1
|
Guo Y, Taylor LN, Mishra R, Dolezal AG, Bonning BC. Gut-binding peptides as potential tools to reduce virus binding to honey bee gut surface proteins. Appl Environ Microbiol 2025; 91:e0241824. [PMID: 40019274 PMCID: PMC11921348 DOI: 10.1128/aem.02418-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/25/2025] [Indexed: 03/01/2025] Open
Abstract
Colonies of the western honey bee, Apis mellifera, are severely impacted by a wide range of stressors, with Varroa mites and associated viruses being among the most serious threats to honey bee health. Viral load plays an important role in colony demise, with the iflavirus Deformed wing virus (DWV) and the dicistrovirus Israeli acute paralysis virus (IAPV) being of particular concern. By feeding adult honey bees on a phage display library to identify gut-binding peptides (R. Mishra, Y. Guo, P. Kumar, P. E. Cantón, C. S. Tavares, R. Banerjee, S. Kuwar, and B. C. Bonning, Curr Res Insect Sci, 1:100012, https://doi.org/10.1016/j.cris.2021.100012), we identified Bee midgut-Binding Peptide (BBP2.1), which shares 75% and 85% identity with regions on the DWV capsid protein and IAPV ORFx protein, respectively. These viral protein domains are likely to be instrumental in virus interaction with the honey bee gut. Pull-down assays with honey bee gut brush border membrane vesicles were used to confirm peptide-mCherry binding to the gut for BBP2.1 and the two similar virus-derived sequences, peptides BBP2.1DWV and BBP2.1IAPV. In vitro competition assays showed that all three peptides compete with both IAPV and DWV virions for binding to honey bee gut-derived brush border membrane vesicles, suggesting that the three peptides and the two viruses bind to the same proteins. Ingestion of BBP2.1 reduced the movement of DWV, but not IAPV from the honey bee gut into the body and did not rescue IAPV-associated mortality. These results are discussed in relation to the biological function of IAPV ORFx and the potential utility of virus-blocking peptides for suppression of virus infection to reduce virus load and virus-associated honey bee mortality.IMPORTANCEEach year, approximately 40% of managed honey bee hives in the United States are lost due to a variety of environmental stressors. Although increases in virus infection are among the most important factors resulting in colony loss, there are currently no effective tools for the management of virus infection in honey bees. In this study, we identified a peptide that binds to the gut of the honey bee and competes with two of the most important honey bee viruses, Israeli acute paralysis virus of bees (IAPV) and Deformed wing virus (DWV), for binding to gut proteins. In vivo competition between this peptide and DWV demonstrates the potential utility of gut-binding peptides for the protection of honey bees from virus infection for reduced virus-associated honey bee mortality.
Collapse
Affiliation(s)
- Ya Guo
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Lincoln N Taylor
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Adam G Dolezal
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Jiménez J, Mishra R, Wang X, Magee CM, Bonning BC. Composition and abundance of midgut plasma membrane proteins in two major hemipteran vectors of plant viruses, Bemisia tabaci and Myzus persicae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22133. [PMID: 39054788 DOI: 10.1002/arch.22133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024]
Abstract
Multiple species within the order Hemiptera cause severe agricultural losses on a global scale. Aphids and whiteflies are of particular importance due to their role as vectors for hundreds of plant viruses, many of which enter the insect via the gut. To facilitate the identification of novel targets for disruption of plant virus transmission, we compared the relative abundance and composition of the gut plasma membrane proteomes of adult Bemisia tabaci (Hemiptera: Aleyrodidae) and Myzus persicae (Hemiptera: Aphididae), representing the first study comparing the gut plasma membrane proteomes of two different insect species. Brush border membrane vesicles were prepared from dissected guts, and proteins extracted, identified and quantified from triplicate samples via timsTOF mass spectrometry. A total of 1699 B. tabaci and 1175 M. persicae proteins were identified. Following bioinformatics analysis and manual curation, 151 B. tabaci and 115 M. persicae proteins were predicted to localize to the plasma membrane of the gut microvilli. These proteins were further categorized based on molecular function and biological process according to Gene Ontology terms. The most abundant gut plasma membrane proteins were identified. The ten plasma membrane proteins that differed in abundance between the two insect species were associated with the terms "protein binding" and "viral processes." In addition to providing insight into the gut physiology of hemipteran insects, these gut plasma membrane proteomes provide context for appropriate identification of plant virus receptors based on a combination of bioinformatic prediction and protein localization on the surface of the insect gut.
Collapse
Affiliation(s)
- Jaime Jiménez
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Xinyue Wang
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Ciara M Magee
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Qi Z, Etebari K, Nouzova M, Noriega FG, Asgari S. Differential gene expression and microRNA profile in corpora allata-corpora cardiaca of Aedes aegypti mosquitoes with weak juvenile hormone signalling. BMC Genomics 2024; 25:113. [PMID: 38273232 PMCID: PMC10811912 DOI: 10.1186/s12864-024-10007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The corpora allata-corpora cardiaca (CA-CC) is an endocrine gland complex that regulates mosquito development and reproduction through the synthesis of juvenile hormone (JH). Epoxidase (Epox) is a key enzyme in the production of JH. We recently utilized CRISPR/Cas9 to establish an epoxidase-deficient (epox-/-) Aedes aegypti line. The CA from epox-/- mutants do not synthesize epoxidated JH III but methyl farneosate (MF), a weak agonist of the JH receptor, and therefore have reduced JH signalling. Illumina sequencing was used to examine the differences in gene expression between the CA-CC from wild type (WT) and epox-/- adult female mosquitoes. From 18,034 identified genes, 317 were significantly differentially expressed. These genes are involved in many biological processes, including the regulation of cell proliferation and apoptosis, energy metabolism, and nutritional uptake. In addition, the same CA-CC samples were also used to examine the microRNA (miRNA) profiles of epox-/- and WT mosquitoes. A total of 197 miRNAs were detected, 24 of which were differentially regulated in epox-/- mutants. miRNA binding sites for these particular miRNAs were identified using an in silico approach; they target a total of 101 differentially expressed genes. Our results suggest that a lack of epoxidase, besides affecting JH synthesis, results in the diminishing of JH signalling that have significant effects on Ae. aegypti CA-CC transcriptome profiles, as well as its miRNA repertoire.
Collapse
Affiliation(s)
- Zhi Qi
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Wang Q, Yang L, Tian T, Sun Y, Dong H, Gong J, Hou Y. Proteomic Analysis of the Midgut Contents of Silkworm in the Pupal Stage. INSECTS 2023; 14:953. [PMID: 38132625 PMCID: PMC10743435 DOI: 10.3390/insects14120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The silkworm Bombyx mori, a lepidopteran insect, possesses an 8-10-day pupal stage, during which significant changes occur in the midgut, where it first condenses into the yellow body, and then undergoes decomposition. To gain insights into this transformation process, proteomics was performed on Bombyx mori midgut contents on day 2 and day 7 after pupation. The results revealed the identification of 771 proteins with more than one unique peptide. An analysis using AgriGO demonstrated that these proteins were predominantly associated with catalytic activity. Among the identified proteins, a considerable number were found to be involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, nucleic acid degradation, and energy support. Additionally, variations in the levels of certain proteases were observed between the midgut contents on day 2 and day 7 after pupation. An in-depth analysis of the two-dimensional electrophoresis of the midgut contents on day 7 after pupation led to the identification of twelve protein spots with potential gelatinolytic activity. Among these, six proteases were identified through mass spectrometry, including the p37k protease, vitellin-degrading protease, chymotrypsin-2, etc. These proteases may be responsible for the digestion of the yellow body during the later stages of pupal development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Q.W.); (L.Y.); (T.T.); (Y.S.); (H.D.); (J.G.)
| |
Collapse
|
5
|
Shahila Ismail KI, Kumar CVS, Aneesha U, Syama PS, Sajini KP. Comparative analysis of gut bacteria of silkworm Bombyx mori L. on exposure to temperature through 16S rRNA high throughput metagenomic sequencing. J Invertebr Pathol 2023; 201:107992. [PMID: 37741505 DOI: 10.1016/j.jip.2023.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Global warming is one of the serious threats that adversely affects the development and reproduction of silkworms. The ideal temperature for silkworms to carryout normal life activities is 20-30 °C. Certain bivoltine silkworms that are raised in tropical regions are thermotolerant. But, prolonged exposure to high temperatures may be fatal. In the present study, fifth instar larvae of bivoltine silkworm were exposed to heat shock at 40 ± 2 °C for a short period of one hour per day to examine the changes in the gut microflora. The study used high throughput sequencing to evaluate the impact of intestinal microbes of silkworms in response to high temperature. The findings demonstrated that elevated temperature has a negative impact on the intestinal microbes of silkworm compared to the control which were reared under the optimum temperature (25 ± 3° C). Four hundred and fifty eight (458) species of microbes were reported in the control group whereas only 434 species were reported in the temperature exposed group. The digestive process of silkworms may also be impaired by heat shock due to their effect on digestive enzymes. So, the results indicated that heat shock has an impact on the intestinal microflora of silkworms that control the activity of associated digestive enzymes which affects the digestion and nutritional intake, eventually impacting the growth and development of silkworm larvae and cocoons produced. The morphometric parameters of silkworm larvae and cocoons also showed a considerable drop when exposed to heat shock.
Collapse
Affiliation(s)
- K I Shahila Ismail
- P.G. and Research Department of Zoology, Govt. Victoria College, Palakkad, India.
| | - C V Sreeranjit Kumar
- P.G. and Research Department of Zoology, Govt. Victoria College, Palakkad, India.
| | - U Aneesha
- P.G. and Research Department of Zoology, Govt. Victoria College, Palakkad, India
| | - P S Syama
- P.G. and Research Department of Zoology, Govt. Victoria College, Palakkad, India
| | - K P Sajini
- P.G. and Research Department of Zoology, Govt. Victoria College, Palakkad, India
| |
Collapse
|
6
|
Barribeau SM, Schmid-Hempel P, Walser JC, Zoller S, Berchtold M, Schmid-Hempel R, Zemp N. Genetic variation and microbiota in bumble bees cross-infected by different strains of C. bombi. PLoS One 2022; 17:e0277041. [PMID: 36441679 PMCID: PMC9704641 DOI: 10.1371/journal.pone.0277041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
The bumblebee Bombus terrestris is commonly infected by a trypanosomatid gut parasite Crithidia bombi. This system shows a striking degree of genetic specificity where host genotypes are susceptible to different genotypes of parasite. To a degree, variation in host gene expression underlies these differences, however, the effects of standing genetic variation has not yet been explored. Here we report on an extensive experiment where workers of twenty colonies of B. terrestris were each infected by one of twenty strains of C. bombi. To elucidate the host's genetic bases of susceptibility to infection (measured as infection intensity), we used a low-coverage (~2 x) genome-wide association study (GWAS), based on angsd, and a standard high-coverage (~15x) GWAS (with a reduced set from a 8 x 8 interaction matrix, selected from the full set of twenty). The results from the low-coverage approach remained ambiguous. The high-coverage approach suggested potentially relevant genetic variation in cell surface and adhesion processes. In particular, mucin, a surface mucoglycoprotein, potentially affecting parasite binding to the host gut epithelia, emerged as a candidate. Sequencing the gut microbial community of the same bees showed that the abundance of bacterial taxa, such as Gilliamella, Snodgrassella, or Lactobacillus, differed between 'susceptible' and 'resistant' microbiota, in line with earlier studies. Our study suggests that the constitutive microbiota and binding processes at the cell surface are candidates to affect infection intensity after the first response (captured by gene expression) has run its course. We also note that a low-coverage approach may not be powerful enough to analyse such complex traits. Furthermore, testing large interactions matrices (as with the full 20 x 20 combinations) for the effect of interaction terms on infection intensity seems to blur the specific host x parasite interaction effects, likely because the outcome of an infection is a highly non-linear process dominated by variation in individually different pathways of host defence (immune) responses.
Collapse
Affiliation(s)
- Seth M. Barribeau
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
| | - Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
- * E-mail: (NZ); (PSH)
| | | | - Stefan Zoller
- Genetic Diversity Centre, ETH Zürich, Zürich, Switzerland
| | - Martina Berchtold
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
| | | | - Niklaus Zemp
- Genetic Diversity Centre, ETH Zürich, Zürich, Switzerland
- * E-mail: (NZ); (PSH)
| |
Collapse
|
7
|
Bacteria-derived pesticidal proteins active against hemipteran pests. J Invertebr Pathol 2022; 195:107834. [DOI: 10.1016/j.jip.2022.107834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 02/05/2023]
|
8
|
Sun X, Yuan Q, Du B, Jin X, Huang X, Li Q, Zhong Y, Pan Z, Xu S, Sima Y. Relationship between Changes in Intestinal Microorganisms and Effect of High Temperature on the Growth and Development of Bombyx mori Larvae. Int J Mol Sci 2022; 23:10289. [PMID: 36142203 PMCID: PMC9499401 DOI: 10.3390/ijms231810289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Temperature is an important environmental factor affecting the growth and development of silkworm (Bombyx mori). To analyze the effect of intestinal microbes on silkworm in response to a high-temperature environment, this study used a combination of high throughput sequencing and biochemical assays to detect silkworm intestinal microbes treated with high temperature for 72 h. The results show that high temperature affects the intestinal microbes of silkworm and that there are sex differences, specifically, females were more sensitive. The changes in the metabolism and transport ability of silkworm intestinal tissues under high temperature are related to the intestinal microbes. High temperatures may affect the intestinal microbes of silkworms, regulating the activity of related digestive enzymes and substance transport in the intestine, thereby affecting the silkworm's digestion and absorption of nutrients, and ultimately affecting growth and development.
Collapse
Affiliation(s)
- Xiaoning Sun
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Qian Yuan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Beibei Du
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xinye Jin
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xiyun Huang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Qiuying Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Yueqiao Zhong
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zhonghua Pan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Tavares CS, Mishra R, Ghobrial PN, Bonning BC. Composition and abundance of midgut surface proteins in the Asian citrus psyllid, Diaphorina citri. J Proteomics 2022; 261:104580. [DOI: 10.1016/j.jprot.2022.104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
10
|
Non-proteinaceous salivary compounds of a predatory bug cause histopathological and cytotoxic effects in prey. Toxicon 2022; 213:76-82. [DOI: 10.1016/j.toxicon.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
|
11
|
Ioannidis P, Buer B, Ilias A, Kaforou S, Aivaliotis M, Orfanoudaki G, Douris V, Geibel S, Vontas J, Denecke S. A spatiotemporal atlas of the lepidopteran pest Helicoverpa armigera midgut provides insights into nutrient processing and pH regulation. BMC Genomics 2022; 23:75. [PMID: 35073840 PMCID: PMC8785469 DOI: 10.1186/s12864-021-08274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Caterpillars from the insect order Lepidoptera are some of the most widespread and destructive agricultural pests. Most of their impact is at the larval stage, where the midgut epithelium mediates the digestion and absorption of an astonishing amount of food. Although this tissue has been the subject of frequent investigation in Lepidoptera, a comprehensive expression atlas has yet to be generated. Results Here, we perform RNA-sequencing and proteomics on the gut of the polyphagous pest Helicoverpa armigera across, life stages, diet types, and compartments of the anterior-posterior axis. A striking relationship between the structural homology and expression pattern of a group of sugar transporters was observed in the early larval stages. Further comparisons were made among the spatial compartments of the midgut, which suggested a putative role for vATPases and SLC9 transporters in the generation of alkaline conditions in the H. armigera midgut. Conclusions This comprehensive resource will aid the scientific community in understanding lepidopteran gut physiology in unprecedented resolution. It is hoped that this study advances the understanding of the lepidopteran midgut and also facilitates functional work in this field. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08274-x.
Collapse
|
12
|
Genome-wide analysis of V-ATPase genes in Plutella xylostella (L.) and the potential role of PxVHA-G1 in resistance to Bacillus thuringiensis Cry1Ac toxin. Int J Biol Macromol 2022; 194:74-83. [PMID: 34861270 DOI: 10.1016/j.ijbiomac.2021.11.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023]
Abstract
The rapid development of insecticide resistance has hampered the use of Bacillus thuringiensis (Bt), a widely used bio-pesticide. Plutella xylostella (L.) is a globally distributed lepidopteran pest of cruciferous vegetables and has developed severe field resistance to the Bt toxin. Vacuolar H+-ATPases (VHA) are multi-subunit complexes and participate in multiple physiological processes. However, the characterization and functional studies of VHA genes are lacking in insects. This study performed a genome-wide analysis and identified 35 VHA gene family members divided into 15 subfamilies in P. xylostella. We cloned a V-ATPase subunit G gene, PxVHA-G1, in our previous midgut transcriptome profiles. Quantitative reverse transcriptase-polymerase chain reaction results showed that PxVHA-G1 was upregulated in the Cry1S1000-resistant strain than in the G88-susceptible strain, and its expression profile revealed that the midgut, Malpighian tubules, and larva stages generally showed high expression levels. RNAi-mediated knockdown of the PxVHA-G1 gene increased the susceptibility of P. xylostella (G88 and Cry1S1000) to Cry1Ac toxin. Our study is the first to explore the role of PxVHA-G1 on regulating Cry1Ac toxicity in P. xylostella, thus, providing new insights into the role of VHAs in the development of Cry1Ac resistance and sustainable development of pest management.
Collapse
|
13
|
Fuzita FJ, Palmisano G, Pimenta DC, Terra WR, Ferreira C. A proteomic approach to identify digestive enzymes, their exocytic and microapocrine secretory routes and their compartmentalization in the midgut of Spodoptera frugiperda. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110670. [PMID: 34438074 DOI: 10.1016/j.cbpb.2021.110670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
A proteomic approach was used to identify the digestive enzymes secreted by exocytosis and by microapocrine vesicles and enzyme midgut compartmentalization in Spodoptera frugiperda larvae. For this, proteomic analyses were performed in isolated midgut enterocyte microvillar membrane, in a fraction enriched in microapocrine vesicles (separated in soluble and membrane fractions), in the washings of the peritrophic membrane to isolate its loosely- and tightly-bound proteins, and in the peritrophic membrane contents. PM washings correspond to proteins extracted from the mucus layer surrounding PM. Serine endopeptidases (trypsins, chymotrypsins and serine endopeptidase homologs that have substitutions in the catalytic residues) and lipases are mainly secreted by exocytosis. Aminopeptidases are mainly microvillar enzymes and some are secreted membrane-bound to microapocrine vesicles, whereas carboxypeptidase isoforms follow different secretory routes. The results also showed that most polymer hydrolases (such as amylase and endopeptidases) are not retained in the ectoperitrophic fluid (found in PM washings but absent from PM contents). On the contrary, most enzymes involved in intermediate digestion (exemplified by carboxypeptidase and aminopeptidase) do not pass through the peritrophic membrane. Finally, the data revealed that the protein composition of PM includes peritrophins classified as peritrophic membrane proteins, PMP, and chitin deacetylase.
Collapse
Affiliation(s)
- Felipe J Fuzita
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Daniel C Pimenta
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Clélia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
14
|
Lin YB, Rong JJ, Wei XF, Sui ZX, Xiao J, Huang DW. Proteomics and ultrastructural analysis of Hermetia illucens (Diptera: Stratiomyidae) larval peritrophic matrix. Proteome Sci 2021; 19:7. [PMID: 33836751 PMCID: PMC8035744 DOI: 10.1186/s12953-021-00175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/03/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The black soldier fly (Hermetia illucens) has significant economic potential. The larvae can be used in financially viable waste management systems, as they are voracious feeders able to efficiently convert low-quality waste into valuable biomass. However, most studies on H. illucens in recent decades have focused on optimizing their breeding and bioconversion conditions, while information on their biology is limited. METHODS About 200 fifth instar well-fed larvae were sacrificed in this work. The liquid chromatography-tandem mass spectrometry and scanning electron microscopy were employed in this study to perform a proteomic and ultrastructural analysis of the peritrophic matrix (PM) of H. illucens larvae. RESULTS A total of 565 proteins were identified in the PM samples of H. illucen, of which 177 proteins were predicted to contain signal peptides, bioinformatics analysis and manual curation determined 88 proteins may be associated with the PM, with functions in digestion, immunity, PM modulation, and others. The ultrastructure of the H. illucens larval PM observed by scanning electron microscopy shows a unique diamond-shaped chitin grid texture. CONCLUSIONS It is the first and most comprehensive proteomics research about the PM of H. illucens larvae to date. All the proteins identified in this work has been discussed in details, except several unnamed or uncharacterized proteins, which should not be ignored and need further study. A comparison of the ultrastructure between H. illucens larval PM and those of other insects as observed by SEM indicates that the PM displays diverse textures on an ultra-micro scale and we suscept a unique diamond-shaped chitin grid texture may help H. illucens larval to hold more food. This work deepens our understanding of the molecular architecture and ultrastructure of the H. illucens larval PM.
Collapse
Affiliation(s)
- Yu-Bo Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Jing Rong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun-Fan Wei
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhuo-Xiao Sui
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinhua Xiao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Da-Wei Huang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
15
|
Boogaard B, van Lent JWM, van Oers MM. Functional analysis of the baculovirus per os infectivity factors 3 and 9 by imaging the interaction between fluorescently labelled virions and isolated midgut cells. J Gen Virol 2021; 101:778-784. [PMID: 32416750 DOI: 10.1099/jgv.0.001430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Baculovirus occlusion-derived viruses (ODVs) contain ten known per os infectivity factors (PIFs). These PIFs are crucial for midgut infection of insect larvae and form, with the exception of PIF5, an ODV entry complex. Previously, R18-dequenching assays have shown that PIF3 is dispensable for binding and fusion with midgut epithelial cells. Oral infection nevertheless fails in the absence of PIF3. PIF9 has not been analysed in much depth yet. Here, the biological role of these two PIFs in midgut infection was examined by monitoring the fate of fluorescently labelled ODVs when incubated with isolated midgut cells from Spodoptera exigua larvae. Confocal microscopy showed that in the absence of either PIF3 or PIF9, the ODVs bound to the brush borders, but the nucleocapsids failed to enter the cells. Finally, we discuss how the results obtained for PIF3 with dequenching assays and confocal microscopy can be explained by a two-phase fusion process.
Collapse
Affiliation(s)
- Bob Boogaard
- Present address: Erasmus Medical Centre, Rotterdam, Netherlands.,Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, the Netherlands
| | - Jan W M van Lent
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, the Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, the Netherlands
| |
Collapse
|
16
|
Sloan MA, Sadlova J, Lestinova T, Sanders MJ, Cotton JA, Volf P, Ligoxygakis P. The Phlebotomus papatasi systemic transcriptional response to trypanosomatid-contaminated blood does not differ from the non-infected blood meal. Parasit Vectors 2021; 14:15. [PMID: 33407867 PMCID: PMC7789365 DOI: 10.1186/s13071-020-04498-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/23/2020] [Indexed: 02/13/2023] Open
Abstract
Background Leishmaniasis, caused by parasites of the genus Leishmania, is a disease that affects up to 8 million people worldwide. Parasites are transmitted to human and animal hosts through the bite of an infected sand fly. Novel strategies for disease control require a better understanding of the key step for transmission, namely the establishment of infection inside the fly. Methods The aim of this work was to identify sand fly systemic transcriptomic signatures associated with Leishmania infection. We used next generation sequencing to describe the transcriptome of whole Phlebotomus papatasi sand flies when fed with blood alone (control) or with blood containing one of three trypanosomatids: Leishmania major, L. donovani and Herpetomonas muscarum, the latter being a parasite not transmitted to humans. Results Of the trypanosomatids studied, only L. major was able to successfully establish an infection in the host P. papatasi. However, the transcriptional signatures observed after each parasite-contaminated blood meal were not specific to success or failure of a specific infection and they did not differ from each other. The transcriptional signatures were also indistinguishable after a non-contaminated blood meal. Conclusions The results imply that sand flies perceive Leishmania as just one feature of their microbiome landscape and that any strategy to tackle transmission should focus on the response towards the blood meal rather than parasite establishment. Alternatively, Leishmania could suppress host responses. These results will generate new thinking around the concept of stopping transmission by controlling the parasite inside the insect.![]()
Collapse
Affiliation(s)
- Megan A Sloan
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Lestinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mandy J Sanders
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
| | - James A Cotton
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, UK
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK.
| |
Collapse
|
17
|
Transcriptomic profiling of the digestive tract of the rat flea, Xenopsylla cheopis, following blood feeding and infection with Yersinia pestis. PLoS Negl Trop Dis 2020; 14:e0008688. [PMID: 32946437 PMCID: PMC7526888 DOI: 10.1371/journal.pntd.0008688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/30/2020] [Accepted: 08/10/2020] [Indexed: 01/29/2023] Open
Abstract
Yersinia pestis, the causative agent of plague, is a highly lethal pathogen transmitted by the bite of infected fleas. Once ingested by a flea, Y. pestis establish a replicative niche in the gut and produce a biofilm that promotes foregut colonization and transmission. The rat flea Xenopsylla cheopis is an important vector to several zoonotic bacterial pathogens including Y. pestis. Some fleas naturally clear themselves of infection; however, the physiological and immunological mechanisms by which this occurs are largely uncharacterized. To address this, RNA was extracted, sequenced, and distinct transcript profiles were assembled de novo from X. cheopis digestive tracts isolated from fleas that were either: 1) not fed for 5 days; 2) fed sterile blood; or 3) fed blood containing ~5x108 CFU/ml Y. pestis KIM6+. Analysis and comparison of the transcript profiles resulted in identification of 23 annotated (and 11 unknown or uncharacterized) digestive tract transcripts that comprise the early transcriptional response of the rat flea gut to infection with Y. pestis. The data indicate that production of antimicrobial peptides regulated by the immune-deficiency pathway (IMD) is the primary flea immune response to infection with Y. pestis. The remaining infection-responsive transcripts, not obviously associated with the immune response, were involved in at least one of 3 physiological themes: 1) alterations to chemosensation and gut peristalsis; 2) modification of digestion and metabolism; and 3) production of chitin-binding proteins (peritrophins). Despite producing several peritrophin transcripts shortly after feeding, including a subset that were infection-responsive, no thick peritrophic membrane was detectable by histochemistry or electron microscopy of rat flea guts for the first 24 hours following blood-feeding. Here we discuss the physiological implications of rat flea infection-responsive transcripts, the function of X. cheopis peritrophins, and the mechanisms by which Y. pestis may be cleared from the flea gut. The goal of this study was to characterize the transcriptional response of the digestive tract of the rat flea, Xenopsylla cheopis, to infection with Yersinia pestis, the causative agent of plague. This flea is generally considered the most prevalent and efficient vector of Y. pestis. Because most pathogens transmitted by fleas, including Y. pestis, reside in the insect digestive tract prior to transmission, the transcriptional program induced in the gut epithelium likely influences bacterial colonization of the flea. To determine the specific response to infection, RNA profiles were generated from fleas that were either unfed, fed sterile blood, or fed blood containing Y. pestis. Comparative analyses of the transcriptomes resulted in identification of 34 infection-responsive transcripts. The functions of these differentially regulated genes indicate that infection of fleas with Y. pestis induces a limited immune response and potentially alters the insect’s behavior, metabolism, and other aspects of its physiology. Based on these data, we describe potential mechanisms fleas use to eliminate bacteria and the corresponding strategies Y. pestis uses to resist elimination. These findings may be helpful for developing targeted strategies to make fleas resistant to microbial infection and thereby reduce the incidence of diseases they spread.
Collapse
|
18
|
Li H, Zhang J, Ma T, Li C, Ma Z, Zhang X. Acting target of toosendanin locates in the midgut epithelium cells of Mythimna separate Walker larvae (lepidoptera: Noctuidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110828. [PMID: 32531576 DOI: 10.1016/j.ecoenv.2020.110828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Toosendanin (TSN), which is extracted from the root bark of Melia toosendan Siebold and Zuccarini, has multiple modes of action against insects. Especially, this compound has a potent stomach poisoning activity against several lepidoptera pests. In this paper, the signs of toxicity, digestive enzymes activity, the histopathological changes and immuno-electron microscopic localization of TSN in the midgut epithelium of Mythimna separate Walker larvae were investigated for better understanding its action mechanism against insects. The bioassay results indicated that TSN has strong stomach poisoning against the fifth-instar larvae of M. separata (LC50 = 252.23 μg/mL). The typical poisoned symptom were regurgitation and paralysis. Activities of digestive enzymes had no obvious changes after treatment with LC80 dose of TSN. The midgut epithelial cells of insect were damaged by TSN, showing the degeneration of microvilli, hyperplasia of smooth endoplasmic reticulum and condensation of chromatin. Immunohistochemical analysis revealed that the gold particles existed on the microvilli of columnar cells and goblet cells, and gradually accumulated with the exacerbation of poisoning symptoms, showing that TSN targets on the microvilli of the midgutcells. Therefore, TSN acts on digestive system and locates in the microvilli of midgutcells of M. separata.
Collapse
Affiliation(s)
- Hai Li
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571010, China
| | - Ting Ma
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Li
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province, 712100, China.
| | - Xing Zhang
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
19
|
Chen E, Kolosov D, O'Donnell MJ, Erlandson MA, McNeil JN, Donly C. The Effect of Diet on Midgut and Resulting Changes in Infectiousness of AcMNPV Baculovirus in the Cabbage Looper, Trichoplusia ni. Front Physiol 2018; 9:1348. [PMID: 30337878 PMCID: PMC6180168 DOI: 10.3389/fphys.2018.01348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023] Open
Abstract
Insecticide resistance has been reported in many important agricultural pests, and alternative management methods are required. Baculoviruses qualify as an effective, yet environmentally benign, biocontrol agent but their efficacy against generalist herbivores may be influenced by diet. However, few studies have investigated the tritrophic interactions of plant, pest, and pathogen from both a gene expression and physiological perspective. Here we use microscopy and transcriptomics to examine how diet affects the structure of peritrophic matrix (PM) in Trichoplusia ni larvae and consequently their susceptibility to the baculovirus, AcMNPV. Larvae raised on potato leaves had lower transcript levels for chitinase and chitin deacetylase genes, and possessed a thicker and more multi-layered PM than those raised on cabbage or artificial diet, which could contribute to their significantly lower susceptibility to the baculovirus. The consequences of these changes underline the importance of considering dietary influences on pathogen susceptibility in pest management strategies.
Collapse
Affiliation(s)
- Elizabeth Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, University of Western Ontario, London, ON, Canada
| | - Dennis Kolosov
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Martin A Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Jeremy N McNeil
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Cam Donly
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|