1
|
Pan J, Wei S, Qiu Q, Tong X, Shen Z, Zhu M, Hu X, Gong C. A novel chimeric RNA originating from BmCPV S4 and Bombyx mori HDAC11 transcripts regulates virus proliferation. PLoS Pathog 2023; 19:e1011184. [PMID: 38048361 PMCID: PMC10721177 DOI: 10.1371/journal.ppat.1011184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 12/14/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
Polymerases encoded by segmented negative-strand RNA viruses cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching") to generate chimeric RNA, and trans-splicing occurs between viral and cellular transcripts. Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), an RNA virus belonging to Reoviridae, is a major pathogen of silkworm (B. mori). The genome of BmCPV consists of 10 segmented double-stranded RNAs (S1-S10) from which viral RNAs encoding a protein are transcribed. In this study, chimeric silkworm-BmCPV RNAs, in which the sequence derived from the silkworm transcript could fuse with both the 5' end and the 3' end of viral RNA, were identified in the midgut of BmCPV-infected silkworms by RNA_seq and further confirmed by RT-PCR and Sanger sequencing. A novel chimeric RNA, HDAC11-S4 RNA 4, derived from silkworm histone deacetylase 11 (HDAC11) and the BmCPV S4 transcript encoding viral structural protein 4 (VP4), was selected for validation by in situ hybridization and Northern blotting. Interestingly, our results indicated that HDAC11-S4 RNA 4 was generated in a BmCPV RNA-dependent RNA polymerase (RdRp)-independent manner and could be translated into a truncated BmCPV VP4 with a silkworm HDAC11-derived N-terminal extension. Moreover, it was confirmed that HDAC11-S4 RNA 4 inhibited BmCPV proliferation, decreased the level of H3K9me3 and increased the level of H3K9ac. These results indicated that during infection with BmCPV, a novel mechanism, different from that described in previous reports, allows the genesis of chimeric silkworm-BmCPV RNAs with biological functions.
Collapse
Affiliation(s)
- Jun Pan
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Shulin Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Qunnan Qiu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Xinyu Tong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Zeen Shen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, People’s Republic of China
| | - Min Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, People’s Republic of China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
2
|
Zhang E, Zhang J, Zhao R, Lu Y, Yin X, Lan X, Luo Z. Role of MicroRNA-Like RNAs in the Regulation of Spore Morphological Differences in the Entomopathogenic Fungus Metarhizium acridum. Pol J Microbiol 2022; 71:309-324. [PMID: 36185022 PMCID: PMC9608168 DOI: 10.33073/pjm-2022-028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022] Open
Abstract
Metarhizium acridum is an important microbial pesticide. Conidia (CO) and blastospores (BS) are two types of spores that occur in different patterns in the M. acridum life cycle and exhibit significant differences in cell morphology, structure, and activity. It may suggest that the fungus has a complex gene regulation mechanism. While previous studies on the differences between CO and BS have mainly focused on cell structure and application, little is known regarding the differences between CO and BS in fungi on the transcriptome levels. MicroRNAs (miRNAs) are small noncoding RNAs crucial to gene regulation and cell function. Understanding the miRNA-like RNAs (milRNA) and mRNA expression profiles related to cell growth and cellular morphological changes would elucidate the roles of miRNAs in spore morphological differences. In this study, 4,646 differentially expressed genes (DEGs) were identified and mainly classified in the GO terms cell, cell part, biological process, and catalytic activity. The KEGG annotation suggested that they were enriched in amino acid biosynthesis, carbohydrate metabolism, ribosome, and oxidative phosphorylation and might be involved in cell activity and structure. There were 113 differentially expressed milRNAs (DEMs), targeting 493 DEGs. Target gene functional analysis revealed that the target genes were mainly enriched in RNA transport, purine metabolism, and the cell cycle. In addition, we identified essential genes from milRNA-mRNA pairs that might participate in cell budding growth and cell membrane and wall integrity, including adenosine deaminase, glycosyl hydrolase, and G-patch domain protein (dno-miR-328-3p), WD repeat-containing protein pop1 (age-miR-127), and GPI-anchored wall transfer protein (cgr-miR-598). MilRNAs might therefore play a crucial role in cell growth and cellular morphological changes as transcriptional and post-transcriptional regulators.
Collapse
Affiliation(s)
- Erhao Zhang
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Jie Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Rundong Zhao
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Yazhou Lu
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Xiu Yin
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Xiaozhong Lan
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China, E-mail:
| | - Zhang Luo
- Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China, E-mail:
| |
Collapse
|
3
|
Zhao Z, Lin S, Wu W, Zhang Z, Wu P, Shen M, Qian H, Guo X. A cypovirus encoded microRNA negatively regulates the NF-κB pathway to enhance viral multiplication in Silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104382. [PMID: 35245604 DOI: 10.1016/j.dci.2022.104382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as novel gene expression regulators at the post-transcriptional level. Not with standing that the biogenesis and function of miRNAs are well-understood in eukaryotes, little is known about RNA virus-encoded miRNAs. Bombyx mori cypovirus (BmCPV) is a double-stranded RNA virus with a segmented genome that causes cytoplasmic polyhedrosis disease in silkworm larvae. To date, the interaction between BmCPV and silkworm remains largely unclear. 22 candidate BmCPV-encoded miRNAs were identified in this study through small RNA sequencing, stem-loop RT-PCR and qRT-PCR. Then, generation and function analyses were conducted on one of the candidate miRNAs, BmCPV-miR-1, in the BmN cells and the silkworm larvae by RNA interference, quantitative PCR, dual-luciferase assay. Our results revealed that BmCPV-miR-1 was encoded by BmCPV genome RNA rather than the degraded fragments of the viral genome. Its generation depended on Dicer-1 and might also be correlated with Dicer-2, Argonaute-1 and Argonaute-2. Moreover, BmCPV-miR-1 could suppress the expression of the target gene, B. mori inhibitor of nuclear factor kappa-B kinase subunit beta (BmIKKβ), via binding to the target mRNA 3'-untranslated region, which fine-tuned the host NF-κB signaling pathway and consequently enhanced viral replication. Our results provide new evidence supporting the hypothesis that RNA viruses could generate miRNAs to modulate antiviral host defense.
Collapse
Affiliation(s)
- Ze Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Wanming Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Heying Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China.
| |
Collapse
|
4
|
Deng Z, Zhang Y, Li L, Xie X, Huang J, Zhang M, Ni X, Li X. A dual-luciferase reporter system for characterization of small RNA target genes in both mammalian and insect cells. INSECT SCIENCE 2022; 29:631-644. [PMID: 34232550 DOI: 10.1111/1744-7917.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs) are regulatory RNA molecules that bind to target messenger RNAs (mRNAs) and affect the stability or translational efficiency of the bound mRNAs. Single or dual-luciferase reporter systems have been successfully used to identify miRNA target genes in mammalian cells. These reporter systems, however, are not sensitive enough to verify miRNA-target gene relationships in insect cell lines because the promoters of the target luciferase (usually Renilla) used in these reporter systems are too weak to drive sufficient expression of the target luciferase in insect cells. In this study, we replaced the SV40 promoter in the psiCHECK-2 reporter vector, which is widely used with mammalian cell lines, with the HSV-TK or AC5.1 promoter to yield two new dual-luciferase reporter vectors, designated psiCHECK-2-TK and psiCHECK-2-AC5.1, respectively. Only psiCHECK-2 and psiCHECK-2-AC5.1 had suitable target (Renilla)/reference (firefly) luciferase activity ratios in mammalian (HeLa and HEK293) and insect (Sf9, S2, Helicoverpa zea fat body and ovary) cell lines, while psiCHECK-2-TK had suitable Renilla/firefly luciferase activity ratios regardless of the cell line. Moreover, psiCHECK-2-TK successfully detected the interaction between Helicoverpa armigera miRNA9a and its target, the 3'-untranslated region of heat shock protein 90, in both mammalian and H. zea cell lines, but psiCHECK-2 failed to do so in H. zea cell lines. Furthermore, psiCHECK-2-TK with the target sequence, HzMasc (H. zea Masculinizer), accurately differentiated between H. zea cell lines with or without the negative regulation factor (miRNA or piRNA) of HzMasc. These data demonstrate that psiCHECK-2-TK can be used to functionally characterize small RNA target genes in both mammalian and insect cells.
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuting Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Leyao Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xingcheng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, Georgia, USA
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Zhang Y, Zhu M, Zhang X, Dai K, Liang Z, Pan J, Zhang Z, Cao M, Xue R, Cao G, Hu X, Gong C. Micropeptide vsp21 translated by Reovirus circular RNA 000048 attenuates viral replication. Int J Biol Macromol 2022; 209:1179-1187. [PMID: 35461859 DOI: 10.1016/j.ijbiomac.2022.04.136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
To date, some DNA viruses and single-stranded RNA viruses have been found to generate circRNAs. However, the reports on circRNAs produced by double-stranded RNA viruses are very limited. In this study, Bombyx mori cypovirus (BmCPV), a typical double-stranded RNA virus belonging to the Reoviridae, was demonstrated to generate viral circRNAs (vcircRNAs) and a vcircRNA_000048 whose sequence corresponds with the region 164-1245 nt on the BmCPV genomic dsRNA S5 segment (GQ294468.1) was validated by PCR, Sanger sequencing, reverse transcription-rolling circle amplification, and Northern blotting. Furthermore, we verified that vcircRNA_000048 translates a micropeptide vsp21 with 21 amino acid residues in an IRES-dependent manner, and vsp21 attenuates the viral replication. These findings provided a novel clue to understanding the regulation of viral multiplication and interaction of reovirus with the host.
Collapse
Affiliation(s)
- Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Kun Dai
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Ziyao Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Manman Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou 215123, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
Moure UAE, Tan T, Sha L, Lu X, Shao Z, Yang G, Wang Y, Cui H. Advances in the Immune Regulatory Role of Non-Coding RNAs (miRNAs and lncRNAs) in Insect-Pathogen Interactions. Front Immunol 2022; 13:856457. [PMID: 35464405 PMCID: PMC9020863 DOI: 10.3389/fimmu.2022.856457] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Insects are by far the most abundant and diverse living organisms on earth and are frequently prone to microbial attacks. In other to counteract and overcome microbial invasions, insects have in an evolutionary way conserved and developed immune defense mechanisms such as Toll, immune deficiency (Imd), and JAK/STAT signaling pathways leading to the expression of antimicrobial peptides. These pathways have accessory immune effector mechanisms, such as phagocytosis, encapsulation, melanization, nodulation, RNA interference (RNAi), lysis, autophagy, and apoptosis. However, pathogens evolved strategies that circumvent host immune response following infections, which may have helped insects further sophisticate their immune response mechanisms. The involvement of ncRNAs in insect immunity is undeniable, and several excellent studies or reviews have investigated and described their roles in various insects. However, the functional analyses of ncRNAs in insects upon pathogen attacks are not exhaustive as novel ncRNAs are being increasingly discovered in those organisms. This article gives an overview of the main insect signaling pathways and effector mechanisms activated by pathogen invaders and summarizes the latest findings of the immune modulation role of both insect- and pathogen-encoded ncRNAs, especially miRNAs and lncRNAs during insect–pathogen crosstalk.
Collapse
Affiliation(s)
- Ulrich Aymard Ekomi Moure
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Medical Research Institute, Southwest University, Chongqing, China
| | - Tingshan Tan
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Lin Sha
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Xiaoqin Lu
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Zhi Shao
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Guang Yang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Yi Wang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Department of Gastrointestinal Surgery, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Zhu M, Pan J, Tong X, Qiu Q, Zhang X, Zhang Y, Sun S, Feng Y, Xue R, Cao G, Hu X, Gong C. BmCPV-Derived Circular DNA vcDNA-S7 Mediated by Bombyx mori Reverse Transcriptase (RT) Regulates BmCPV Infection. Front Immunol 2022; 13:861007. [PMID: 35371040 PMCID: PMC8964962 DOI: 10.3389/fimmu.2022.861007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
Circular DNAs derived from single-stranded RNA viruses play important roles in counteracting viral infection. However, whether double-stranded RNA viruses generate functional circular DNAs is still unknown. Using circDNA sequencing, divergent PCR, DNA in situ hybridization and rolling circular amplification, we presently confirmed that in silkworm, Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), a double-stranded RNA virus belonging to cypovirus, is prone to produce a BmCPV-derived circular DNA termed as vcDNA-S7. We have also found that vcDNA-S7 formation is mediated by endogenous reverse transcriptase (RT), and the proliferation of BmCPV can be inhibited by vcDNA-S7 in vitro and in vivo. Moreover, we have discovered that the silkworm RNAi immune pathway is activated by vcDNA-S7, while viral small interfering RNAs (vsiRNAs) derived from transcribed RNA by vcDNA-S7 can be detected by small RNA deep sequencing. These results suggest that BmCPV-derived vcDNA-S7, mediated by RT, can serve as a template for the biogenesis of antiviral siRNAs, which may lead to the repression of BmCPV infection. To our knowledge, this is the first demonstration that a circular DNA, produced by double stranded RNA viruses, is capable of regulating virus infection.
Collapse
Affiliation(s)
- Min Zhu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Jun Pan
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Xinyu Tong
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Qunnan Qiu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Xing Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Yaxin Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Sufei Sun
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Yongjie Feng
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Renyu Xue
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Guangli Cao
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China.,Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China.,Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Wang ZZ, Ye XQ, Huang JH, Chen XX. Virus and endogenous viral element-derived small non-coding RNAs and their roles in insect-virus interaction. CURRENT OPINION IN INSECT SCIENCE 2022; 49:85-92. [PMID: 34974161 DOI: 10.1016/j.cois.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
RNA interference pathways mediated by different types of small non-coding RNAs (siRNAs, miRNAs and piRNAs) are conserved biological responses to exotic stresses, including viral infection. Aside from the well-established siRNA pathway, the miRNA pathway and the piRNA pathway process viral sequences, exogenously or endogenously, into miRNAs and piRNAs, respectively. During the host-virus interaction, viral sequences, including both coding and non-coding sequences, can be integrated as endogenous viral elements (EVEs) and thereby become present within the germline of a non-viral organism. In recent years, significant progress has been made in characterizing the biogenesis and function of viruses and EVEs associated with snRNAs. Overall, the siRNA pathway acts as the primarily antiviral defense against a wide range of exogenous viruses; the miRNA pathways associated with viruses or EVEs function in antiviral response and host gene regulation; EVE derived piRNAs with a ping-pong signature have the potential to limit cognate viral infection.
Collapse
Affiliation(s)
- Zhi-Zhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xi-Qian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China; State Key Lab of Rice Biology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Wang Y, Lin S, Zhao Z, Xu P, Gao K, Qian H, Zhang Z, Guo X. Functional analysis of a putative Bombyx mori cypovirus miRNA BmCPV-miR-10 and its effect on virus replication. INSECT MOLECULAR BIOLOGY 2021; 30:552-565. [PMID: 34296485 DOI: 10.1111/imb.12725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Bombyx mori cypovirus (BmCPV) is an important pathogen of silkworm (B. mori), the economically beneficial insect. The mechanism of its interaction with host immune defence system in the process of infection is still not yet completely clear. Researches have demonstrated that virus-encoded microRNAs (miRNA) play a crucial role in regulating host-pathogen interaction, but few reports are available so far on miRNAs encoded by insect viruses, especially the RNA viruses. In this study, a putative miRNA encoded by the 10th segment of BmCPV genomic RNA, BmCPV-miR-10, was identified and functionally analysed. The expression of the putative BmCPV-miR-10 could be detected via stem-loop RT-PCR (reverse transcription-Polymerase Chain Reaction) in the midgut of silkworm larvae infected with BmCPV. BmCSDE1 (B. mori cold shock domain E1 protein) gene was predicted to be a candidate target gene for BmCPV-miR-10 with the miRNA binding site located in 3' untranslated region of its mRNA. The regulation effect of the putative BmCPV-miR-10 on BmCSDE1 was verified in HEK293 cells by lentiviral expression system, in BmN cells by transfecting BmCPV-miR-10 mimics. The qRT-PCR (quantitative real-time PCR) results showed that the putative BmCPV-miR-10 could suppress the expression of BmCSDE1. By injection of BmCPV-miR-10 mimics into the silkworm larvae infected with BmCPV, it was further proved that the putative BmCPV-miR-10 could suppress the expression of BmCSDE1 in vivo, then inhibit the expression of BmApaf-1 (B. mori apoptotic protease activating factor 1), while enhance the replication of BmCPV genomic RNAs to a certain extent. These results implied that the putative BmCPV-miR-10 could down-regulate the expression of BmCSDE1, then suppress the expression of BmApaf-1, thereby created a favourable intracellular environment for virus replication and proliferation.
Collapse
Affiliation(s)
- Y Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - S Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Z Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - P Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - K Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - H Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Z Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - X Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
10
|
Nosema bombycis microRNA-like RNA 8 (Nb-milR8) Increases Fungal Pathogenicity by Modulating BmPEX16 Gene Expression in Its Host, Bombyx mori. Microbiol Spectr 2021; 9:e0104821. [PMID: 34704799 PMCID: PMC8549759 DOI: 10.1128/spectrum.01048-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The fungus Nosema bombycis causes significant economic losses via parasitism of an economically important insect. MicroRNAs (miRNAs) play important roles in regulating host and parasite gene expression via mRNA degradation or by inhibiting protein translation. To investigate whether microRNA-like RNAs (milRNAs) regulate N. bombycis pathogenesis and to better understand the regulatory mechanisms underlying infection, we constructed small RNA libraries from N. bombycis hyphae during the schizont proliferation period. Eleven novel milRNAs were determined by RNA sequencing and stem-loop reverse transcriptase PCR (RT-PCR) assays. Moreover, a virulence-associated milRNA, Nb-milR8, was identified as critical for N. bombycis proliferation by binding and downregulating expression of its target gene, BmPEX16, in the host during infection. Silencing of Nb-milR8 or overexpression of the target BmPEX16 gene resulted in increased susceptibility of Bombyx mori to N. bombycis infection. Taken together, these results suggest that Nb-milR8 is an important virulence factor that acts as an effector to suppress host peroxidase metabolism, thereby facilitating N. bombycis proliferation. These results provide important novel insights into interactions between pathogenic fungi and their hosts. IMPORTANCE A thorough understanding of fungal pathogen adaptations is essential for treating fungal infections. Recent studies have suggested that the role of small RNAs expressed in fungal microsporidia genomes are important for elucidating the mechanisms of fungal infections. Here, we report 11 novel microRNA-like RNAs (milRNAs) from the fungal microsporidium Nosema bombycis and identified NB-milRNAs that adaptively regulate N. bombycis proliferation. In addition, we demonstrate that N. bombycis modulates small RNA (sRNA)-mediated infection by encoding an Nb-miR8 that downregulates the expression of the host peroxidase metabolism protein BmPEX16, which is essential for peroxisome membrane biogenesis and peroxisome assembly. These results significantly contribute to our understanding of the pathogenic mechanisms of fungi, and especially microsporidia, while providing important targets for genetical engineering-based treatment of microsporidia.
Collapse
|
11
|
Lin S, Wang Y, Zhao Z, Wu W, Su Y, Zhang Z, Shen M, Wu P, Qian H, Guo X. Two Putative Cypovirus-Encoded miRNAs Co-regulate the Host Gene of GTP-Binding Nuclear Protein Ran and Facilitate Virus Replication. Front Physiol 2021; 12:663482. [PMID: 34421632 PMCID: PMC8373394 DOI: 10.3389/fphys.2021.663482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
microRNA (miRNA) plays important roles in regulating various biological processes, including host-pathogen interaction. Recent studies have demonstrated that virus-encoded miRNAs can manipulate host gene expression to ensure viral effective multiplication. Bombyx mori cypovirus (BmCPV), a double-stranded RNA virus with a segmented genome, is one of the important pathogens for the economically important insect silkworm. Our present study indicated that two putative miRNAs encoded by BmCPV could promote viral replication by inhibiting the gene expression of B. mori GTP-binding nuclear protein Ran (BmRan), an essential component of the exportin-5-mediated nucleocytoplasmic transport of small RNAs. BmCPV-miR-1 and BmCPV-miR-3 are two of the BmCPV-encoded miRNAs identified in our previous studies. BmRan is a common target gene of them with binding sites all located in the 3′-untranslated region (3′-UTR) of its mRNA. The expression levels of the two miRNAs in the midgut of larvae infected with BmCPV gradually increased with the advance of infection, while the expression of the target gene BmRan decreased gradually. The miRNAs and the recombinant target gene consisting of reporter gene mCherry and 3′-UTR of BmRan mRNA were expressed in HEK293T cells for validating the interaction between the miRNAs and the target gene. qRT-PCR results revealed that BmCPV-miR-1 and BmCPV-miR-3 negatively regulate target gene expression not only separately but also cooperatively by binding to the 3′-UTR of BmRan mRNA. By transfecting miRNA mimics into BmN cells and injecting the mimics into the body of silkworm larvae, it was indicated that both BmCPV-miR-1 and BmCPV-miR-3 could repress the expression of BmRan in BmN cells and in the silkworm, and the cooperative action of the two miRNAs could enhance the repression of BmRan expression. Furthermore, the repression of BmRan could facilitate the replication of BmCPV genomic RNAs. It is speculated that BmCPV-miR-1 and BmCPV-miR-3 might reduce the generation of host miRNAs by inhibiting expression of BmRan, thus creating a favorable intracellular environment for virus replication. Our results are helpful to better understand the pathogenic mechanism of BmCPV to the silkworm, and provide insights into one of the evasion strategies used by viruses to counter the host defense for their effective multiplication.
Collapse
Affiliation(s)
- Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Yongsheng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ze Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Wanming Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Yun Su
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Heying Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
12
|
Khatun MS, Alam MA, Shoombuatong W, Mollah MNH, Kurata H, Hasan MM. Recent development of bioinformatics tools for microRNA target prediction. Curr Med Chem 2021; 29:865-880. [PMID: 34348604 DOI: 10.2174/0929867328666210804090224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are central players that regulate the post-transcriptional processes of gene expression. Binding of miRNAs to target mRNAs can repress their translation by inducing the degradation or by inhibiting the translation of the target mRNAs. High-throughput experimental approaches for miRNA target identification are costly and time-consuming, depending on various factors. It is vitally important to develop the bioinformatics methods for accurately predicting miRNA targets. With the increase of RNA sequences in the post-genomic era, bioinformatics methods are being developed for miRNA studies specially for miRNA target prediction. This review summarizes the current development of state-of-the-art bioinformatics tools for miRNA target prediction, points out the progress and limitations of the available miRNA databases, and their working principles. Finally, we discuss the caveat and perspectives of the next-generation algorithms for the prediction of miRNA targets.
Collapse
Affiliation(s)
- Mst Shamima Khatun
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Ashad Alam
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112. United States
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700. Thailand
| | - Md Nurul Haque Mollah
- Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh. 5Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083. Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| |
Collapse
|
13
|
Awais MM, Shakeel M, Sun J. MicroRNA-Mediated Host-Pathogen Interactions Between Bombyx mori and Viruses. Front Physiol 2021; 12:672205. [PMID: 34025458 PMCID: PMC8137832 DOI: 10.3389/fphys.2021.672205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNAs of about 22 nucleotides, have been reported to regulate gene expression at the posttranscriptional level and are involved in several biological processes such as immunity, development, metabolism, and host-pathogen interactions. Apart from miRNAs encoded by the host, miRNAs produced by pathogens also regulate host genes to facilitate virus replication and evasion of the host defense responses. In recent years, accumulated studies suggest that viral infections alter the host miRNAs expression profile, and both cellular and viral miRNAs may play vital roles in host-pathogen interactions. Bombyx mori, one of the critical lepidopteran model species, is an economically important insect for silk production. The mechanism of interaction between B. mori and its pathogens and their regulation by miRNAs has been extensively studied. Therefore, in this review, we aim to highlight the recent information and understanding of the virus-encoding miRNAs and their functions in modulating viral and host (B. mori) genes. Additionally, the response of B. mori derived miRNAs to viral infection is also discussed. A detailed critical view about miRNAs’ regulatory roles in B. mori-virus interactions will help us understand molecular networks and develop a sustainable antiviral strategy.
Collapse
Affiliation(s)
- Mian Muhammad Awais
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Sub-Tropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Muhammad Shakeel
- Laboratory of Bio-Pesticide Innovation and Application of Guandong Province, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Sub-Tropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Jiang L. Insights Into the Antiviral Pathways of the Silkworm Bombyx mori. Front Immunol 2021; 12:639092. [PMID: 33643323 PMCID: PMC7904692 DOI: 10.3389/fimmu.2021.639092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
The lepidopteran model silkworm, Bombyx mori, is an important economic insect. Viruses cause serious economic losses in sericulture; thus, the economic importance of these viruses heightens the need to understand the antiviral pathways of silkworm to develop antiviral strategies. Insect innate immunity pathways play a critical role in the outcome of infection. The RNA interference (RNAi), NF-kB-mediated, immune deficiency (Imd), and stimulator of interferon gene (STING) pathways, and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway are the major antiviral defense mechanisms, and these have been shown to play important roles in the antiviral immunity of silkworms. In contrast, viruses can modulate the prophenol oxidase (PPO), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and the extracellular signal-regulated kinase (ERK) signaling pathways of the host to elevate their proliferation in silkworms. In this review, we present an overview of the current understanding of the main immune pathways in response to viruses and the signaling pathways modulated by viruses in silkworms. Elucidation of these pathways involved in the antiviral mechanism of silkworms furnishes a theoretical basis for the enhancement of virus resistance in economic insects, such as upregulating antiviral immune pathways through transgenic overexpression, RNAi of virus genes, and targeting these virus-modulated pathways by gene editing or inhibitors.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Singh CP. Viral-encoded microRNAs in host-pathogen interactions in silkworm. Microrna 2021; 10:3-13. [PMID: 33475082 DOI: 10.2174/2211536610666210121154314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
The mulberry silkworm Bombyx mori, apart from its well-known economic importance, has also emerged as an insect model to study host-pathogen interactions. The major concern for silkworm cultivation and the sericulture industry is the attack by various types of pathogens mainly includes viruses, fungi, bacteria and protozoa. Successful infection requires specific arsenals to counter the host immune response. MicroRNAs (miRNAs) are one of the potential arsenals which are encoded by viruses and effectively used during host-pathogen interactions. MiRNAs are short noncoding 19-25 nucleotides long endogenous RNAs that post-transcriptionally regulate expression of protein-coding genes in a sequencespecific manner. Most of the higher eukaryotes encode miRNAs and utilize them in the regulation of important cellular pathways. In silkworm, promising functions of miRNAs have been characterized in development, metamorphosis, immunity, and host-pathogen interactions. The viral miRNA-mediated fine-tuning of the viral, as well as cellular genes, is beneficial for making a cellular environment favorable for the virus proliferation. Baculovirus and cypovirus which infect silkworm have been shown to encode miRNAs and their functions are implicated in controlling the expression of both viral and host genes. In the present review, the author discusses the diverse functions of viral-encoded miRNAs in evasion of the host immune responses and reshaping of the silkworm cellular environment for replication. Besides, a basic overview of miRNA biogenesis and mechanism of action is also provided. Our increasing understanding of the viral miRNAs role in silkworm-virus interactions would not only assist us to get insights into the intricate pathways but also provide tools to deal with dreaded pathogens.
Collapse
Affiliation(s)
- C P Singh
- Department of Botany, University of Rajasthan, Jaipur-302004, Rajasthan. India
| |
Collapse
|
16
|
|
17
|
Zhang X, Zhang Y, Shi X, Dai K, Liang Z, Zhu M, Zhang Z, Shen Z, Pan J, Wang C, Hu X, Gong C. Characterization of the lipidomic profile of BmN cells in response to Bombyx mori cytoplasmic polyhedrosis virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103822. [PMID: 32810558 PMCID: PMC7428682 DOI: 10.1016/j.dci.2020.103822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV)that belongs to the genus Cypovirus in the family of Reoviridae is one of the problematic pathogens in sericulture. In our previous study, we have found that lipid-related constituents in the host cellular membrane are associated with the BmCPV life cycle. It is important to note that the lipids not only affect the cellular biological processes, they also impact the virus life cycle. However, the intracellular lipid homeostasis in BmN cells after BmCPV infection remains unclear. Here, the lipid metabolism in BmCPV-infected BmN cells was studied by lipidomics analysis. Our results revealed that the intracellular lipid homeostasis was disturbed in BmN cells upon BmCPV infection. Major lipids constituents in cellular membrane were found to be significantly induced upon BmCPV infection, which included triglycerides, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, phospholipids, glucoside ceramide, monoetherphosphatidylcholin, ceramide, ceramide phosphoethanolamine and cardiolipin. Further analysis of the pathways related to these altered lipids (such as PE and PC) showed that glycerophospholipid metabolism was one of the most enriched pathways. These results suggested that BmCPV may manipulate the lipid metabolism of cells for their own interest. The findings may facilitate a better understanding of the roles of lipid metabolic changes during virus infection in future studies.
Collapse
Affiliation(s)
- Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiu Shi
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Kun Dai
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Ziyao Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zeen Shen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Chonglong Wang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|