1
|
Nolasco M, Mariano DOC, Pimenta DC, Biondi I, Branco A. Proteomic analyses of venom from a Spider Hawk, Pepsis decorata. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220090. [PMID: 37965483 PMCID: PMC10642949 DOI: 10.1590/1678-9199-jvatitd-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/12/2023] [Indexed: 11/16/2023] Open
Abstract
Background The composition of the venom from solitary wasps is poorly known, although these animals are considered sources of bioactive substances. Until the present moment, there is only one proteomic characterization of the venom of wasps of the family Pompilidae and this is the first proteomic characterization for the genus Pepsis. Methods To elucidate the components of Pepsis decorata venom, the present work sought to identify proteins using four different experimental conditions, namely: (A) crude venom; (B) reduced and alkylated venom; (C) trypsin-digested reduced and alkylated venom, and; (D) chymotrypsin-digested reduced and alkylated venom. Furthermore, three different mass spectrometers were used (Ion Trap-Time of Flight, Quadrupole-Time of Flight, and Linear Triple Quadruple). Results Proteomics analysis revealed the existence of different enzymes related to the insect's physiology in the venom composition. Besides toxins, angiotensin-converting enzyme (ACE), hyaluronidase, and Kunitz-type inhibitors were also identified. Conclusion The data showed that the venom of Pepsis decorata is mostly composed of proteins involved in the metabolism of arthropods, as occurs in parasitic wasps, although some classical toxins were recorded, and among them, for the first time, ACE was found in the venom of solitary wasps. This integrative approach expanded the range of compounds identified in protein analyses, proving to be efficient in the proteomic characterization of little-known species. It is our understanding that the current work will provide a solid base for future studies dealing with other Hymenoptera venoms.
Collapse
Affiliation(s)
- Matheus Nolasco
- Graduate Program in Biotechnology, Department of Biological Sciences, State University of Feira de Santana, Feira de Santana, BA, Brazil
| | - Douglas O. C. Mariano
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, SP, Brazil
| | - Daniel C. Pimenta
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, SP, Brazil
| | - Ilka Biondi
- Laboratory of Venomous Animals and Herpetology. Biology Department, State University of Feira de Santana - UEFS, Feira de Santana, BA, Brazil
| | - Alexsandro Branco
- Phytochemistry Laboratory, Health Department, State University of Feira de Santana - UEFS, Feira de Santana, BA, Brazil
| |
Collapse
|
2
|
Chen Z, Fu T, Fu L, Liu B, Lin Y, Tang B, Hou Y. The Cellular Immunological Responses and Developmental Differences between Two Hosts Parasitized by Asecodes hispinarum. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122025. [PMID: 36556390 PMCID: PMC9781599 DOI: 10.3390/life12122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022]
Abstract
This study aims to investigate the developmental interactions of Asecodes hispinarum Bouček on Brontispa longissima Gestro and Octodonta nipae Maulik, as well as the cellular immune responses of B. longissima and O. nipae larvae in response to parasitism by A. hispinarum, with the hope of determining the reason for the difference in larval breeding of A. hispinarum in B. longissima and O. nipae. The effects of parasitism by A. hispinarum on the larval development, hemocyte count, and proportion of the hemocyte composition of the two hosts were carried out through selective assay and non-selective assay using statistical analysis and anatomical imaging. There was no significant difference in parasitic selection for A. hispinarum on the larvae of these two beetles; however, more eggs were laid to B. longissima larvae than to O. nipae larvae after parasitism by A. hispinarum. The eggs of A. hispinarum were able to grow and develop normally inside the larvae of B. longissima, and the parasitism caused the larvae of B. longissima become rigid within 7 d, with a high larval mortality rate of 98.88%. In contrast, the eggs of A. hispinarum were not able to develop normally inside the O. nipae larvae, with a high encapsulation rate of 99.05%. In addition, the parasitism by A. hispinarum caused a 15.31% mortality rate in O. nipae larvae and prolonged the larval stage by 5 d and the pupal stage by 1 d. The number of hemocytes during the 12, 24, 48, 72, and 96 h of the four instars from O. nipae larvae was 6.08 times higher than from B. longissima larvae of the same age. After 24 h of being parasitized by A. hispinarum, the total number of hemocytes and granulocyte proportion of B. longissima larvae increased significantly. However, the total number of hemocytes and plasmatocyte proportion of O. nipae increased significantly after 24, 72, and 96 h, and the proportion of granulocytes increased significantly after 12 h post-parasitism. The results in the present study indicated that A. hispinarum was unable to successfully reproduce offspring in O. nipae, but its spawning behavior had an adverse effect on the larval development of its host. In addition, the adequate number of hemocytes and more pronounced changes in the hemocyte count and hemocyte composition ratio in the larvae after parasitization may be important factors for the successful encapsulation in O. nipae larvae.
Collapse
Affiliation(s)
- Zhiming Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Integrated Technical Service Center of Rongcheng Customs, Fuzhou 350015, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Fu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lang Fu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaping Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baozhen Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Kim Y, Kumar S. Persistent expression of Cotesia plutellae bracovirus genes in parasitized host, Plutella xylostella. PLoS One 2018; 13:e0200663. [PMID: 30011308 PMCID: PMC6047808 DOI: 10.1371/journal.pone.0200663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/30/2018] [Indexed: 12/02/2022] Open
Abstract
Cotesia plutellae (= vestalis) bracovirus (CpBV) is symbiotic to an endoparasitoid wasp, C. plutellae, and plays crucial roles in parasitism against the diamondback moth, Plutella xylostella. CpBV virion genome consists of 35 circular DNAs encoding 157 putative open reading frames (ORFs). This study re-annotated 157 ORFs with update genome database and analyzed their gene expressions at early and late parasitic stages. Re-annotation has established 15 different viral gene families, to which 83 ORFs are assigned with remaining 74 hypothetical genes. Among 157 ORFs, 147 genes were expressed at early or late parasitic stages, among which 141 genes were expressed in both parasitic stages, indicating persistent nature of gene expression. Relative frequencies of different viral circles present in the ovarian lumen did not explain the expression variation of the viral ORFs. Furthermore, expression level of each viral gene was varied during parasitism along with host development. Highly up-regulated CpBV genes at early parasitic stage included BEN (BANP, E5R and NAC1), ELP (EP1-like protein), IkB (inhibitor kB), P494 (protein 494 kDa) family genes, while those at late stage were mostly hypothetical genes. Along with the viral gene expression, 362 host genes exhibited more than two fold changes in expression levels at early parasitic stage compared to nonparasitized host. At late stage, more number (1,858) of host genes was regulated. These results suggest that persistent expression of most CpBV genes may be necessary to regulate host physiological processes during C. plutellae parasitism.
Collapse
Affiliation(s)
- Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
- * E-mail:
| | - Sunil Kumar
- Department of Plant Medicals, Andong National University, Andong, Korea
| |
Collapse
|
4
|
Kumar S, Gu X, Kim Y. A viral histone H4 suppresses insect insulin signal and delays host development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:66-77. [PMID: 27216029 DOI: 10.1016/j.dci.2016.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Parasitization by an endoparasitoid wasp, Cotesia plutellae, alters host development of Plutella xylostella by extending larval period and preventing metamorphosis. Insulin signal plays a crucial role in mediating insect development and controlling blood sugar level in insects. In this study, three insulin-like peptide genes (PxILP1-3) were predicted from the genome of P. xylostella. However, only PxILP1 was confirmed to be expressed in P. xylostella. Starvation suppressed the expression level of PxILP1 and up-regulated plasma trehalose level. RNA interference against PxILP1 mimicked starvation effect and extended the larval period of P. xylostella. Parasitized larvae exhibited significantly lower levels of PxILP1 expression compared to nonparasitized larvae. Injection of wasp-symbiotic polydnavirus C. plutellae bracovirus (CpBV) also suppressed PxILP1 expression and extended the larval period. Injection of a viral segment (CpBV-S30) containing a viral histone H4 (CpBV-H4) also suppressed PxILP1 expression. Co-injection of CpBV-S30 and double-stranded RNA (dsCpBV-H4) specific to CpBV-H4 rescued the suppression of PxILP1 expression. Injection of CpBV-S30 significantly extended larval development. Co-injection of CpBV-S30 with dsCpBV-H4 rescued the delay of larval development. Injection of a bovine insulin to parasitized larvae prevented parasitoid development. These results indicate that parasitism of C. plutellae can down-regulate host insulin signaling with the help of parasitic factor CpBV-H4.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Bioresource Sciences, Andong National University, Andong 36729, South Korea
| | - Xiaojun Gu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, South Korea.
| |
Collapse
|