1
|
Xia G, Yang L, Li B, Wang Q, Huang L, Tian X, Zhang G. Genome-Wide Identification and Expression Profiling of Odorant-Binding Protein Genes in the Bean Flower Thrips Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae). INSECTS 2025; 16:212. [PMID: 40003841 PMCID: PMC11856683 DOI: 10.3390/insects16020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Megalurothrips usitatus is an economically important vegetable pest. Because of the growing demand for reducing pesticide use on vegetables, new environmentally friendly strategies for controlling M. usitatus are urgently needed. Insect odorant-binding proteins are prospective targets for screening environmentally friendly odorant attractants for pest control. However, very little is known about OBP genes in M. usitatus. Here, we identified 14 OBPs in the M. usitatus genome using HMMER and BLAST. The chromosomal location showed that these OBPs were widely distributed across eight chromosomes. The analysis of the gene and protein structure characteristics of OBPs in M. usitatus revealed substantial diversity within the OBP gene family. The spatiotemporal expression profiles showed that ten out of 14 MusiOBPs displayed male biased expression, which were highly expressed in antennae, suggesting that they may play a crucial role in the recognition of host plant volatiles and thrips aggregation pheromones. Notably, only MusiOBP8 was significantly higher expressed in female adults, indicating a potential involvement in reproduction. Moreover, MusiOBP7 and MusiOBP13 were highly expressed in the pupae, indicating their possible role in immune responses. These results provide an important foundation for further exploration of the functions of the OBPs in M. usitatus.
Collapse
Affiliation(s)
- Gen Xia
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.X.); (Q.W.)
| | - Lang Yang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China; (L.Y.); (L.H.)
| | - Boliao Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan’an University, Yan’an 716000, China;
| | - Qinli Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.X.); (Q.W.)
| | - Lifei Huang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China; (L.Y.); (L.H.)
| | - Xiaoli Tian
- College of Life Science, Yangtze University, Jingzhou 434025, China;
| | - Guohui Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (G.X.); (Q.W.)
| |
Collapse
|
2
|
Guo J, Liu P, Zhang X, An J, Li Y, Zhang T, Gao Z. Characterization of the ligand-binding properties of odorant-binding protein 38 from Riptortus pedestris when interacting with soybean volatiles. Front Physiol 2025; 15:1475489. [PMID: 39835200 PMCID: PMC11743672 DOI: 10.3389/fphys.2024.1475489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Background Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs). Methods Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from R. peddestris. Results The qRT-PCR analyses revealed high levels of RpedOBP38 expression in the antennae without any apparent sex bias, and it was also highly expressed in the adult stage. Recombinant RpedOBP38 was prepared by expressing it in E. coli BL21 (DE3) followed by its purification with a Ni-chelating affinity column. RpedOBP38 was found to bind most strongly to trans-2-decenal (Ki = 7.440) and trans-2-nonenal (Ki = 10.973), followed by β-pinene, (+) -4-terpineol, carvacrol, methyl salicylate, and (-)-carvone. The 3D structure of RpedOBP38 contains six α-helices and three interlocked disulfide bridges comprising a stable hydrophobic binding pocket. In a final series of molecular docking analyses, several polar (e.g., His 94, Glu97) and nonpolar (e.g., Leu29, Ile59) residues were found to be involved in RpedOBP38-ligand binding. Conclusion These data support a role for RpedOBP38 in the perception of volatiles derived from host plants, providing important insight into the mechanisms that govern olfactory recognition in R. pedestris, thereby informing the development of ecologically friendly approaches to managing R. pedestris infestations.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Zhang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China
| | - Zhanlin Gao
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China
| |
Collapse
|
3
|
Gouda MNR, Subramanian S. Decoding the genomic terrain: functional insights into 14 chemosensory proteins in whitefly Bemisia tabaci Asia II-1. Sci Rep 2024; 14:26252. [PMID: 39482332 PMCID: PMC11528076 DOI: 10.1038/s41598-024-77998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024] Open
Abstract
Genome-wide analysis of Bemisia tabaci Asia II-1 unravelled for the first-time full-length sequences of 14 chemosensory proteins (CSPs), their exon-intron boundaries, insertion sites of retrotransposons, and clustering patterns on chromosomes. All the CSPs sans CSP6 have an N-terminal signal peptide. The presence of OS-D superfamily and PhBP domains in different CSPs suggests their roles in chemosensory signal transduction and pheromone binding. Motif analysis reveals the conservation and cohesiveness of CSPs in hemiptera. The phylogenetic analysis uncovers the evolutionary lineages of Hemipteran CSPs. RT-qPCR analysis showed spatial expression of CSPs in different body tissues of B. tabaci adults. In-silico docking analysis showed high-affinity binding of CSP 1 and 5 with two insecticides, imidacloprid and fipronil, with energy values ranging from - 5.8 to -9.3 kcal/mol, along with the details of interacting aminoacidic residues in the hydrophobic binding pockets of these two CSPs. Further functional validation was done through insecticide bioassays and RNAi. This study provides novel insights into the genomic architecture of CSPs in B. tabaci Asia II-1, and functional characterisation suggests that CSP1 and 5 genes may have indirect roles in insecticide resistance. It lays the foundation for further research on developing new control strategies for B. tabaci.
Collapse
Affiliation(s)
- M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | | |
Collapse
|
4
|
Gouda MNR, Naga KC, Nebapure SM, Subramanian S. Unravelling the genomic landscape reveals the presence of six novel odorant-binding proteins in whitefly Bemisia tabaci Asia II-1. Int J Biol Macromol 2024; 279:135140. [PMID: 39216571 DOI: 10.1016/j.ijbiomac.2024.135140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Genome wide analysis identified 14 OBPs in B. tabaci Asia II-1, of which six are new to science. Phylogenetic analysis traced their diversity and evolutionary lineage among Hemipteran insects. Comparative analysis reclassified the OBP gene families among B. tabaci cryptic species: Asia I, II-1, MEAM1, and MED. The 14 OBPs were clustered on four chromosomes of B. tabaci. RT-qPCR showed high expression of OBP3 and 8 across all body tissues and OBP10 in the abdomen. Molecular docking showed that OBP 3 and 10 had high affinity bonding with different candidate ligands, with binding energies ranging from -5.0 to -7.7 kcal/mol. Competitive fluorescence binding assays revealed that β-caryophyllene and limonene had high binding affinities for OBP3 and 10, with their IC50 values ranging from 9.16 to 14 μmol·L-1 and KD values around 7 to 9 μmol·L-1. Behavioural assays revealed that β-caryophyllene and carvacrol were attractants, β-ocimene and limonene were repellents, and γ-terpinene and β-ocimene were oviposition deterrents to B. tabaci. Functional validation by RNAi demonstrated that OBP3 and OBP10 modulated host recognition of B. tabaci. This study expands our understanding of the genomic landscape of OBPs in B. tabaci, offering scope for developing novel pest control strategies.
Collapse
Affiliation(s)
- M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Kailash Chandra Naga
- Division of Plant Protection, Central Potato Research Institute, Shimla, Himachal Pradesh 171001, India.
| | - S M Nebapure
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - S Subramanian
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
5
|
Li Y, Song W, Wang S, Miao W, Liu Z, Wu F, Wang J, Sheng S. Binding characteristics and structural dynamics of two general odorant-binding proteins with plant volatiles in the olfactory recognition of Glyphodes pyloalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 173:104177. [PMID: 39173848 DOI: 10.1016/j.ibmb.2024.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is the most destructive pest, causing severe damage to mulberry production in China's sericulture industry. The insecticide application in mulberry orchards poses a significant risk of poisoning to Bombyx mori. Shifting from insecticides to odor attractants is a beneficial alternative, but not much data is available on the olfactory system of G. pyloalis. We identified 114 chemosensory genes from the antennal transcriptome database of G. pyloalis, with 18 odorant-binding protein (OBP) and 17 chemosensory protein (CSP) genes significantly expressed in the antennae. Ligand-binding assays for two antennae-biased expressed general odorant-binding proteins (GOBPs) showed high binding affinities of GOBP1 to hexadecanal, β-ionone, and 2-ethylhexyl acrylate, while GOBP2 exhibited binding to 4-tert-octylphenol, benzyl benzoate, β-ionone, and farnesol. Computational simulations indicated that van der Waal forces predominantly contributed to the binding free energy in the binding processes of complexes. Among them, Phe12 of GOBP1 and Phe19 of GOBP2 were demonstrated to play crucial roles in their bindings to plant volatiles using site-directed mutagenesis experiments. Moreover, hexadecanal and β-ionone attracted G. pyloalis male moths in the behavioral assays, while none of the candidate plant volatiles significantly affected female moths. Our findings provide a comprehensive understanding of the molecular mechanisms underlying olfactory recognition in G. pyloalis, setting the groundwork for novel mulberry pests control strategies based on insect olfaction.
Collapse
Affiliation(s)
- Yijiangcheng Li
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Wenmiao Song
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shanshan Wang
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Wanglong Miao
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Zhixiang Liu
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Fuan Wu
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural and animal biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
6
|
Li YJ, Liu TA, Zhao H, Han Y, Lou BH, Lei CY, Song YQ, Jiang HB. Repellency, Toxicity, and Chemical Composition of Plant Essential Oils from Myrtaceae against Asian Citrus Psyllid, Diaphorina citri Kuwayama (Hemiptera Liviidae). Molecules 2024; 29:3390. [PMID: 39064968 PMCID: PMC11279514 DOI: 10.3390/molecules29143390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Diaphorina citri Kuwayama (D. citri) is one of the major pests in the citrus industry, which spreads Citrus Huanglongbing disease. It has developed resistance to chemical insecticides. Therefore, searching for greener solutions for pest management is critically important. The main aim of this study was to evaluate the repellent and insecticidal efficacy of essential oils (EOs) from four species of Myrtaceae plants: Psidium guajava (PG), Eucalyptus robusta (ER), Eucalyptus tereticornis (ET), and Baeckea frutescens (BF) against D. citri and to analyze their chemical compositions. GC-MS analysis was performed, and the results indicated that the EOs of PG, ER, ET, and BF were rich in terpenoids, ketones, esters, and alcohol compounds. The repellent rate of all four EOs showed that it decreased with exposure time but increased with the concentration of EOs from 80.50% to 100.00% after treating D. citri for 6 h with four EOs at 100% concentration and decreased to 67.71% to 85.49% after 24 h of exposure. Among the compounds from the EOs tested, eucalyptol had the strongest repellent activity, with a 24 h repellency rate of 100%. The contact toxicity bioassay results showed that all EOs have insecticidal toxicity to D. citri; the LC50 for nymphs was 36.47-93.15 mL/L, and for adults, it was 60.72-111.00 mL/L. These results show that when PG is used as the reference material, the ER, ET, and BF EOs have strong biological activity against D. citri, which provides a scientific basis for the further development of plant-derived agrochemicals.
Collapse
Affiliation(s)
- Yi-Jie Li
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Tian-Ao Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (T.-A.L.); (H.Z.); (H.-B.J.)
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hang Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (T.-A.L.); (H.Z.); (H.-B.J.)
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yang Han
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Bing-Hai Lou
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Cui-Yun Lei
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Ya-Qin Song
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China; (Y.-J.L.); (Y.H.); (C.-Y.L.); (Y.-Q.S.)
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (T.-A.L.); (H.Z.); (H.-B.J.)
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Gouda MNR, Subramanian S. Variations in the expression of odorant binding and chemosensory proteins in the developmental stages of whitefly Bemisia tabaci Asia II-1. Sci Rep 2024; 14:15046. [PMID: 38951601 PMCID: PMC11217293 DOI: 10.1038/s41598-024-65785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024] Open
Abstract
The cotton whitefly, Bemisia tabaci, is considered as a species complex with 46 cryptic species, with Asia II-1 being predominant in Asia. This study addresses a significant knowledge gap in the characterization of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in Asia II-1. We explored the expression patterns of OBPs and CSPs throughout their developmental stages and compared the motif patterns of these proteins. Significant differences in expression patterns were observed for the 14 OBPs and 14 CSPs of B. tabaci Asia II-1, with OBP8 and CSP4 showing higher expression across the developmental stages. Phylogenetic analysis reveals that OBP8 and CSP4 form distinct clades, with OBP8 appearing to be an ancestral gene, giving rise to the evolution of other odorant-binding proteins in B. tabaci. The genomic distribution of OBPs and CSPs highlights gene clustering on the chromosomes, suggesting functional conservation and evolutionary events following the birth-and-death model. Molecular docking studies indicate strong binding affinities of OBP8 and CSP4 with various odour compounds like β-caryophyllene, α-pinene, β-pinene and limonene, reinforcing their roles in host recognition and reproductive functions. This study elaborates on our understanding of the putative roles of different OBPs and CSPs in B. tabaci Asia II-1, hitherto unexplored. The dynamics of the expression of OBPs and CSPs and their interactions with odour compounds offer scope for developing innovative methods for controlling this global invasive pest.
Collapse
Affiliation(s)
- M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Subramanian
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
8
|
Morin S, Atkinson PW, Walling LL. Whitefly-Plant Interactions: An Integrated Molecular Perspective. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:503-525. [PMID: 37816261 DOI: 10.1146/annurev-ento-120120-093940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The rapid advances in available transcriptomic and genomic data and our understanding of the physiology and biochemistry of whitefly-plant interactions have allowed us to gain new and significant insights into the biology of whiteflies and their successful adaptation to host plants. In this review, we provide a comprehensive overview of the mechanisms that whiteflies have evolved to overcome the challenges of feeding on phloem sap. We also highlight the evolution and functions of gene families involved in host perception, evaluation, and manipulation; primary metabolism; and metabolite detoxification. We discuss the emerging themes in plant immunity to whiteflies, focusing on whitefly effectors and their sites of action in plant defense-signaling pathways. We conclude with a discussion of advances in the genetic manipulation of whiteflies and the potential that they hold for exploring the interactions between whiteflies and their host plants, as well as the development of novel strategies for the genetic control of whiteflies.
Collapse
Affiliation(s)
- Shai Morin
- Department of Entomology, Hebrew University of Jerusalem, Rehovot, Israel;
| | - Peter W Atkinson
- Department of Entomology, University of California, Riverside, California, USA;
| | - Linda L Walling
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA;
| |
Collapse
|
9
|
Li WZ, Kang WJ, Zhou JJ, Shang SQ, Shi SL. The antennal transcriptome analysis and characterizations of odorant-binding proteins in Megachile saussurei (Hymenoptera, Megachilidae). BMC Genomics 2023; 24:781. [PMID: 38102559 PMCID: PMC10724985 DOI: 10.1186/s12864-023-09871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Odorant-binding proteins (OBPs) are essential in insect's daily behaviors mediated by olfactory perception. Megachile saussurei Radoszkowski (Hymenoptera, Megachilidae) is a principal insect pollinating alfalfa (Medicago sativa) in Northwestern China. The olfactory function have been less conducted, which provides a lot of possibilities for our research. RESULTS Our results showed that 20 OBPs were identified in total. Multiple sequence alignment analysis indicated MsauOBPs were highly conserved with a 6-cysteine motif pattern and all belonged to the classic subfamily, coding 113-196 amino acids and sharing 41.32%-99.12% amino acid identity with known OBPs of other bees. Phylogenetic analysis indicated there were certain homologies existed among MsauOBPs and most sequences were clustered with that of Osmia cornuta (Hymenoptera, Megachilidae). Expression analysis showed the identified OBPs were mostly enriched in antennae instead of other four body parts, especially the MsauOBP2, MsauOBP3, MsauOBP4, MsauOBP8, MsauOBP11 and MsauOBP17, in which the MsauOBP2, MsauOBP4 and MsauOBP8 presented obvious tissue-biased expression pattern. Molecular docking results indicated MsauOBP4 might be the most significant protein in recognizing alfalfa flower volatile 3-Octanone, while MsauOBP13 might be the most crucial protein identifying (Z)-3-hexenyl acetate. It was also found the lysine was a momentous hydrophilic amino acid in docking simulations. CONCLUSION In this study, we identified and analyzed 20 OBPs of M. saussurei. The certain homology existed among these OBPs, while some degree of divergence could also be noticed, indicating the complex functions that different MsauOBPs performed. Besides, the M. saussurei and Osmia cornuta were very likely to share similar physiological functions as most of their OBPs were clustered together. MsauOBP4 might be the key protein in recognizing 3-Octanone, while MsauOBP13 might be the key protein in binding (Z)-3-hexenyl acetate. These two proteins might contribute to the alfalfa-locating during the pollination process. The relevant results may help determine the highly specific and effective attractants for M. saussurei in alfalfa pollination and reveal the molecular mechanism of odor-evoked pollinating behavior between these two species.
Collapse
Affiliation(s)
- Wei-Zhen Li
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen-Juan Kang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing-Jiang Zhou
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Su-Qin Shang
- College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Shang-Li Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, and Sino-U.S. Centers for Grazingland Ecosystem Sustainability, College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
10
|
Hao E, Yang X, Ma M, Lu P, Qiao H. Investigating SnocCSP4 expression and key compound interactions with SnocOBP4 in Sirex noctilio Fabricius (Hymenoptera: Siricidae). Int J Biol Macromol 2023; 247:125827. [PMID: 37453637 DOI: 10.1016/j.ijbiomac.2023.125827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Sirex noctilio, a significant pest impacting Pinus sylvestris var. mongolica, presents control difficulties due to its wood-boring behavior, paucity of natural antagonists, and wide-ranging habitats. Our research aims to elucidate the functionality and operational mechanisms of chemosensory proteins 4 (SnocCSP4), providing strategic insights for pest management and fostering further exploration in CSPs. Techniques such as qPCR, fluorescence binding affinity assays, molecular docking, and dynamic simulations were utilized to investigate the tissue-specific distribution, ligand binding capacities, and mechanistic underpinnings of SnocCSP4. The findings revealed a high abundance of SnocCSP4 in male genitalia, significant sexual dimorphism in its expression, and high binding affinities to (-)-Globulol and 10-Oxodecanoic acid. Subsequent analysis identified hydrophobic cavities formed by non-polar amino acids (VAL, LEU, ILE, LYS) and the critical role of polar amino acids (ALA 46, GLU 45, THR 75) in maintaining system stability. These insights suggest the primary role of SnocCSP4 in binding or transporting these volatiles and indicate that modifying key amino acids could inform the design of more effective pest control measures.
Collapse
Affiliation(s)
- Enhua Hao
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xi Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Mei Ma
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Lu
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
11
|
Wu LJ, Li F, Song Y, Zhang ZF, Fan YL, Liu TX. Proteome Analysis of Male Accessory Gland Secretions in the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). INSECTS 2023; 14:132. [PMID: 36835702 PMCID: PMC9960318 DOI: 10.3390/insects14020132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In insects, male accessory gland proteins (ACPs) are important reproductive proteins secreted by male accessory glands (MAGs) of the internal male reproductive system. During mating, ACPs are transferred along with sperms inside female bodies and have a significant impact on the post-mating physiology changes of the females. Under sexual selection pressures, the ACPs exhibit remarkably rapid and divergent evolution and vary from species to species. The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a major insect pest of cruciferous vegetables worldwide. Mating has a profound impact on the females' behavior and physiology in this species. It is still unclear what the ACPs are in this species. In this study, two different proteomic methods were used to identify ACPs in P. xylostella. The proteins of MAGs were compared immediately before and after mating by using a tandem mass tags (TMT) quantitative proteomic analysis. The proteomes of copulatory bursas (CB) in mated females shortly after mating were also analyzed by the shotgun LC-MS/MS technique. In total, we identified 123 putative secreted ACPs. Comparing P. xylostella with other four insect ACPs, trypsins were the only ACPs detected in all insect species. We also identified some new insect ACPs, including proteins with chitin binding Peritrophin-A domain, PMP-22/ EMP/ MP20/ Claudin tight junction domain-containing protein, netrin-1, type II inositol 1,4,5-trisphosphate 5-phosphatase, two spaetzles, allatostatin-CC, and cuticular protein. This is the first time that ACPs have been identified and analyzed in P. xylostella. Our results have provided an important list of putative secreted ACPs, and have set the stage for further exploration of the functions of these putative proteins in P. xylostella reproduction.
Collapse
Affiliation(s)
- Li-Juan Wu
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Fan Li
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Institute of Agricultural Sciences of Suqian, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Yue Song
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Zhan-Feng Zhang
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yong-Liang Fan
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Tong-Xian Liu
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Institute of Entomology, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Comparison and Functional Analysis of Odorant-Binding Proteins and Chemosensory Proteins in Two Closely Related Thrips Species, Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) Based on Antennal Transcriptome Analysis. Int J Mol Sci 2022; 23:ijms232213900. [PMID: 36430376 PMCID: PMC9692942 DOI: 10.3390/ijms232213900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Two closely related thrips species, Frankliniella occidentalis and Frankliniella intonsa, are important pests on agricultural and horticultural crops. They have several similarities, including occurrence patterns, host range, and aggregation pheromone compounds. However, there are very few reports about the chemosensory genes and olfactory mechanisms in these two species. To expand our knowledge of the thrips chemosensory system, we conducted antennal transcriptome analysis of two thrips species, and identified seven odorant-binding proteins (OBPs) and eight chemosensory proteins (CSPs) in F. occidentalis, as well as six OBPs and six CSPs in F. intonsa. OBPs and CSPs showed high sequence identity between the two thrips species. The RT-qPCR results showed that the orthologous genes FoccOBP1/3/4/5/6, FintOBP1/3/4/6, FoccCSP1/2/3, and FintCSP1/2 were highly expressed in male adults. Molecular docking results suggested that orthologous pairs FoccOBP4/FintOBP4, FoccOBP6/FintOBP6, and FoccCSP2/FintCSP2 might be involved in transporting the major aggregation pheromone compound neryl (S)-2-methylbutanoate, while orthologous pairs FoccOBP6/FintOBP6, FoccCSP2/FintCSP2, and FoccCSP3/FintCSP3 might be involved in transporting the minor aggregation pheromone compound (R)-lavandulyl acetate. These results will provide a fundamental basis for understanding the molecular mechanisms of pheromone reception in the two thrips species.
Collapse
|
13
|
Wu G, Su R, Ouyang H, Zheng X, Lu W, Wang X. Antennal Transcriptome Analysis and Identification of Olfactory Genes in Glenea cantor Fabricius (Cerambycidae: Lamiinae). INSECTS 2022; 13:insects13060553. [PMID: 35735890 PMCID: PMC9224838 DOI: 10.3390/insects13060553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary In this study, we conducted antennal transcriptome analysis in Glenea cantor (Cerambycidae: Lamiinae) and identified 76 olfactory-related genes, including 29 odorant binding proteins (OBPs), 14 chemosensory proteins (CSPs), 13 odorant receptors (ORs), 18 ionotropic receptors (IRs) and 2 sensory neuron membrane proteins (SNMPs). We also verified the reliability of transcriptome differential genes by qRT-PCR, which indicated the reliability of the transcriptome. Based on the relative expression of 30 d adults, GcanOBP22 and GcanOBP25 were highly expressed not only in the antennae, but also in the wings and legs. In addition, GcanCSP4 was the highest expression on the female antennae at 12 d. These findings laid the foundation for further research on the mechanism of G. cantor olfactory mechanism at the molecular level. Abstract Glenea cantor Fabricius (Cerambycidae: Lamiinae) is a pest that devastates urban landscapes and causes ecological loss in southern China and Southeast Asian countries where its main host kapok trees are planted. The olfactory system plays a vital role in mating, foraging, and spawning in G. cantor as an ideal target for pest control. However, the olfactory mechanism of G. cantor is poorly understood at the molecular level. In this study, we first established the antennal transcriptome of G. cantor and identified 76 olfactory-related genes, including 29 odorant binding proteins (OBPs), 14 chemosensory proteins (CSPs), 13 odorant receptors (ORs), 18 ionotropic receptors (IRs) and 2 sensory neuron membrane proteins (SNMPs). Furthermore, the phylogenetic trees of olfactory genes were constructed to study the homology with other species of insects. We also verified the reliability of transcriptome differential genes by qRT-PCR, which indicated the reliability of the transcriptome. Based on the relative expression of 30 d adults, GcanOBP22 and GcanOBP25 were highly expressed not only in the antennae, but also in the wings and legs. In addition, GcanCSP4 was the highest expression on the female antennae at 12 d. These findings laid the foundation for further research on the mechanism of G. cantor olfactory mechanism at the molecular level.
Collapse
|
14
|
Zhang Q, Gao B, Qu C, Luo C, Wang J, Wang R. Selection and Evaluation of Reference Genes for miRNA Expression Analysis in Bemisia tabaci Under Insecticide Tolerance. Front Genet 2022; 13:899756. [PMID: 35646053 PMCID: PMC9136102 DOI: 10.3389/fgene.2022.899756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
A growing number of studies have focused on the microRNA (miRNA) expression in Bemisia tabaci, one devastating agricultural insect pest of the tropical and subtropical areas for which the primary means of control are insecticides. In studying the genetic underpinnings of insecticide resistance, the choice of stable reference genes for normalizing data plays a key role to acquire unbiased expression profile results from quantitative real-time PCR (qPCR) analysis. Expression profiles of 11 selected reference genes were determined systematically in B. tabaci exposure to 11 insecticides. Furthermore, we assessed the stability of all the selected candidates in relation to other variables including sex, tissue type, and developmental stage. Candidate reference gene validation was conducted by analyzing the let-7-5p expression under various experimental treatments. Five programs BestKeeper, NormFinder, geNorm, △Ct, and RefFinder were applied to verify the accuracy of the selected candidates. Our results displayed that the best choices of the selected candidates for pymetrozine, sulfoxaflor, flonicamid, cyantraniliprole, afidopyropen, and deltamethrin treatment were miR-1-3p and miR-100-5p, U6 and miR-100-5p were best for chlorpyrifos and imidacloprid treatments, and U6 and miR-1-3p were best for flupyradifurone and β-cypermethrin treatments. The reference genes miR-624, miR-252, and miR-275 worked best in adult tissues, miR-100-5p and miR-1-3p worked best in either sex, and miR-624 and miR-11 were best to use across developmental stages. Not even one reference gene was found to be suitable for all experimental conditions. Our results contributed to the growing body of the literature on qPCR reference gene selection under various experimental conditions and facilitate further investigation on gene expression changes in B. tabaci, resulting from pesticide exposure.
Collapse
Affiliation(s)
- Qinghe Zhang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Bingli Gao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinda Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou, China
- *Correspondence: Jinda Wang, ; Ran Wang,
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Jinda Wang, ; Ran Wang,
| |
Collapse
|
15
|
Gao YQ, Chen ZZ, Liu MY, Song CY, Jia ZF, Liu FH, Qu C, Dewer Y, Zhao HP, Xu YY, Kang ZW. Characterization of Antennal Chemosensilla and Associated Chemosensory Genes in the Orange Spiny Whitefly, Aleurocanthus spiniferus (Quaintanca). Front Physiol 2022; 13:847895. [PMID: 35295577 PMCID: PMC8920487 DOI: 10.3389/fphys.2022.847895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
The insect chemosensory system plays an important role in many aspects of insects' behaviors necessary for their survival. Despite the complexity of this system, an increasing number of studies have begun to understand its structure and function in different insect species. Nonetheless, the chemosensory system in the orange spiny whitefly Aleurocanthus spiniferus, as one of the most destructive insect pests of citrus in tropical Asia, has not been investigated yet. In this study, the sensillum types, morphologies and distributions of the male and female antennae of A. spiniferus were characterized using scanning electron microscopy. In both sexes, six different sensilla types were observed: trichodea sensilla, chaetica sensilla, microtrichia sensilla, coeloconic sensilla, basiconic sensilla, and finger-like sensilla. Moreover, we identified a total of 48 chemosensory genes, including 5 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 3 sensory neuron membrane proteins (SNMPs), 6 odorant receptors (ORs), 8 gustatory receptors (GRs), and 14 ionotropic receptors (IRs) using transcriptome data analysis. Tissue-specific transcriptome analysis of these genes showed predominantly expression in the head (including antennae), whereas CSPs were broadly expressed in both head (including the antennae) and body tissue of adult A. spiniferus. In addition, the expression profiling of selected chemosensory genes at different developmental stages was examined by quantitative real time-PCR which was mapped to the transcriptome. We found that the majority of these genes were highly expressed in adults, while AspiORco, AspiGR1, AspiGR2, and AspiIR4 genes were only detected in the pupal stage. Together, this study provides a basis for future chemosensory and genomic studies in A. spiniferus and closely related species. Furthermore, this study not only provides insights for further research on the molecular mechanisms of A. spiniferus-plant interactions but also provides extensive potential targets for pest control.
Collapse
Affiliation(s)
- Yu-Qing Gao
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhen-Zhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Meng-Yuan Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Chang-Yuan Song
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhi-Fei Jia
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Fang-Hua Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Cheng Qu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Hai-Peng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yong-Yu Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhi-Wei Kang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
16
|
Identification and Expression Profile of Chemosensory Receptor Genes in Aromia bungii (Faldermann) Antennal Transcriptome. INSECTS 2022; 13:insects13010096. [PMID: 35055940 PMCID: PMC8781584 DOI: 10.3390/insects13010096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023]
Abstract
The red-necked longicorn beetle, Aromia bungii (Faldermann) (Coleoptera: Cerambycidae), is a major destructive, wood-boring pest, which is widespread throughout the world. The sex pheromone of A. bungii was reported earlier; however, the chemosensory mechanism of the beetle remains almost unknown. In this study, 45 AbunORs, 6 AbunGRs and 2 AbunIRs were identified among 42,197 unigenes derived from the antennal transcriptome bioinformatic analysis of A. bungii adults. The sequence of putative Orco (AbunOR25) found in this study is highly conserved with the known Orcos from other Coleoptera species, and these Orco genes might be potentially used as target genes for the future development of novel and effective control strategies. Tissue expression analysis showed that 29 AbunOR genes were highly expressed in antennae, especially in the antennae of females, which was consistent with the idea that females might express more pheromone receptors for sensing pheromones, especially the sex pheromones produced by males. AbunOR5, 29, 31 and 37 were clustered with the pheromone receptors of the cerambycid Megacyllene caryae, suggesting that they might be putative pheromone receptors of A. bungii. All six AbunGRs were highly expressed in the mouthparts, indicating that these GRs may be involved in the taste perception process. Both AbunIRs were shown to be female-mouthparts-biased, suggesting that they might also be related to the tasting processes. Our study provides some basic information towards a deeper understanding of the chemosensing mechanism of A. bungii at a molecular level.
Collapse
|
17
|
Hua J, Fu Y, Zhou Q, Huang Y, Li H, Chen T, Ma D, Li Z. Three chemosensory proteins from the sweet potato weevil, Cylas formicarius, are involved in the perception of host plant volatiles. PEST MANAGEMENT SCIENCE 2021; 77:4497-4509. [PMID: 34037312 DOI: 10.1002/ps.6484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chemosensory proteins (CSPs) play important roles in chemical communication, but their precise physiological functions are still unclear. Cylas formicarius is the most serious pest attacking sweet potato around the world. At present, there is no effective way to control this pest. RESULTS Our results showed that CforCSP1, 5 and 6 genes were highly expressed in the antennae of both sexes of C. formicarius. In addition, results from a fluorescence competitive binding assay showed that the CforCSP1, 5 and 6 proteins had high binding affinities for 17 plant volatiles including eight host plant volatiles. This indicated that the three proteins may be involved in the detection of host plant volatiles. Furthermore, results from four-arm olfactometer bioassays showed that there was a significant tendency for C. formicarius to be attracted to eucalyptol, β-carotene, benzaldehyde, vanillin and phenethyl alcohol, while it was repelled by β-ionone. Finally, the levels of expression of the three CforCSPs in C. formicarius were successfully inhibited by RNA interference (RNAi). Behavioral experiments showed that CforCSP1, 5 and 6-deficient C. formicarius were partly anosmic to β-cyclocitral, benzaldehyde, octyl aldehyde, and β-ionone and exhibited a reduced ability to locate the host plant volatiles β-carotene and vanillin. CONCLUSION Our data suggest that CforCSP1, 5 and 6 likely are involved in the chemical communication between C. formicarius and host plant volatiles, which may play pivotal roles in oviposition and feeding site preferences. More importantly, these results could provide information for the development of monitoring and push-pull strategies for the control of C. formicarius. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinfeng Hua
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yujie Fu
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Qiaoling Zhou
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yongmei Huang
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huifeng Li
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tianyuan Chen
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Daifu Ma
- Xuzhou Academy of Agricultural Sciences/Sweet Potato Research Institute, CAAS, Xuzhou, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
18
|
Yuting Y, Dengke H, Caihua S, Wen X, Youjun Z. Molecular and Binding Characteristics of OBP5 of Bradysia odoriphaga (Diptera: Sciaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1509-1516. [PMID: 34050657 DOI: 10.1093/jee/toab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Odorant-binding proteins (OBPs) capture and transport semiochemicals to olfactory receptors (OR) and function in the first step in insect olfaction. In the present study, we cloned a full-length cDNA sequence of BodoOBP5 from the insect pest Bradysia odoriphaga (Diptera: Sciaridae). Real-time PCR (qRT-PCR) analysis revealed that BodoOBP5 was expressed at higher levels in female adults than in other developmental stages. In the different tissues, BodoOBP5 was highly expressed in the female antennae, whereas low levels were expressed in the head and the male antennae, expression was negligible in other tissues. The recombinant protein of BodoOBP5 was successfully expressed with a bacterial system. Competitive binding assays with nine host plant volatiles and a putative sex pheromone revealed that purified BodoOBP5 strongly bound to two sulfur compounds (methyl allyl disulfide and diallyl disulfide); the corresponding dissolution constants (Ki) were 10.38 and 9.23 μM, respectively. Molecular docking indicated that Leu99, Leu103, Ala143, Tyr107, Phe142, and Trp144 in the hydrophobic cavity of BodoOBP5 are the key residues mediating the interaction of BodoOBP5 with methyl allyl disulfide and diallyl disulfide. RNAi-based Y-tube olfactometer assay indicated that there is no significant difference in methyl allyl disulfide and diallyl disulfide. The results of this study increase our understanding of the binding of BodoOBP5 with plant volatiles, facilitating the development of novel ways to control B. odoriphaga.
Collapse
Affiliation(s)
- Yang Yuting
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Hua Dengke
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Shi Caihua
- Institute of Insect Sciences, College of Agriculture, Yangtze University, Jingzhou, Hubei Province 434025, China
| | - Xie Wen
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhang Youjun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
19
|
Cai LJ, Zheng LS, Huang YP, Xu W, You MS. Identification and characterization of odorant binding proteins in the diamondback moth, Plutella xylostella. INSECT SCIENCE 2021; 28:987-1004. [PMID: 32436367 DOI: 10.1111/1744-7917.12817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/09/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Odorant binding proteins (OBPs) are a group of soluble proteins functioning as odorant carriers in insect antennae, mouth parts and other chemosensory organs. However, multiple insect OBPs have been detected in other tissues and various functions have been proposed. Therefore, a detailed expression profile including stages, tissues and sexes where OBPs are expressed will assist in building the links to their potential functions, enhancing the functional studies of insect OBPs. Here, we identified 39 putative OBP genes from its genome and transcriptome sequences of diamondback moth (DBM), Plutella xylostella. The expression patterns of identified PxylOBPs were further investigated from eggs, larvae, pupae, virgin adults, mated adults, larval midgut, larval heads, adult antennae, adult heads and adult tarsi. Moreover, P. xylostella larvae and adults with and without host plants for 5 h were utilized to study the interactions between OBP expression and host plants. The results showed that most PxylOBPs were highly expressed in male and female adult antennae. The expression levels of certain PxyOBPs could be regulated by mating activities and feeding host plants. This study advances our knowledge of P. xylostella OBPs, which may help develop new strategies for more environmentally sustainable management of P. xylostella.
Collapse
Affiliation(s)
- Li-Jun Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Li-Shuang Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Yu-Ping Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Wei Xu
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Australia
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| |
Collapse
|
20
|
Li YJ, Chen HC, Hong TL, Yan MW, Wang J, Shao ZM, Wu FA, Sheng S, Wang J. Identification of chemosensory genes by antennal transcriptome analysis and expression profiles of odorant-binding proteins in parasitoid wasp Aulacocentrum confusum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100881. [PMID: 34273642 DOI: 10.1016/j.cbd.2021.100881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
The endoparasitoid wasp, Aulacocentrum confusum (Hymenoptera: Braconidae), is a preponderant natural enemy of the larvae of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae), which is a destructive pest of mulberry trees. We first constructed the antennal transcriptome database of A. confusum. In total, we obtained 48,262,304 clean reads from the dataset and assembled 24,324 unigenes. A total of 12,690 (52.17%) unigenes indicated significant similarity (E-value < 10-5) compared to known protein sequences of other species from the NCBI non-redundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used to determine the functional categories of these genes. A total of 84 putative chemosensory genes were identified from the antennal transcriptome of A. confusum, including 11 putative odorant-binding protein (OBP) genes, six chemosensory protein (CSP) genes, 44 olfactory receptor (OR) genes (including one olfactory co-receptor, Orco), 19 ionotropic receptor (IR) genes, and four sensory neuron membrane protein (SNMP) genes. Results of qPCR assays indicated that among of 11 AconOBPs, nine AconOBP genes were significantly expressed in the antennae of A. confusum adults. AconOBP8 was significantly expressed in the abdomen and AconOBP10 was highly expressed in the thorax. These findings can build a basis for further study on the processes of chemosensory perception in A. confusum at the molecular level.
Collapse
Affiliation(s)
- Yi-Jiangcheng Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Hong-Chao Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Tian-le Hong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Meng-Wen Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Jiao Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Zuo-Min Shao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China.
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China.
| |
Collapse
|
21
|
Huang C, Zhang X, He D, Wu Q, Tang R, Xing L, Liu W, Wang W, Liu B, Xi Y, Yang N, Wan F, Qian W. Comparative Genomics Provide Insights Into Function and Evolution of Odorant Binding Proteins in Cydia pomonella. Front Physiol 2021; 12:690185. [PMID: 34305643 PMCID: PMC8294088 DOI: 10.3389/fphys.2021.690185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Insect olfaction is vital for foraging, mating, host-seeking, and avoidance of predators/pathogens. In insects, odorant binding proteins (OBPs) are involved in transporting hydrophobic odor molecules from the external environment to receptor neurons. The codling moth, Cydia pomonella, one of the most destructive insect fruit pests, causes enormous economic losses. However, little is known about the number, variety, gains and losses, and evolution of OBP genes in C. pomonella. Here we report the identification of 40 OBPs in C. pomonella, most (75%) of which are classic OBPs, using genomic and transcriptomic analyses. Two OBP genes were lost in C. pomonella relative to possible distant ancestor in Lepidoptera lineage based on an analysis of gene gains and losses. The phylogenetic tree and chromosome location showed that the expansion of OBP genes mainly resulted from tandem duplications, as the CpomGOBP2 gene was duplicated twice along with loss of CpomPBPB. Two positive selection sites of the CpomGOBP1 gene were identified while other OBP genes evolved under purifying selection. Our results provide fundamental knowledge of OBP genes allowing further study of their function in C. pomonella.
Collapse
Affiliation(s)
- Cong Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xue Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Dongfeng He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, China
| | - Qiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Longsheng Xing
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wanxue Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenkai Wang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yu Xi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nianwan Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
22
|
Liu XQ, Jiang HB, Fan JY, Liu TY, Meng LW, Liu Y, Yu HZ, Dou W, Wang JJ. An odorant-binding protein of Asian citrus psyllid, Diaphorina citri, participates in the response of host plant volatiles. PEST MANAGEMENT SCIENCE 2021; 77:3068-3079. [PMID: 33686750 DOI: 10.1002/ps.6352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Odorant-binding proteins (OBPs) in insects contribute to the sensitivity of the olfactory system and connect external odorants to olfactory receptor neurons. Determination of the chemosensory functions in Diaphorina citri, a vector of the citrus Huanglongbing pathogen, may help in developing a potential target for pest management. RESULTS Diaphorina citri showed dose-dependent electroantennogram recording (EAG) responses to 12 host plant volatiles. A two-choice behavioral trap experiment showed that four compounds (methyl salicylate, linalool, citral and R-(+)-limonene) that elicited high EAG responses also had significant attraction to adults. The expression profiles induced by these compounds were detected in nine OBP genes, DcitOBP1-9. DcitOBP3, DcitOBP6 and DcitOBP7 commonly showed significant upregulation or downregulation compared with the control. Microscale thermophoresis (MST) showed that the recombinant protein DcitOBP7 had high in vitro binding affinities (Kd < 10 μm) to methyl salicylate, linalool and R-(+)-limonene, and moderate binding affinity to citral with a Kd value of 15.95 μm. Furthermore, RNA interference (RNAi)-suppressed messenger RNA (mRNA) expression of DcitOBP7 resulted in a significant reduction in EAG activity and in adult D. citri behavioral responses to tested volatiles and the preferred host, Murraya paniculata. The hydrophilic residue Arg107 of DcitOBP7 may have a key role in binding odorants via formation of hydrogen bonds. CONCLUSION These results show that DcitOBP7 plays an important role in the olfactory response. This finding may provide new insight into the functions of OBP families in D. citri and aid in the development of safe strategies for managing D. citri populations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jia-Yao Fan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tian-Yuan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hai-Zhong Yu
- Laboratory of Pest and Disease Control, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Tian J, Zhan H, Dewer Y, Zhang B, Qu C, Luo C, Li F, Yang S. Whitefly Network Analysis Reveals Gene Modules Involved in Host Plant Selection, Development and Evolution. Front Physiol 2021; 12:656649. [PMID: 33927643 PMCID: PMC8076899 DOI: 10.3389/fphys.2021.656649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Whiteflies are Hemipterans that typically feed on the undersides of plant leaves. They cause severe damage by direct feeding as well as transmitting plant viruses to a wide range of plants. However, it remains largely unknown which genes play a key role in development and host selection. In this study, weighted gene co-expression network analysis was applied to construct gene co-expression networks in whitefly. Nineteen gene co-expression modules were detected from 15560 expressed genes of whitefly. Combined with the transcriptome data of salivary glands and midgut, we identified three gene co-expression modules related to host plant selection. These three modules contain genes related to host-plant recognition, such as detoxification genes, chemosensory genes and some salivary gland-associated genes. Results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses elucidated the following pathways involved in these modules: lysosome, metabolic and detoxification pathways. The modules related to the development contain two co-expression modules; moreover, the genes were annotated to the development of chitin-based cuticle. This analysis provides a basis for future functional analysis of genes involved in host-plant recognition.
Collapse
Affiliation(s)
- Jiahui Tian
- School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haixia Zhan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Biyun Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Cheng Qu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chen Luo
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengqi Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shiyong Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, China
| |
Collapse
|
24
|
Lin YB, Rong JJ, Wei XF, Sui ZX, Xiao J, Huang DW. Proteomics and ultrastructural analysis of Hermetia illucens (Diptera: Stratiomyidae) larval peritrophic matrix. Proteome Sci 2021; 19:7. [PMID: 33836751 PMCID: PMC8035744 DOI: 10.1186/s12953-021-00175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/03/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The black soldier fly (Hermetia illucens) has significant economic potential. The larvae can be used in financially viable waste management systems, as they are voracious feeders able to efficiently convert low-quality waste into valuable biomass. However, most studies on H. illucens in recent decades have focused on optimizing their breeding and bioconversion conditions, while information on their biology is limited. METHODS About 200 fifth instar well-fed larvae were sacrificed in this work. The liquid chromatography-tandem mass spectrometry and scanning electron microscopy were employed in this study to perform a proteomic and ultrastructural analysis of the peritrophic matrix (PM) of H. illucens larvae. RESULTS A total of 565 proteins were identified in the PM samples of H. illucen, of which 177 proteins were predicted to contain signal peptides, bioinformatics analysis and manual curation determined 88 proteins may be associated with the PM, with functions in digestion, immunity, PM modulation, and others. The ultrastructure of the H. illucens larval PM observed by scanning electron microscopy shows a unique diamond-shaped chitin grid texture. CONCLUSIONS It is the first and most comprehensive proteomics research about the PM of H. illucens larvae to date. All the proteins identified in this work has been discussed in details, except several unnamed or uncharacterized proteins, which should not be ignored and need further study. A comparison of the ultrastructure between H. illucens larval PM and those of other insects as observed by SEM indicates that the PM displays diverse textures on an ultra-micro scale and we suscept a unique diamond-shaped chitin grid texture may help H. illucens larval to hold more food. This work deepens our understanding of the molecular architecture and ultrastructure of the H. illucens larval PM.
Collapse
Affiliation(s)
- Yu-Bo Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Jing Rong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun-Fan Wei
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhuo-Xiao Sui
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinhua Xiao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Da-Wei Huang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
25
|
Wang L, Bi YD, Liu M, Li W, Liu M, Di SF, Yang S, Fan C, Bai L, Lai YC. Identification and expression profiles analysis of odorant-binding proteins in soybean aphid, Aphis glycines (Hemiptera: Aphididae). INSECT SCIENCE 2020; 27:1019-1030. [PMID: 31271503 DOI: 10.1111/1744-7917.12709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
The soybean aphid, Aphis glycines, is an extreme specialist and an important invasive pest that relies on olfaction for behaviors such as feeding, mating, and foraging. Odorant-binding proteins (OBPs) play a vital role in olfaction by binding to volatile compounds and by regulating insect sensing of the environment. In this work we used rapid amplification of complementary DNA ends technology to identify and characterize 10 genes encoding A. glycines OBPs (AglyOBPs) belonging to 3 subfamilies, including 4 classic OBPs, 5 Plus-C OBPs, and one Minus-C OBP. Quantitative real-time polymerase chain reaction demonstrated variable specific expression patterns for the 10 genes based on developmental stage and aphid tissue sampled. Expression levels of 7 AglyOBPs (2, 3, 4, 5, 7, 9, and 10) were highest in the 4th instar, indicating that the 4th nymphal instar is an important developmental period during which soybean aphids regulate feeding and search for host plants. Tissue-specific expression results demonstrated that AglyOBP2, 7, and 9 exhibited significantly higher expression levels in antennae. Meanwhile, ligand-binding analysis of 5 OBPs demonstrated binding of AglyOBP2 and AglyOBP3 to a broad spectrum of volatiles released by green leaf plants, with bias toward 6- to 8-carbon chain volatiles and strong binding of AglyOBP7 to trans-β-farnesene. Taken together, our findings build a foundation of knowledge for use in the study of molecular olfaction mechanisms and provide insights to guide future soybean aphid research.
Collapse
Affiliation(s)
- Ling Wang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Program, Harbin, China
| | - Ying-Dong Bi
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ming Liu
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Wei Li
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Miao Liu
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shu-Feng Di
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shuai Yang
- Virus-free Seedling Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chao Fan
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lei Bai
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yong-Cai Lai
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
26
|
Fu S, Li F, Yan X, Hao C. Expression Profiles and Binding Properties of the Chemosensory Protein PxylCSP11 from the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5924359. [PMID: 33057681 PMCID: PMC7583271 DOI: 10.1093/jisesa/ieaa107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 05/08/2023]
Abstract
The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) is one of the most destructive pests to cruciferous plants worldwide. The oligophagous moth primarily utilizes its host volatiles for foraging and oviposition. Chemosensory proteins (CSPs) are soluble carrier proteins with low molecular weight, which recognize and transport various semiochemicals in insect chemoreception. At present, there is limited information on the recognition of host volatiles by CSPs of P. xylostella. Here, we investigated expression patterns and binding characteristics of PxylCSP11 in P. xylostella. The open reading frame of PxylCSP11 was 369-bp encoding 122 amino acids. PxylCSP11 possessed four conserved cysteines, which was consistent with the typical characteristic of CSPs. PxylCSP11 was highly expressed in antennae, and the expression level of PxylCSP11 in male antennae was higher than that in female antennae. Fluorescence competitive binding assays showed that PxylCSP11 had strong binding abilities to several ligands, including volatiles of cruciferous plants, and (Z)-11-hexadecenyl acetate (Z11-16:Ac), a major sex pheromone of P. xylostella. Our results suggest that PxylCSP11 may play an important role in host recognition and spouse location in P. xylostella.
Collapse
Affiliation(s)
- Shuhui Fu
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Fangyuan Li
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Xizhong Yan
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Chi Hao
- College of Agriculture, Shanxi Agricultural University, Taigu, China
- Corresponding author, e-mail:
| |
Collapse
|
27
|
Xu Y, Qu C, Sun X, Jia Z, Xue M, Zhao H, Zhou X. Nitric Oxide Boosts Bemisia tabaci Performance Through the Suppression of Jasmonic Acid Signaling Pathway in Tobacco Plants. Front Physiol 2020; 11:847. [PMID: 32792979 PMCID: PMC7387647 DOI: 10.3389/fphys.2020.00847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
The intimate relationships between plants and insects start with herbivory, which can be traced back to approximately 420 million year ago. Like many other relationships, a plant–insect interaction can be mutualistic, commensalistic, or antagonistic. Within antagonistic relationships, plants deploy inducible defense to insect phytophagy. Insects, however, can evade/suppress effectual plant defenses by manipulating plant defense signaling. Previously, we showed that the sweet potato whitefly, Bemisia tabaci, a global invasive insect pest, can suppress jasmonic acid (JA)-dependent defenses, thereby enhancing their performance on host plants. Given that nitric oxide (NO), a multifunctional signaling molecule, interacts closely with JA signaling pathway, we hypothesized that NO is involved in the suppression of JA defensive responses. Equipped with an integrated approach, we comprehensively examined this overarching hypothesis. We showed that: (1) tobacco plants responded to B. tabaci infestation by accumulating high levels of NO, (2) the exogenous application of sodium nitroprusside, a NO donor, in tobacco plants attracted B. tabaci adults and accelerated nymphal development, whereas plants treated with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a NO scavenger, repelled B. tabaci adults and prolonged nymphal development, and, more importantly, (3) silencing of NO-associated protein 1, a gene associated with NO accumulation, and cPTIO application disrupted the B. tabaci-mediated suppression of JA in plants. Collectively, these results suggest that: (1) NO signaling is activated by B. tabaci infestation, (2) NO is involved in the suppression of JA-dependent plant defense, and, consequently, (3) NO improves B. tabaci performance on host plants. Our study reflects the remarkable arm race that co-evolved for millions of years between plants and insects and offers a potential novel target (nitric oxide) for the long-term sustainable management of this global invasive pest.
Collapse
Affiliation(s)
- Yanan Xu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Cheng Qu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Xia Sun
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zhifei Jia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Ming Xue
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Haipeng Zhao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Xuguo Zhou
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
28
|
Zeng Y, Merchant A, Wu Q, Wang S, Kong L, Zhou X, Xie W, Zhang Y. A Chemosensory Protein BtabCSP11 Mediates Reproduction in Bemisia tabaci. Front Physiol 2020; 11:709. [PMID: 32695020 PMCID: PMC7338578 DOI: 10.3389/fphys.2020.00709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/29/2020] [Indexed: 11/15/2022] Open
Abstract
The olfactory system serves a vital role in the evolution and survival of insects, being involved in behaviors such as host seeking, foraging, mating, and oviposition. Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are involved in the olfactory recognition process. In this study, BtabCSP11, a CSP11 gene from the whitefly Bemisia tabaci, was cloned and characterized. The open reading frame of BtabCSP11 encodes 136 amino acids, with four highly conserved cysteine residues. The temporal and spatial expression profiles showed that BtabCSP11 was highly expressed in the abdomens of B. tabaci females. Dietary RNA interference (RNAi)-based functional analysis showed substantially reduced fecundity in parthenogenetically reproduced females, suggesting a potential role of BtabCSP11 in B. tabaci reproduction. These combined results expand the function of CSPs beyond chemosensation.
Collapse
Affiliation(s)
- Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lan Kong
- Department of Computer Science, Eastern Kentucky University, Richmond, KY, United States
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Waris MI, Younas A, Adeel MM, Duan SG, Quershi SR, Kaleem Ullah RM, Wang MQ. The role of chemosensory protein 10 in the detection of behaviorally active compounds in brown planthopper, Nilaparvata lugens. INSECT SCIENCE 2020; 27:531-544. [PMID: 30593726 DOI: 10.1111/1744-7917.12659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Chemosensory proteins (CSPs) play important roles in insects' chemoreception, although their specific functional roles have not been fully elucidated. In this study, we conducted the developmental expression patterns and competitive binding assay as well as knock-down assay by RNA interference both in vitro and in vivo to reveal the function of NlugCSP10 from the brown planthopper (BPH), Nilaparvata lugens (Stål), a major pest in rice plants. The results showed that NlugCSP10 messenger RNA was significantly higher in males than in females and correlated to gender, development and wing forms. The fluorescence binding assays revealed that NlugCSP10 exhibited the highest binding affinity with cis-3-hexenyl acetate, eicosane, and (+)-β-pinene. Behavioral assay revealed that eicosane displayed attractant activity, while cis-3-hexenyl acetate, similar to (+)-β-pinene significantly repelled N. lugens adults. Silencing of NlugCSP10, which is responsible for cis-3-hexenyl acetate binding, significantly disrupted cis-3-hexenyl acetate communication. Overall, findings of the present study showed that NlugCSP10 could selectively interrelate with numerous volatiles emitted from host plants and these ligands could be designated to develop slow-release mediators that attract/repel N. lugens and subsequently improve the exploration of plans to control this insect pest.
Collapse
Affiliation(s)
- Muhammad Irfan Waris
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aneela Younas
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Shuang-Gang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sundas Rana Quershi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rana Muhammad Kaleem Ullah
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
He Y, Wang K, Zeng Y, Guo Z, Zhang Y, Wu Q, Wang S. Analysis of the antennal transcriptome and odorant-binding protein expression profiles of the parasitoid wasp Encarsia formosa. Genomics 2020; 112:2291-2301. [DOI: 10.1016/j.ygeno.2019.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 01/03/2023]
|
31
|
Chen Q, Zhao H, Wen M, Li J, Zhou H, Wang J, Zhou Y, Liu Y, Du L, Kang H, Zhang J, Cao R, Xu X, Zhou JJ, Ren B, Wang Y. Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread. BMC Genomics 2020; 21:242. [PMID: 32183717 PMCID: PMC7079503 DOI: 10.1186/s12864-020-6629-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The fall webworm Hyphantria cunea is an invasive and polyphagous defoliator pest that feeds on nearly any type of deciduous tree worldwide. The silk web of H. cunea aids its aggregating behavior, provides thermal regulation and is regarded as one of causes for its rapid spread. In addition, both chemosensory and detoxification genes are vital for host adaptation in insects. RESULTS Here, a high-quality genome of H. cunea was obtained. Silk-web-related genes were identified from the genome, and successful silencing of the silk protein gene HcunFib-H resulted in a significant decrease in silk web shelter production. The CAFE analysis showed that some chemosensory and detoxification gene families, such as CSPs, CCEs, GSTs and UGTs, were expanded. A transcriptome analysis using the newly sequenced H. cunea genome showed that most chemosensory genes were specifically expressed in the antennae, while most detoxification genes were highly expressed during the feeding peak. Moreover, we found that many nutrient-related genes and one detoxification gene, HcunP450 (CYP306A1), were under significant positive selection, suggesting a crucial role of these genes in host adaptation in H. cunea. At the metagenomic level, several microbial communities in H. cunea gut and their metabolic pathways might be beneficial to H. cunea for nutrient metabolism and detoxification, and might also contribute to its host adaptation. CONCLUSIONS These findings explain the host and environmental adaptations of H. cunea at the genetic level and provide partial evidence for the cause of its rapid invasion and potential gene targets for innovative pest management strategies.
Collapse
Affiliation(s)
- Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Ming Wen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jiaxin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Haifeng Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jiatong Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Yuxin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Yulin Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Lixin Du
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hui Kang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jian Zhang
- School of Life Sciences, Changchun Normal University, Changchun, Jilin, China
| | - Rui Cao
- Meihekou Forest Pest Control Station, Changchun, Jilin, China
| | - Xiaoming Xu
- Garden and Plant Protection Station of Changchun, Changchun, Jilin, China
| | - Jing-Jiang Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
- Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China.
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
| |
Collapse
|
32
|
He Y, Liu Y, Wang K, Zhang Y, Wu Q, Wang S. Development and Fitness of the Parasitoid, Encarsia formosa (Hymenoptera: Aphelinidae), on the B and Q of the Sweetpotato Whitefly (Hemiptera: Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2597-2603. [PMID: 31386158 DOI: 10.1093/jee/toz200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 06/10/2023]
Abstract
Encarsia formosa Gahan is an important endoparasitoid of the whitefly, Bemisia tabaci Gennadius. In the present study, we compared the fitness and population parameters of E. formosa when parasitizing the two most invasive and destructive whitefly species in China, the B and Q of B. tabaci. We also studied whether natal host influenced on parasitism and host-feeding capacities of E. formosa on B. tabaci B versus Q. Age-stage life table analysis indicated that E. formosa developmental duration was shorter, fecundity was higher, and longevity was greater on B. tabaci B than on Q. The life table parameters, including the intrinsic rate of increase (r), finite rate of increase (λ), net reproduction rate (R0), and the mean generation time (T), indicated that the fitness of E. formosa on B. tabaci B is higher than B. tabaci Q. We also found that the host species used to rear E. formosa affected the parasitoid's subsequent parasitism and host feeding on B. tabaci B and Q. When E. formosa were reared on B. tabaci B, its subsequent parasitism rate on third-instar nymphs was significantly higher on B. tabaci B than on Q. These results will be useful for managing the biological control of B. tabaci in the field.
Collapse
Affiliation(s)
- Yanyan He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie, Beijing, P. R. China
| | - Yicong Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie, Beijing, P. R. China
| | - Ke Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie, Beijing, P. R. China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie, Beijing, P. R. China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie, Beijing, P. R. China
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie, Beijing, P. R. China
| |
Collapse
|
33
|
Yuan H, Chang H, Zhao L, Yang C, Huang Y. Sex- and tissue-specific transcriptome analyses and expression profiling of olfactory-related genes in Ceracris nigricornis Walker (Orthoptera: Acrididae). BMC Genomics 2019; 20:808. [PMID: 31694535 PMCID: PMC6836668 DOI: 10.1186/s12864-019-6208-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sophisticated insect olfactory system plays an important role in recognizing external odors and enabling insects to adapt to environment. Foraging, host seeking, mating, ovipositing and other forms of chemical communication are based on olfaction, which requires the participation of multiple olfactory genes. The exclusive evolutionary trend of the olfactory system in Orthoptera insects is an excellent model for studying olfactory evolution, but limited olfaction research is available for these species. The olfactory-related genes of Ceracris nigricornis Walker (Orthoptera: Acrididae), a severe pest of bamboos, have not yet been reported. RESULTS We sequenced and analyzed the transcriptomes from different tissues of C. nigricornis and obtained 223.76 Gb clean data that were assembled into 43,603 unigenes with an N50 length of 2235 bp. Among the transcripts, 66.79% of unigenes were annotated. Based on annotation and tBLASTn results, 112 candidate olfactory-related genes were identified for the first time, including 20 odorant-binding proteins (OBPs), 10 chemosensory-binding proteins (CSPs), 71 odorant receptors (ORs), eight ionotropic receptors (IRs) and three sensory neuron membrane proteins (SNMPs). The fragments per kilobase per million mapped fragments (FPKM) values showed that most olfactory-related differentially expressed genes (DEGs) were enriched in the antennae, and these results were confirmed by detecting the expression of olfactory-related genes with quantitative real-time PCR (qRT-PCR). Among these antennae-enriched genes, some were sex-biased, indicating their different roles in the olfactory system of C. nigricornis. CONCLUSIONS This study provides the first comprehensive list and expression profiles of olfactory-related genes in C. nigricornis and a foundation for functional studies of these olfactory-related genes at the molecular level.
Collapse
Affiliation(s)
- Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Huihui Chang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lina Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Chao Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.,Shaanxi Institute of Zoology, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
34
|
Chen XF, Xu L, Zhang YX, Wei D, Wang JJ, Jiang HB. Genome-wide identification and expression profiling of odorant-binding proteins in the oriental fruit fly, Bactrocera dorsalis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100605. [PMID: 31326828 DOI: 10.1016/j.cbd.2019.100605] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022]
Abstract
Olfaction contributes to many crucial behaviors in insects, such as foraging, locating hosts, mating, and avoiding predators. In the first step of the olfaction process in insects, odorant-binding proteins (OBPs) bind with the odorants and transport hydrophobic odorants. OBPs are also believed to accelerate the termination of the odorant response. The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive fruit-eating pests, causing enormous economic losses to the fruit and vegetable industry worldwide. However, information relating to the number, diversity, and expression patterns of OBPs still remains fragmented in this insect pest. Here, we attempted to identify the OBPs in B. dorsalis using genomic and transcriptomic information. In this study, we expanded the repository of B. dorsalis OBPs to 49. Phylogenetic analysis of BdorOBPs with other species revealed that these proteins grouped into four subfamilies. Furthermore, we determined the expression profiles in six body parts (namely, the legs, wings, antenna, cuticles of the head, thorax, and abdomen) and five internal tissues (namely, the fat body, midgut, Malpighian tubule, testis, and ovary). The results indicated that 21 BdorOBPs showed high expression levels in the antenna, legs, and head cuticles and may thus perform olfactory functions, which corroborates previous evidence. Two BdorOBPs were specifically expressed in the abdomen cuticles. Nineteen OBPs were highly expressed in the fat body, while four OBPs were highly expressed in the reproductive organs. This indicated that they may have physiological roles other than in chemoreception. In summary, our results contribute to the knowledge base of insect OBPs and provide a foundation for the further study of the molecular mechanisms of chemoreception in B. dorsalis.
Collapse
Affiliation(s)
- Xiao-Feng Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400716, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400716, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Ying-Xin Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400716, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Dong Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400716, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400716, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Chongqing 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400716, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
35
|
He C, Liang J, Liu S, Wang S, Wu Q, Xie W, Zhang Y. Changes in the expression of four ABC transporter genes in response to imidacloprid in Bemisia tabaci Q (Hemiptera: Aleyrodidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:136-143. [PMID: 30744887 DOI: 10.1016/j.pestbp.2018.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), a globally invasive species complex that causes serious damage to field crops, has developed resistance to imidacloprid and many other pesticides. Insect detoxify to pesticides may partially depend on ABC transporters, which contribute to the detoxification of xenobiotics. To determine whether genes in the ABCG subfamily are involved in imidacloprid detoxification in B. tabaci Q, we cloned four ABCG subfamily genes based on the published MED/Q genome and on our previous study of the transcriptional response of ABC transporters in B. tabaci Q adults to imidacloprid. As indicated by the quantification of mRNA levels after a 6-h exposure, the expression level of ABCG3 was 3.3-fold higher in B. tabaci Q adults exposed to 100 μg/mL imidacloprid rather than to the buffer control. The expression level of ABCG3 was higher in females than in males but did not significantly differ among eggs or nymphal stages and did not significantly differ among head, thorax, and abdomen tissues of adults. Knockdown of ABCG3 via RNA interference significantly increased the mortality of imidacloprid-treated laboratory and field-collected adults of B. tabaci Q. These results indicate that the ABCG3 gene may be involved in imidacloprid detoxification by B. tabaci Q.
Collapse
Affiliation(s)
- Chao He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jinjin Liang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, PR China
| | - Shaonan Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
36
|
Venthur H, Zhou JJ. Odorant Receptors and Odorant-Binding Proteins as Insect Pest Control Targets: A Comparative Analysis. Front Physiol 2018; 9:1163. [PMID: 30197600 PMCID: PMC6117247 DOI: 10.3389/fphys.2018.01163] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.
Collapse
Affiliation(s)
- Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Biotechnology Research Applied to the Environment (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom.,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|