualized injectisomes of Yersinia enterocolitica inside the phagosomes of infected human myeloid cells in a close-to-native state. We observed that a minimum needle length is required for injectisomes to contact the host membrane and bending of host membranes by some injectisomes that contact the host. Through subtomogram averaging, the structure of the entire injectisome was determined, which revealed structural differences in the cytosolic sorting platform compared to other bacteria. These findings contribute to understanding how injectisomes secrete toxins into host cells and provides the indispensable native context. The application of these cryo-electron microscopy techniques paves the way for the study of the 3D structure of infection-relevant protein complexes in host-pathogen interactions.
Collapse
|
40
|
Hu M, Zhang Y, Gu D, Chen X, Waldor MK, Zhou X. Nucleolar c-Myc recruitment by a Vibrio T3SS effector promotes host cell proliferation and bacterial virulence. EMBO J 2021; 40:e105699. [PMID: 33347626 PMCID: PMC7809790 DOI: 10.15252/embj.2020105699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Pathogen type 3 secretion systems (T3SS) manipulate host cell pathways by directly delivering effector proteins into host cells. In Vibrio parahaemolyticus, the leading cause of bacterial seafood-borne diarrheal disease, we showed that a T3SS effector, VgpA, localizes to the host cell nucleolus where it binds Epstein-Barr virus nuclear antigen 1-binding protein 2 (EBP2). An amino acid substitution in VgpA (VgpAL10A ) did not alter its translocation to the nucleus but abolished the effector's capacity to interact with EBP2. VgpA-EBP2 interaction led to the re-localization of c-Myc to the nucleolus and increased cellular rRNA expression and proliferation of cultured cells. The VgpA-EBP2 interaction elevated EBP2's affinity for c-Myc and prolonged the oncoprotein's half-life. Studies in infant rabbits demonstrated that VgpA is translocated into intestinal epithelial cells, where it interacts with EBP2 and leads to nucleolar re-localization of c-Myc. Moreover, the in vivo VgpA-EBP2 interaction during infection led to proliferation of intestinal cells and heightened V. parahaemolyticus' colonization and virulence. These observations suggest that direct effector stimulation of a c-Myc controlled host cell growth program can contribute to pathogenesis.
Collapse
Affiliation(s)
- Maozhi Hu
- Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutMansfieldCTUSA
| | - Yibei Zhang
- Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutMansfieldCTUSA
| | - Dan Gu
- Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutMansfieldCTUSA
| | - Xiang Chen
- Division of Infectious DiseasesBrigham and Women's HospitalBostonMAUSA
| | - Matthew K Waldor
- Division of Infectious DiseasesBrigham and Women's HospitalBostonMAUSA
- Howard Hughes Medical InstituteBostonMAUSA
| | - Xiaohui Zhou
- Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutMansfieldCTUSA
| |
Collapse
|
41
|
Ratu STN, Hirata A, Kalaw CO, Yasuda M, Tabuchi M, Okazaki S. Multiple Domains in the Rhizobial Type III Effector Bel2-5 Determine Symbiotic Efficiency With Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:689064. [PMID: 34163515 PMCID: PMC8215712 DOI: 10.3389/fpls.2021.689064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 05/06/2023]
Abstract
Bradyrhizobium elkanii utilizes the type III effector Bel2-5 for nodulation in host plants in the absence of Nod factors (NFs). In soybean plants carrying the Rj4 allele, however, Bel2-5 causes restriction of nodulation by triggering immune responses. Bel2-5 shows similarity with XopD of the phytopathogen Xanthomonas campestris pv. vesicatoria and possesses two internal repeat sequences, two ethylene (ET)-responsive element-binding factor-associated amphiphilic repression (EAR) motifs, a nuclear localization signal (NLS), and a ubiquitin-like protease (ULP) domain, which are all conserved in XopD except for the repeat domains. By mutational analysis, we revealed that most of the putative domains/motifs in Bel2-5 were essential for both NF-independent nodulation and nodulation restriction in Rj4 soybean. The expression of soybean symbiosis- and defense-related genes was also significantly altered by inoculation with the bel2-5 domain/motif mutants compared with the expression upon inoculation with wild-type B. elkanii, which was mostly consistent with the phenotypic changes of nodulation in host plants. Notably, the functionality of Bel2-5 was mostly correlated with the growth inhibition effect of Bel2-5 expressed in yeast cells. The nodulation phenotypes of the domain-swapped mutants of Bel2-5 and XopD indicated that both the C-terminal ULP domain and upstream region are required for the Bel2-5-dependent nodulation phenotypes. These results suggest that Bel2-5 interacts with and modifies host targets via these multiple domains to execute both NF-independent symbiosis and nodulation restriction in Rj4 soybean.
Collapse
Affiliation(s)
- Safirah Tasa Nerves Ratu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Atsushi Hirata
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Christian Oliver Kalaw
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Mitsuaki Tabuchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- *Correspondence: Shin Okazaki,
| |
Collapse
|
42
|
Milne-Davies B, Wimmi S, Diepold A. Adaptivity and dynamics in type III secretion systems. Mol Microbiol 2020; 115:395-411. [PMID: 33251695 DOI: 10.1111/mmi.14658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
The type III secretion system is the common core of two bacterial molecular machines: the flagellum and the injectisome. The flagellum is the most widely distributed prokaryotic locomotion device, whereas the injectisome is a syringe-like apparatus for inter-kingdom protein translocation, which is essential for virulence in important human pathogens. The successful concept of the type III secretion system has been modified for different bacterial needs. It can be adapted to changing conditions, and was found to be a dynamic complex constantly exchanging components. In this review, we highlight the flexibility, adaptivity, and dynamic nature of the type III secretion system.
Collapse
Affiliation(s)
- Bailey Milne-Davies
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
43
|
A Reporter System for Fast Quantitative Monitoring of Type 3 Protein Secretion in Enteropathogenic E. coli. Microorganisms 2020; 8:microorganisms8111786. [PMID: 33202599 PMCID: PMC7696366 DOI: 10.3390/microorganisms8111786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The type 3 secretion system is essential for pathogenesis of several human and animal Gram-negative bacterial pathogens. The T3SS comprises a transmembrane injectisome, providing a conduit from the bacterial cytoplasm to the host cell cytoplasm for the direct delivery of effectors (including toxins). Functional studies of T3SS commonly monitor the extracellular secretion of proteins by SDS-PAGE and western blot analysis, which are slow and semi-quantitative in nature. Here, we describe an enzymatic reporter-based quantitative and rapid in vivo assay for T3SS secretion studies in enteropathogenic E. coli (EPEC). The assay monitors the secretion of the fusion protein SctA-PhoA through the injectisome based on a colorimetric assay that quantifies the activity of alkaline phosphatase. We validated the usage of this reporter system by following the secretion in the absence of various injectisome components, including domains of the gatekeeper essential for T3SS function. This platform can now be used for the isolation of mutations, functional analysis and anti-virulence compound screening.
Collapse
|
44
|
Ngo TD, Perdu C, Jneid B, Ragno M, Novion Ducassou J, Kraut A, Couté Y, Stopford C, Attrée I, Rietsch A, Faudry E. The PopN Gate-keeper Complex Acts on the ATPase PscN to Regulate the T3SS Secretion Switch from Early to Middle Substrates in Pseudomonas aeruginosa. J Mol Biol 2020; 432:166690. [PMID: 33289667 DOI: 10.1016/j.jmb.2020.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium of which the main virulence factor is the Type III Secretion System. The ATPase of this machinery, PscN (SctN), is thought to be localized at the base of the secretion apparatus and to participate in the recognition, chaperone dissociation and unfolding of exported T3SS proteins. In this work, a protein-protein interaction ELISA revealed the interaction of PscN with a wide range of exported T3SS proteins including the needle, translocator, gate-keeper and effector. These interactions were further confirmed by Microscale Thermophoresis that also indicated a preferential interaction of PscN with secreted proteins or protein-chaperone complex rather than with chaperones alone, in line with the release of the chaperones in the bacterial cytoplasm after the dissociation from their exported proteins. Moreover, we suggest a new role of the gate-keeper complex and the ATPase in the regulation of early substrates recognition by the T3SS. This finding sheds a new light on the mechanism of secretion switching from early to middle substrates in P. aeruginosa.
Collapse
Affiliation(s)
- Tuan-Dung Ngo
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, Interdisciplinary Research Institute of Grenoble, France
| | - Caroline Perdu
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, Interdisciplinary Research Institute of Grenoble, France
| | - Bakhos Jneid
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, Interdisciplinary Research Institute of Grenoble, France
| | - Michel Ragno
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, Interdisciplinary Research Institute of Grenoble, France
| | | | - Alexandra Kraut
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, 38000 Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, 38000 Grenoble, France
| | - Charles Stopford
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ina Attrée
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, Interdisciplinary Research Institute of Grenoble, France
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eric Faudry
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, Interdisciplinary Research Institute of Grenoble, France.
| |
Collapse
|
45
|
Wu Y, Yang X, Zhang D, Lu C. Myricanol Inhibits the Type III Secretion System of Salmonella enterica Serovar Typhimurium by Interfering With the DNA-Binding Activity of HilD. Front Microbiol 2020; 11:571217. [PMID: 33101243 PMCID: PMC7546796 DOI: 10.3389/fmicb.2020.571217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/04/2020] [Indexed: 01/09/2023] Open
Abstract
The type III secretion system (T3SS) consists of a syringe-like export machine injecting effectors from the bacterial cytosol directly into host cells to establish infection. This mechanism is widely distributed in gram-negative bacteria and can be targeted as an innovative strategy for the developing of anti-virulence drugs. In this study, we present an effective T3SS inhibitor, myricanol, inspired by the use of folk medicinal plants traditionally used against infections. Myricanol is a cyclic diarylheptanoid isolated from the medicinal plant Myrica nagi, which is found in South and East Asia. Bioassay-guided fractionation revealed that myricanol inhibited not only the secretion of type III effector proteins of Salmonella enterica serovar Typhimurium UK-1 χ8956 (S. Typhimurium) but also the invasion of S. Typhimurium into mammalian cells, but showed no toxicity to bacterial growth or the host cells. RNA-Seq data analysis showed that the transcription of the pathogenesis-related SPI-1 gene was significantly inhibited by myricanol. Further study demonstrated that myricanol binds physically to HilD and interferes with its DNA-binding activity to the promoters of the hilA and invF genes. In conclusion, we propose that myricanol is responsible for the anti-infectious properties of M. nagi and is a novel T3SS inhibitor of S. Typhimurium through a previously unappreciated mechanism of action.
Collapse
Affiliation(s)
- Yang Wu
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Dongdong Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
46
|
Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065. [PMID: 33101219 PMCID: PMC7545054 DOI: 10.3389/fmicb.2020.02065] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Racha Beyrouthy
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
47
|
Kamanova J. Bordetella Type III Secretion Injectosome and Effector Proteins. Front Cell Infect Microbiol 2020; 10:466. [PMID: 33014891 PMCID: PMC7498569 DOI: 10.3389/fcimb.2020.00466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Pertussis, also known as whooping cough, is a resurging acute respiratory disease of humans primarily caused by the Gram-negative coccobacilli Bordetella pertussis, and less commonly by the human-adapted lineage of B. parapertussis HU. The ovine-adapted lineage of B. parapertussis OV infects only sheep, while B. bronchiseptica causes chronic and often asymptomatic respiratory infections in a broad range of mammals but rarely in humans. A largely overlapping set of virulence factors inflicts the pathogenicity of these bordetellae. Their genomes also harbor a pathogenicity island, named bsc locus, that encodes components of the type III secretion injectosome, and adjacent btr locus with the type III regulatory proteins. The Bsc injectosome of bordetellae translocates the cytotoxic BteA effector protein, also referred to as BopC, into the cells of the mammalian hosts. While the role of type III secretion activity in the persistent colonization of the lower respiratory tract by B. bronchiseptica is well recognized, the functionality of the type III secretion injectosome in B. pertussis was overlooked for many years due to the adaptation of laboratory-passaged B. pertussis strains. This review highlights the current knowledge of the type III secretion system in the so-called classical Bordetella species, comprising B. pertussis, B. parapertussis, and B. bronchiseptica, and discusses its functional divergence. Comparison with other well-studied bacterial injectosomes, regulation of the type III secretion on the transcriptional and post-transcriptional level, and activities of BteA effector protein and BopN protein, homologous to the type III secretion gatekeepers, are addressed.
Collapse
Affiliation(s)
- Jana Kamanova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
48
|
Dong W, Song Y. The Significance of Flavonoids in the Process of Biological Nitrogen Fixation. Int J Mol Sci 2020; 21:E5926. [PMID: 32824698 PMCID: PMC7460597 DOI: 10.3390/ijms21165926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is essential for the growth of plants. The ability of some plant species to obtain all or part of their requirement for nitrogen by interacting with microbial symbionts has conferred a major competitive advantage over those plants unable to do so. The function of certain flavonoids (a group of secondary metabolites produced by the plant phenylpropanoid pathway) within the process of biological nitrogen fixation carried out by Rhizobium spp. has been thoroughly researched. However, their significance to biological nitrogen fixation carried out during the actinorhizal and arbuscular mycorrhiza-Rhizobium-legume interaction remains unclear. This review catalogs and contextualizes the role of flavonoids in the three major types of root endosymbiosis responsible for biological nitrogen fixation. The importance of gaining an understanding of the molecular basis of endosymbiosis signaling, as well as the potential of and challenges facing modifying flavonoids either quantitatively and/or qualitatively are discussed, along with proposed strategies for both optimizing the process of nodulation and widening the plant species base, which can support nodulation.
Collapse
Affiliation(s)
| | - Yuguang Song
- School of Life Science, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
49
|
LITESEC-T3SS - Light-controlled protein delivery into eukaryotic cells with high spatial and temporal resolution. Nat Commun 2020; 11:2381. [PMID: 32404906 PMCID: PMC7221075 DOI: 10.1038/s41467-020-16169-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Many bacteria employ a type III secretion system (T3SS) injectisome to translocate proteins into eukaryotic host cells. Although the T3SS can efficiently export heterologous cargo proteins, a lack of target cell specificity currently limits its application in biotechnology and healthcare. In this study, we exploit the dynamic nature of the T3SS to govern its activity. Using optogenetic interaction switches to control the availability of the dynamic cytosolic T3SS component SctQ, T3SS-dependent effector secretion can be regulated by light. The resulting system, LITESEC-T3SS (Light-induced translocation of effectors through sequestration of endogenous components of the T3SS), allows rapid, specific, and reversible activation or deactivation of the T3SS upon illumination. We demonstrate the light-regulated translocation of heterologous reporter proteins, and induction of apoptosis in cultured eukaryotic cells. LITESEC-T3SS constitutes a new method to control protein secretion and translocation into eukaryotic host cells with unparalleled spatial and temporal resolution.
Collapse
|
50
|
Edrees A, Abdelhamed H, Nho SW, Ozdemir O, Karsi A, Essa M, Lawrence ML. An Edwardsiella piscicida esaS mutant reveals contribution to virulence and vaccine potential. Microb Pathog 2020; 143:104108. [PMID: 32145320 DOI: 10.1016/j.micpath.2020.104108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 11/15/2022]
Abstract
Edwardsiella piscicida is a Gram-negative pathogen that causes disease in diverse aquatic organisms. The disease leads to extensive losses in commercial aquaculture species, including farmed U.S. catfish. The type III secretion system (T3SS) often contributes to virulence of Gram-negative bacteria. The E. piscicida esaS gene encodes a predicted T3SS export apparatus protein. In the current study, an E. piscicida esaS mutant was constructed and characterized to increase our understanding of the role of T3SS in E. piscicida virulence. Deletion of esaS did not significantly affect biofilm formation and hemolytic activity of E. piscicida, but it had significant effects on expression of hemolysis and T3SS effector genes during biofilm growth. EpΔesaS showed significantly (P < 0.05) reduced virulence in catfish compared to the parent strain. No mortalities occurred in fish infected with EpΔesaS at 6.3 × 105 and 1.26 × 106 CFU/fish compared to 26% mortality in fish infected with wild-type E. piscicida at 7.5 × 105 CFU/fish. Bioluminescence imaging indicated that EpΔesaS invades catfish and colonizes for a short period in the organs. Furthermore, catfish immunized with EpΔesaS at 6.3 × 105 and 1.26 × 106 CFU provided 47% and 87% relative percent survival, respectively. These findings demonstrated that esaS plays a role in E. piscicida virulence, and the deletion mutant has vaccine potential for protection against wild-type E. piscicida infection.
Collapse
Affiliation(s)
- Asmaa Edrees
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Seong-Won Nho
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ozan Ozdemir
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Manal Essa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mark L Lawrence
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|