1
|
Ospina-Rozo L, Medina I, Hugall A, Rankin KJ, Roberts NW, Roberts A, Mitchell A, Reid CAM, Moussalli A, Stuart-Fox D. Polarization and reflectance are linked to climate, size and mechanistic constraints in a group of scarab beetles. Sci Rep 2024; 14:29349. [PMID: 39592655 PMCID: PMC11599573 DOI: 10.1038/s41598-024-80325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Beetles exhibit an extraordinary diversity of brilliant and colourful appearances and optical effects invisible to humans. Their underlying mechanisms have received some attention, but we know little about the ecological variables driving their evolution. Here we investigated environmental correlates of reflectivity and circular polarization in a group of optically diverse beetles (Scarabaeidae-Rutelinae). We quantified the optical properties of 261 specimens representing 46 species using spectrophotometry and calibrated photographs. Then, we examined associations between these properties and environmental variables such as temperature, humidity and vegetation cover, controlling for body size and phylogenetic relatedness. Our results showed larger beetles have higher visible reflectivity in drier environments. Unexpectedly, near-infrared (NIR) reflectivity was not correlated with ecological variables. However, we found a correlation between humidity and polarization (chiral nanostructures). We identified trade-offs between optical properties: beetles without polarization-associated nanostructures had higher NIR reflectivity. By contrast, visible reflectivity was negatively correlated with the accumulation of pigments such as melanin. Our study highlights the value of a macroecological approach for testing alternative hypotheses to explain the diversity of optical effects in beetles and to understand the link between structure and function.
Collapse
Affiliation(s)
- Laura Ospina-Rozo
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Iliana Medina
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew Hugall
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Sciences Department, Museum Victoria, GPO Box 666E, Melbourne, VIC, 3001, Australia
| | - Katrina J Rankin
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Ann Roberts
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew Mitchell
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Chris A M Reid
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Adnan Moussalli
- Sciences Department, Museum Victoria, GPO Box 666E, Melbourne, VIC, 3001, Australia
| | - Devi Stuart-Fox
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
2
|
Lietzenmayer LB, Goldstein LM, Pasche JM, Taylor LA. Extreme natural size variation in both sexes of a sexually cannibalistic mantidfly. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220544. [PMID: 35991330 PMCID: PMC9382211 DOI: 10.1098/rsos.220544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In sexually cannibalistic animals, the relative sizes of potential mates often predict the outcome of aggressive encounters. Mantidflies are spider egg predators as larvae and generalist predators as adults. Unlike most cannibalistic species, there is considerable individual variation in body size in both sexes. Using preserved collections of Dicromantispa sayi, we focused on three body size metrics that we found to be positively correlated and accurately measured across researchers. We found extreme size variation in both sexes: the largest 10% of females were 1.72× larger than the smallest 10%, and the largest 10% of males were 1.65× larger than the smallest 10%. On average, females were 7.94% larger than males. In exploring possible causes of this variation, we uncovered differences among populations. To explore the effect of spider egg sac size on adult mantidfly size, we reared mantidfly larvae on egg sacs from two jumping spider species with small or large egg sacs. Mantidfly larvae reared on small egg sacs were smaller than those reared on large egg sacs. This study provides the groundwork to design ecologically relevant experiments exploring the causes and consequences of extreme size variation in an understudied system with intriguing natural history.
Collapse
Affiliation(s)
| | - Lauren M. Goldstein
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Josephine M. Pasche
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - Lisa A. Taylor
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Roitberg ES, Orlova VF, Bulakhova NA, Kuranova VN, Eplanova GV, Zinenko OI, Arribas O, Kratochvíl L, Ljubisavljević K, Starikov VP, Strijbosch H, Hofmann S, Leontyeva OA, Böhme W. Variation in body size and sexual size dimorphism in the most widely ranging lizard: testing the effects of reproductive mode and climate. Ecol Evol 2020; 10:4531-4561. [PMID: 32551042 PMCID: PMC7297768 DOI: 10.1002/ece3.6077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 11/23/2022] Open
Abstract
Reproductive mode, ancestry, and climate are hypothesized to determine body size variation in reptiles but their effects have rarely been estimated simultaneously, especially at the intraspecific level. The common lizard (Zootoca vivipara) occupies almost the entire Northern Eurasia and includes viviparous and oviparous lineages, thus representing an excellent model for such studies. Using body length data for >10,000 individuals from 72 geographically distinct populations over the species' range, we analyzed how sex-specific adult body size and sexual size dimorphism (SSD) is associated with reproductive mode, lineage identity, and several climatic variables. Variation in male size was low and poorly explained by our predictors. In contrast, female size and SSD varied considerably, demonstrating significant effects of reproductive mode and particularly seasonality. Populations of the western oviparous lineage (northern Spain, south-western France) exhibited a smaller female size and less female-biased SSD than those of the western viviparous (France to Eastern Europe) and the eastern viviparous (Eastern Europe to Far East) lineages; this pattern persisted even after controlling for climatic effects. The phenotypic response to seasonality was complex: across the lineages, as well as within the eastern viviparous lineage, female size and SSD increase with increasing seasonality, whereas the western viviparous lineage followed the opposing trends. Altogether, viviparous populations seem to follow a saw-tooth geographic cline, which might reflect the nonmonotonic relationship of body size at maturity in females with the length of activity season. This relationship is predicted to arise in perennial ectotherms as a response to environmental constraints caused by seasonality of growth and reproduction. The SSD allometry followed the converse of Rensch's rule, a rare pattern for amniotes. Our results provide the first evidence of opposing body size-climate relationships in intraspecific units.
Collapse
Affiliation(s)
| | - Valentina F. Orlova
- Zoological Research MuseumMoscow M.V. Lomonosov State UniversityMoscowRussia
| | - Nina A. Bulakhova
- Institute of Biological Problems of the NorthMagadanRussia
- Research Institute of Biology and BiophysicsTomsk State UniversityTomskRussia
| | | | | | | | | | | | | | | | | | - Sylvia Hofmann
- Helmholtz‐Centre for Environmental Research – UfZLeipzigGermany
| | - Olga A. Leontyeva
- Department of BiogeographyMoscow M. V. Lomonosov State UniversityMoscowRussia
| | | |
Collapse
|
4
|
Sağlam İK, Miller MR, O'Rourke S, Çağlar SS. Phylo-comparative analyses reveal the dual role of drift and selection in reproductive character displacement. Mol Phylogenet Evol 2019; 140:106597. [PMID: 31445201 DOI: 10.1016/j.ympev.2019.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022]
Abstract
When incipient species meet in secondary contact, natural selection can rapidly reduce costly reproductive interactions by directly targeting reproductive traits. This process, called reproductive character displacement (RCD), leaves a characteristic pattern of geographic variation where divergence of traits between species is greater in sympatry than allopatry. However, because other forces can also cause similar patterns, care must be given in separating pattern from process. Here we show how the phylo-comparative method together with genomic data can be used to evaluate evolutionary processes at the population level in closely related species. Using this framework, we test the role of RCD in speciation of two cricket species endemic to Anatolian mountains by quantifying patterns of character displacement, rates of evolution and adaptive divergence. Our results show differing patterns of character displacement between species for reproductive vs. non-reproductive characters and strong patterns of asymmetric divergence. We demonstrate diversification results from rapid divergence of reproductive traits towards multiple optima under the dual influence of strong drift and selection. These results present the first solid evidence for RCD in Anatolian mountains, quantify the amount of drift and selection necessary for RCD to lead to speciation, and demonstrate the utility of phylo-comparative methods for quantifying evolutionary parameters at the population level.
Collapse
Affiliation(s)
- İsmail K Sağlam
- Koç University, Department of Molecular Biology and Genetics, Istanbul, Turkey; University of California Davis, Department of Animal Science, Davis, CA, USA; Hacettepe University, Department of Biology, Ankara, Turkey.
| | - Michael R Miller
- University of California Davis, Department of Animal Science, Davis, CA, USA
| | - Sean O'Rourke
- University of California Davis, Department of Animal Science, Davis, CA, USA
| | - Selim S Çağlar
- Hacettepe University, Department of Biology, Ankara, Turkey
| |
Collapse
|
5
|
Delhey K. A review of Gloger's rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol Rev Camb Philos Soc 2019; 94:1294-1316. [DOI: 10.1111/brv.12503] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Kaspar Delhey
- School of Biological SciencesMonash University 25 Rainforest Walk, 3800 Clayton Victoria Australia
| |
Collapse
|
6
|
Yadav S, Stow AJ, Harris RMB, Dudaniec RY. Morphological Variation Tracks Environmental Gradients in an Agricultural Pest, Phaulacridium vittatum (Orthoptera: Acrididae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5228718. [PMID: 30508202 PMCID: PMC6276836 DOI: 10.1093/jisesa/iey121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Indexed: 04/30/2023]
Abstract
Invertebrate pests often show high morphological variation and wide environmental tolerances. Knowledge of how phenotypic variation is associated with environmental heterogeneity can elucidate the processes underpinning these patterns. Here we examine morphological variation and relative abundance along environmental gradients in a widespread agricultural pest, native to Australia, the wingless grasshopper Phaulacridium vittatum (Sjöstedt). We test for correlations between body size, wing presence, and stripe polymorphism with environmental variables. Using multiple regression and mixed-effects modeling, body size and stripe polymorphism were positively associated with solar radiation, and wing presence was positively associated with foliage projective cover (FPC). There were no associations between body size or morphological traits with relative abundance. However, relative abundance was positively associated with latitude, soil moisture, and wind speed, but was negatively associated with FPC. Therefore, sites with low relative abundance and high forest cover were more likely to contain winged individuals. Overall, our results suggest that environmental and climatic conditions strongly influence the relative abundance and the distribution of morphotypes in P. vittatum, which is likely to affect dispersal and fitness in different landscapes. This knowledge is useful for informing how environmental change might influence the future spread and impact of this agricultural pest.
Collapse
Affiliation(s)
- Sonu Yadav
- Department of Biological Sciences, Macquarie University, Sydney, Australia
- Corresponding author, e-mail:
| | - Adam J Stow
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Rebecca M B Harris
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Australia
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
7
|
San-Jose LM, Roulin A. Toward Understanding the Repeated Occurrence of Associations between Melanin-Based Coloration and Multiple Phenotypes. Am Nat 2018; 192:111-130. [PMID: 30016163 DOI: 10.1086/698010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Melanin is the most widespread pigment in organisms. Melanin-based coloration has been repeatedly observed to be associated with the same traits and in the same direction in different vertebrate and insect species. However, whether any factors that are common to different taxa account for the repeated evolution of melanin-phenotype associations remains unclear. We propose to approach this question from the perspective of convergent and parallel evolution to clarify to what extent different species have evolved the same associations owing to a shared genetic basis and being subjected to similar selective pressures. Our current understanding of the genetic basis of melanin-phenotype associations allows for both convergent and parallel evolution, but this understanding is still limited. Further research is needed to clarify the generality and interdependencies of the different proposed mechanisms (supergenes, pleiotropy based on hormones, or neural crest cells). The general ecological scenarios whereby melanin-based coloration is under selection-protection from ultraviolet radiation, thermoregulation in cold environments, or as a signal of social status-offer a good opportunity to study how melanin-phenotype associations evolve. Reviewing these scenarios shows that some traits associated with melanin-based coloration might be selected together with coloration by also favoring adaptation but that other associated traits might impede adaptation, which may be indicative of genetic constraints. We therefore encourage further research on the relative roles that selection and genetic constraints play in shaping multiple melanin-phenotype associations. Placed into a phylogenetic context, this will help clarify to what extent these associations result from convergent or parallel evolutionary processes and why melanin-phenotype associations are so common across the tree of life.
Collapse
|
8
|
Kuyucu AC, Sahin MK, Caglar SS. The relation between melanism and thermal biology in a colour polymorphic bush cricket, Isophya rizeensis. J Therm Biol 2018; 71:212-220. [PMID: 29301693 DOI: 10.1016/j.jtherbio.2017.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 11/28/2022]
Abstract
According to the thermal melanism hypothesis, darker coloured melanic individuals heat up faster and to higher temperatures than lighter coloured individuals due to lower skin reflectance. Consequently, it is assumed that darker melanic types may be advantageous compared to light coloured types in colder regions. As temperature gradually decreases with elevation and latitude the degree of melanism is expected to increase along these gradients in ectothermic species. Isophya rizeensis, a colour polymorphic bush cricket species endemic to Northeastern Turkey is an interesting case since the degree of melanism decreases with elevation, contrary to the thermal melanism hypothesis. In order to investigate the relation between colouration and thermal biology of this species, body temperatures (Tb) of crickets from different colour morphs, environmental temperatures (Ta), solar radiation and vegetation height were measured to test the relation between these variables and thermoregulation. Field results showed that solar radiation was the most effective factor on temperature excess (Tex), the difference between body and ambient temperature. Additionally, Tex values showed negative correlation with vegetation height. Although Tex values did not differ significantly between colour morphs, paired experiments under sunlight showed that darker morphs heated up faster and attained higher body temperatures than light morphs. We conclude that, since higher Tex values at alpine short swards might also increase the risk of facing deleterious temperatures at high elevations, protection against overheating might be one of the factors responsible for this polymorphism.
Collapse
Affiliation(s)
- Arda Cem Kuyucu
- Hacettepe University, Department of Biology, Faculty of Science, Ankara, Turkey.
| | - Mehmet Kursat Sahin
- Hacettepe University, Department of Biology, Faculty of Science, Ankara, Turkey
| | - Selim Sualp Caglar
- Hacettepe University, Department of Biology, Faculty of Science, Ankara, Turkey
| |
Collapse
|
9
|
de Farias-Martins F, Sperber CF, Albeny-Simões D, Breaux JA, Fianco M, Szinwelski N. Forest litter crickets prefer higher substrate moisture for oviposition: Evidence from field and lab experiments. PLoS One 2017; 12:e0185800. [PMID: 28977023 PMCID: PMC5627918 DOI: 10.1371/journal.pone.0185800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/19/2017] [Indexed: 11/18/2022] Open
Abstract
For insects, choosing a favorable oviposition site is a type of parental care, as far as it increases the fitness of its offspring. Niche theory predicts that crickets should show a bell-shaped oviposition response to substrate moisture. However, lab experiments with mole crickets showed a linear oviposition response to substrate moisture. Studies with the house cricket Acheta domesticus also showed a linear juvenile body growth response to water availability, thus adult ovipositing females should respond positively to substrate moisture. We used a field experiment to evaluate the relationship between oviposition preference and substrate moisture in forest litter-dwelling cricket species. We also evaluated oviposition responses to substrate moisture level in Ubiquepuella telytokous, the most abundant litter cricket species in our study area, using a laboratory study. We offered cotton substrate for oviposition which varied in substrate moisture level from zero (i.e., dry) to maximum water absorption capacity. We used two complementary metrics to evaluate oviposition preference: (i) presence or absence of eggs in each sampling unit as binary response variable, and (ii) number of eggs oviposited per sampling unit as count response variable. To test for non-linear responses, we adjusted generalized additive models (GAMM) with mixed effects. We found that both cricket oviposition probability and effort (i.e., number of eggs laid) increased linearly with substrate moisture in the field experiment, and for U. telytokous in the lab experiment. We discarded any non-linear responses. Our results demonstrate the importance of substrate moisture as an ecological niche dimension for litter crickets. This work bolsters knowledge of litter cricket life history association with moisture, and suggests that litter crickets may be particularly threatened by changes in climate that favor habitat drying.
Collapse
Affiliation(s)
- Fernando de Farias-Martins
- Laboratório de Orthoptera, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil.,Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Carlos Frankl Sperber
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Daniel Albeny-Simões
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Santa Catarina, Brazil
| | - Jennifer Ann Breaux
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Santa Catarina, Brazil
| | - Marcos Fianco
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Paraná, Brazil
| | - Neucir Szinwelski
- Laboratório de Orthoptera, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
10
|
Haga EB, Rossi MN. The effect of seed traits on geographic variation in body size and sexual size dimorphism of the seed-feeding beetle Acanthoscelides macrophthalmus. Ecol Evol 2017; 6:6892-6905. [PMID: 28725367 PMCID: PMC5513244 DOI: 10.1002/ece3.2364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/01/2016] [Accepted: 07/15/2016] [Indexed: 01/18/2023] Open
Abstract
Explaining large‐scale patterns of variation in body size has been considered a central question in ecology and evolutionary biology because several life‐history traits are directly linked to body size. For ectothermic organisms, little is known about what processes influence geographic variation in body size. Changes in body size and sexual size dimorphism (SSD) have been associated with environmental variables, particularly for Bruchinae insects, which feed exclusively on seeds during the larval stage. However, the effect of important seed traits on body size variation has rarely been investigated, and whether SSD varies substantially among populations within bruchine species is poorly known. Using the seed‐feeding beetle Acanthoscelides macrophthalmus infesting its host plant Leucaena leucocephala, we investigated whether specific seed traits (hardness, size, water content, carbon/nitrogen ratio, and phenolic content) were determinant in generating geographic variation in body size and SSD of A. macrophthalmus. We also examined the relationships between body size and SSD with latitude and altitude. The body size of both sexes combined was not related to latitude, altitude, and any of the physical and chemical seed traits. However, the female body size tended to vary more in size than the males, generating significant variation in SSD in relation to latitude and altitude. The females were the larger sex at higher latitudes and at lower altitudes, precisely where seed water content was greater. Therefore, our results suggest that water content was the most important seed trait, most severely affecting the females, promoting geographic variation in SSD of A. macrophthalmus.
Collapse
Affiliation(s)
- Eloísa B Haga
- Department of Biological Sciences Laboratório de Ecologia Populacional (LEPOP) Federal University of São Paulo (Unifesp) Diadema São Paulo 09941-510 Brazil
| | - Marcelo N Rossi
- Department of Biological Sciences Laboratório de Ecologia Populacional (LEPOP) Federal University of São Paulo (Unifesp) Diadema São Paulo 09941-510 Brazil
| |
Collapse
|
11
|
Martin OY, Michalczyk Ł, Millard AL, Emerson BC, Gage MJG. Lack of support for Rensch's rule in an intraspecific test using red flour beetle (Tribolium castaneum) populations. INSECT SCIENCE 2017; 24:133-140. [PMID: 26299521 DOI: 10.1111/1744-7917.12272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/09/2015] [Indexed: 06/04/2023]
Abstract
Rensch's rule proposes a universal allometric scaling phenomenon across species where sexual size dimorphism (SSD) has evolved: in taxa with male-biased dimorphism, degree of SSD should increase with overall body size, and in taxa with female-biased dimorphism, degree of SSD should decrease with increasing average body size. Rensch's rule appears to hold widely across taxa where SSD is male-biased, but not consistently when SSD is female-biased. Furthermore, studies addressing this question within species are rare, so it remains unclear whether this rule applies at the intraspecific level. We assess body size and SSD within Tribolium castaneum (Herbst), a species where females are larger than males, using 21 populations derived from separate locations across the world, and maintained in isolated laboratory culture for at least 20 years. Body size, and hence SSD patterns, are highly susceptible to variations in temperature, diet quality and other environmental factors. Crucially, here we nullify interference of such confounds as all populations were maintained under identical conditions (similar densities, standard diet and exposed to identical temperature, relative humidity and photoperiod). We measured thirty beetles of each sex for all populations, and found body size variation across populations, and (as expected) female-biased SSD in all populations. We test whether Rensch's rule holds for our populations, but find isometry, i.e. no allometry for SSD. Our results thus show that Rensch's rule does not hold across populations within this species. Our intraspecific test matches previous interspecific studies showing that Rensch's rule fails in species with female-biased SSD.
Collapse
Affiliation(s)
- Oliver Y Martin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- ETH Zürich, Experimental Ecology, Institute of Integrative Biology, D-USYS, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
| | - Łukasz Michalczyk
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Department of Entomology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna L Millard
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Brent C Emerson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Island Ecology and Evolution Research Group (IPNA-CSIC), C/Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Matthew J G Gage
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
12
|
Intraspecific variation of body size in a gamasid mite Laelaps clethrionomydis: environment, geography and host dependence. Parasitol Res 2015; 114:3767-74. [DOI: 10.1007/s00436-015-4606-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|