1
|
Jiang Z, Qu L, Cui G, Zhong G. Smoothened antagonist sonidegib affects the development of D. melanogaster larvae via suppression of epidermis formation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105462. [PMID: 37532307 DOI: 10.1016/j.pestbp.2023.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 08/04/2023]
Abstract
Hedgehog (Hh) signaling is essential for the regulation of embryonic growth and development, the maintenance of stem cell autostasis, and tissue formation, whether in vertebrates or invertebrates. However, exploration into the Hh pathway antagonists in Drosophila or other pests of agricultural importance has been scant. In order to gain a better understanding of the potential utility of the antagonists in insect investigations, a conventional Hh antagonist, sonidegib, was used to evaluate the effects on the development of Drosophila larvae. The results showed that early instar larvae exposed to sonidegib exhibited new epidermal abnormalities and decreased motility after molting. Transcriptome analysis revealed that Sonidegib had a profound effect on chitin-based cuticle development throughout all stages of larvae. Physiological experiments revealed that sonidegib suppressed the epidermis formation and decreased the chitin content. The results of this study shed new light on the potential use of Hh antagonists in agricultural pest management.
Collapse
Affiliation(s)
- Zhiyan Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Liwen Qu
- National Key Laboratory of Green Pesticide, Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Gaofeng Cui
- National Key Laboratory of Green Pesticide, Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China.
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
2
|
Zhang Z, Pei P, Zhang M, Li F, Tang G. Chromosome-level genome assembly of Dastarcus helophoroides provides insights into CYP450 genes expression upon insecticide exposure. PEST MANAGEMENT SCIENCE 2023; 79:1467-1482. [PMID: 36502364 DOI: 10.1002/ps.7319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Dastarcus helophoroides is an important natural enemy of cerambycids, and is wildly used in biological control of pests. Nevertheless, the absence of complete genomic information limits the investigation of the underlying molecular mechanisms. Here, a chromosome-level of Dastarcus helophoroides genome is assembled using a combination strategy of Illumina, PacBio, 10x™ Genomics, and Hi-C. RESULTS The final assembly is 609.09 Mb with contig N50, scaffold N50 and GC content of 5.46 Mb, 42.56 Mb and 31.50%, respectively, and 95.25% of the contigs anchor into 13 chromosomes. In total 14 890 protein-coding genes and 65.37% repeat sequences are predicted in the assembly genome. The phylogenetic analysis of single-copy gene families shared among 20 insect species indicates that Dastarcus helophoroides is placed as the sister species to clade (Nitidulidae+Curculionoidea+Chrysomeloidea) + Tenebrionoidea, and diverges from the related species ~242.9 Mya. In total 36 expanded gene families are identified in Dastarcus helophoroides genome, and are functionally related to drug metabolism and metabolism of xenobiotics by cytochrome P450. Some members of CYP4 Clade and CYP6 Clade are up-regulated in Dastarcus helophoroides adults upon insecticide exposure, of which expressions of DhCYP4Q, DhCYP6A14X1 and DhCYP4C1 are significantly up-regulated. The silencing of the three genes leads to adults more sensitive to insecticide and increased knocked-down rate, which may indicate their critical roles in stress resistance and detoxication. CONCLUSION Our study systematically integrated the chromosome-level genome, transcriptome and gene expression of Dastarcus helophoroides, which will provide valuable resources for understanding mechanisms of pesticide metabolism, growth and development, and utilization of the natural enemy in integrated control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengqing Zhang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Pei Pei
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Meng Zhang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Feifei Li
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| | - Guanghui Tang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
3
|
Chen K, Yu Y, Zhang Z, Hu B, Liu X, Tan A. The morphogen Hedgehog is essential for proper adult morphogenesis in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 153:103906. [PMID: 36587810 DOI: 10.1016/j.ibmb.2022.103906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The well-known morphogen Hedgehog (Hh) is indispensable for embryo patterning and organ development from invertebrates to vertebrates. The role of Hh signaling pathway has been extensively investigated in the model organism Drosophila melanogaster, whereas its biological functions are still poorly understood in non-drosophilid insects. In the current study, we describe comprehensive investigation of Hh biological roles in the model lepidopteran insect Bombyx mori by using both CRISPR/Cas9-mediated gene ablation and Gal4/UAS-mediated ectopic expression. Direct injection of Cas9 protein and Hh-specific sgRNAs into preblastoderm embryos induced complete lethality. In contrast, Hh mutants obtained by the binary transgenic CRISPR/Cas9 system showed no deleterious phenotypes during embryonic and larval stages. However, mutants showed abnormalities from the pupal stage and most of adult body appendages exhibited severe developmental defects. Molecular analysis focused on wing development reveal that Hh signaling, Imd signaling and Wnt signaling pathways were distorted in Hh mutant wings. Ectopic expression by using the binary Gal4/UAS system induce early larval lethality. On contrary, moderate overexpression of Hh by using a unitary transgenic system resulted in severe defects in adult leg and antenna development. Our data directly provide genetic evidence that Hh plays vital roles in imaginal discs development and proper adult morphogenesis in B. mori.
Collapse
Affiliation(s)
- Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Ye Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Zhongjie Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
4
|
The Characterization and Differential Analysis of m 6A Methylation in Hycole Rabbit Muscle and Adipose Tissue and Prediction of Regulatory Mechanism about Intramuscular Fat. Animals (Basel) 2023; 13:ani13030446. [PMID: 36766336 PMCID: PMC9913852 DOI: 10.3390/ani13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
N6-methyladenosine (m6A) widely participates in various life processes of animals, including disease, memory, growth and development, etc. However, there is no report on m6A regulating intramuscular fat deposition in rabbits. In this study, m6A modification of Hycole rabbit muscle and adipose tissues were detected by MeRIP-Seq. In this case, 3 methylases and 12 genes modified by m6A were found to be significantly different between muscle and adipose tissues. At the same time, we found 3 methylases can regulate the expression of 12 genes in different ways and the function of 12 genes is related to fat deposition base on existing studies. 12 genes were modified by m6A methylase in rabbit muscle and adipose tissues. These results suggest that 3 methylases may regulate the expression of 12 genes through different pathways. In addition, the analysis of results showed that 6 of the 12 genes regulated eight signaling pathways, which regulated intramuscular fat deposition. RT-qPCR was used to validate the sequencing results and found the expression results of RT-qPCR and sequencing results are consistent. In summary, METTL4, ZC3H13 and IGF2BP2 regulated intramuscular fat by m6A modified gene/signaling pathways. Our work provided a new molecular basis and a new way to produce rabbit meat with good taste.
Collapse
|
5
|
Ludwig JC, Trimmer B. Myoblast proliferation during flight muscle development in Manduca sexta is unaffected by reduced neural signaling. ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 72:101232. [PMID: 36610222 DOI: 10.1016/j.asd.2022.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
In holometabolous insects, metamorphosis involves restructuring the musculature to accommodate adult-specific anatomy and behaviors. Evidence from experiments on remodeled muscles, as well as those that develop de novo, suggests that signals from the nervous system support adult muscle development by controlling myoblast proliferation rate. However, the dorsolongitudinal flight muscles (DLMs) of Manduca sexta undergo a mixed developmental program involving larval muscle fibers, and it is not known if neurons play the same role in the formation of these muscles. To address this question, we have blocked the most promising candidate pathways for neural input and examined the DLMs for changes in proliferation. Our results show that DLM development does not depend on neural activity, Hedgehog signaling, or EGF signaling. It remains to be determined how DLM growth is controlled and why neurally mediated proliferation differs between individual muscles.
Collapse
Affiliation(s)
- J Clark Ludwig
- Tufts University, Department of Biology, 200 Boston Avenue, Medford, MA, 02155, USA.
| | - Barry Trimmer
- Tufts University, Department of Biology, 200 Boston Avenue, Medford, MA, 02155, USA.
| |
Collapse
|
6
|
Liu Y, Li Y, Liang J, Sun Z, Wu Q, Liu Y, Sun C. Leptin: an entry point for the treatment of peripheral tissue fibrosis and related diseases. Int Immunopharmacol 2022; 106:108608. [PMID: 35180626 DOI: 10.1016/j.intimp.2022.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
Leptin is a small peptide mainly secreted by adipocyte, which acts on the central nervous system of the hypothalamus to regulate the body's energy balance by inhibiting food intake, it also can directly act on specific cells through leptin receptors (for example, ObRa, which exists in the blood-brain barrier or kidneys), thereby affect cell metabolism. Excessive deposition of extracellular matrix (ECM) causes damage to normal tissues or destruction of organ structure, which will eventually lead to tissue or organ fibrosis. The sustainable development of fibrosis can lead to structural damage and functional decline of organs, and even exhaustion, which seriously threatens human health and life. In recent years, studies have found that leptin directly alleviates the fibrosis process of various tissues and organs in mammals. Therefore, we speculate that leptin may become a significant treatment for fibrosis of various tissues and organs in the future. So, the main purpose of this review is to explore the specific mechanism of leptin in the process of fibrosis in multiple tissues and organs, and to provide a theoretical basis for the treatment of various tissues and organs fibrosis and related diseases caused by it, which is of great significance in the future.
Collapse
Affiliation(s)
- Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yizhou Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Juntong Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhuwen Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qiong Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Medical College, Qinghai University, Xining, 810000, China.
| | - Yongnian Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Medical College, Qinghai University, Xining, 810000, China.
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Zhu SQ, Zhang YJ, Abbas MN, Hao XW, Zhao YZ, Liang HH, Cui HJ, Yang LQ. Hedgehog promotes cell proliferation in the midgut of silkworm, Bombyx mori. INSECT SCIENCE 2020; 27:697-707. [PMID: 30919568 DOI: 10.1111/1744-7917.12672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/29/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
The Hedgehog (Hh) signaling pathway is one of the major regulators of embryonic development and tissue homeostasis in multicellular organisms. However, the role of this pathway in the silkworm, especially in the silkworm midgut, remains poorly understood. Here, we report that Bombyx mori Hedgehog (BmHh) is expressed in most tissues of silkworm larvae and that its functions are well-conserved throughout evolution. We further demonstrate that the messenger RNA of four Hh signaling components, BmHh ligand, BmPtch receptor, signal transducer BmSmo and transcription factor BmCi, are all upregulated following Escherichia coli or Bacillus thuringiensis infection, indicating the activation of the Hh pathway. Simultaneously, midgut cell proliferation is strongly promoted. Conversely, the repression of Hh signal transduction with double-stranded RNA or cyclopamine inhibits the expression of BmHh and BmCi and reduces cell proliferation. Overall, these findings provide new insights into the Hh signaling pathway in the silkworm, B. mori.
Collapse
Affiliation(s)
- Shun-Qin Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- School of Life Sciences, Southwest University, Chongqing, China
| | - Ya-Jun Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiang-Wei Hao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yu-Zu Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Hang-Hua Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Hong-Juan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Li-Qun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Front Mol Biosci 2020; 7:76. [PMID: 32457917 PMCID: PMC7226927 DOI: 10.3389/fmolb.2020.00076] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is now a widespread disorder, and its prevalence has become a critical concern worldwide, due to its association with common co-morbidities like cancer, cardiovascular diseases and diabetes. Adipose tissue is an endocrine organ and therefore plays a critical role in the survival of an individual, but its dysfunction or excess is directly linked to obesity. The journey from multipotent mesenchymal stem cells to the formation of mature adipocytes is a well-orchestrated program which requires the expression of several genes, their transcriptional factors, and signaling intermediates from numerous pathways. Understanding all the intricacies of adipogenesis is vital if we are to counter the current epidemic of obesity because the limited understanding of these intricacies is the main barrier to the development of potent therapeutic strategies against obesity. In particular, AMP-Activated Protein Kinase (AMPK) plays a crucial role in regulating adipogenesis – it is arguably the central cellular energy regulation protein of the body. Since AMPK promotes the development of brown adipose tissue over that of white adipose tissue, special attention has been given to its role in adipose tissue development in recent years. In this review, we describe the molecular mechanisms involved in adipogenesis, the role of signaling pathways and the substantial role of activated AMPK in the inhibition of adiposity, concluding with observations which will support the development of novel chemotherapies against obesity epidemics.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
9
|
Wang J, Ge J, Cao H, Zhang X, Guo Y, Li X, Xia B, Yang G, Shi X. Leptin Promotes White Adipocyte Browning by Inhibiting the Hh Signaling Pathway. Cells 2019; 8:cells8040372. [PMID: 31022919 PMCID: PMC6523697 DOI: 10.3390/cells8040372] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023] Open
Abstract
Leptin is an important secretory protein that regulates the body’s intake and energy consumption, and the functions of the Hh signaling pathway related to white adipocyte browning are controversial. It has been reported that leptin plays a critical role in adipogenesis by regulating the Hh signaling pathway, but whether there is a functional relationship between leptin, the Hh signaling pathway, and adipocyte browning is not clear. In this research, mouse white pre-adipocytes were isolated to explore the influence of the Hh signal pathway and leptin during the process described above. This showed that leptin decreased high fat diet-induced obese mice body weight and inhibited the Hh signaling pathway, which suggested that leptin and the Hh signaling pathway have an important role in obesity. After activation of the Hh signaling pathway, significantly decreased browning fat-relative gene expression levels were recorded, whereas inhibition of the Hh signaling pathway significantly up-regulated the expression of these genes. Similarly, leptin also up-regulated the expression of these genes, and increased mitochondrial DNA content, but decreased the expression of Gli, the key transcription factors of the Hh signaling pathway. In short, the results show that leptin promotes white adipocyte browning through inhibiting the Hh signaling pathway. Overall, these results demonstrate that leptin serves as a potential intervention to decrease obesity by inhibiting the Hh signaling pathway.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jing Ge
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haigang Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiaoyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuan Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Zhang W, Xu J, Li J, Guo T, Jiang D, Feng X, Ma X, He L, Wu W, Yin M, Ge L, Wang Z, Ho MS, Zhao Y, Fei Z, Zhang L. The TEA domain family transcription factor TEAD4 represses murine adipogenesis by recruiting the cofactors VGLL4 and CtBP2 into a transcriptional complex. J Biol Chem 2018; 293:17119-17134. [PMID: 30209132 DOI: 10.1074/jbc.ra118.003608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/15/2018] [Indexed: 12/17/2022] Open
Abstract
The Hippo signaling pathway is known to play an important role in multiple physiological processes, including adipogenesis. However, whether the downstream components of the Hippo pathway are involved in adipogenesis remains unknown. Here we demonstrate that the TEA domain family (TEAD) transcription factors are essential for adipogenesis in murine 3T3-L1 preadipocytes. Knockdown of TEAD1-4 stimulated adipogenesis and increased the expression of adipocyte markers in these cells. Interestingly, we found that the TEAD4 knockdown-mediated adipogenesis proceeded in a Yes-associated protein (YAP)/TAZ (Wwtr1)-independent manner and that adipogenesis suppression in WT cells involved formation of a ternary complex comprising TEAD4 and the transcriptional cofactors C-terminal binding protein 2 (CtBP2) and vestigial-like family member 4 (VGLL4). VGLL4 acted as an adaptor protein that enhanced the interaction between TEAD4 and CtBP2, and this TEAD4-VGLL4-CtBP2 ternary complex dynamically existed at the early stage of adipogenesis. Finally, we verified that TEAD4 directly targets the promoters of major adipogenesis transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and adiponectin, C1Q, and collagen domain-containing (Adipoq) during adipogenesis. These findings reveal critical insights into the role of the TEAD4-VGLL4-CtBP2 transcriptional repressor complex in suppression of adipogenesis in murine preadipocytes.
Collapse
Affiliation(s)
- Wenxiang Zhang
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Jinjin Xu
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Jinhui Li
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Tong Guo
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Dan Jiang
- the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xue Feng
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Xueyan Ma
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Lingli He
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Wenqing Wu
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Mengxin Yin
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Ling Ge
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Zuoyun Wang
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Margaret S Ho
- the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yun Zhao
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and.,the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaoliang Fei
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Lei Zhang
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and .,the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Uno T, Ozakiya Y, Furutani M, Sakamoto K, Uno Y, Kajiwara H, Kanamaru K, Mizoguchi A. Functional characterization of insect-specific RabX6 of Bombyx mori. Histochem Cell Biol 2018; 151:187-198. [DOI: 10.1007/s00418-018-1710-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
|
12
|
Uno T, Furutani M, Sakamoto K, Uno Y, Kanamaru K, Mizoguchi A, Hiragaki S, Takeda M. Localization and functional analysis of the insect-specific RabX4 in the brain of Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21404. [PMID: 28707374 DOI: 10.1002/arch.21404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rab proteins are small monomeric GTPases/GTP-binding proteins, which form the largest branch of the Ras superfamily. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane trafficking. RabX4 is an insect-specific Rab protein that has no close homolog in vertebrates. There is little information about insect-specific Rab proteins. RabX4 was expressed in Escherichia coli and subsequently purified. Antibodies against Bombyx mori RabX4 were produced in rabbits for western immunoblotting and immunohistochemistry. Western blotting of neural tissues revealed a single band, at approximately 26 kD. RabX4-like immunohistochemical reactivity was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum in the brain. Further immunohistochemical analysis revealed that RabX4 colocalized with Rab6 and bombyxin in the corpus allatum, a neuronal organ that secretes neuropeptides synthesized in the brain into the hemolymph. RabX4 expression in the frontal ganglion, part of the insect stomatogastric nervous system that is found in most insect orders, was restricted to two neurons on the outer region and did not colocalize with allatotropin or Rab6. Furthermore, RNA interference of RabX4 decreased bombyxin expression levels in the brain. These findings suggest that RabX4 is involved in the neurosecretion of a secretory organ in Bombyx mori.
Collapse
Affiliation(s)
- Tomohide Uno
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | - Masayuki Furutani
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | | | - Yuichi Uno
- Department of Plant Resource Science, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | - Kengo Kanamaru
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Hyogo, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Susumu Hiragaki
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|