1
|
Choi MY, Price B, Hafeez M, Martin R, Richart C, Donnell RM. Bioactive peptides inhibit feeding activity in the grey garden slug, Deroceras reticulatum. PEST MANAGEMENT SCIENCE 2024; 80:6493-6500. [PMID: 39193860 DOI: 10.1002/ps.8386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND The grey garden slug (Deroceras reticulatum) is considered the most damaging slug pest in global agriculture. Control methods primarily rely on chemical pesticides, which pose environmental risks and potential hazards to human health. There is a need for sustainable management alternatives such as biologically-based slug control options. However, the efficacy of nonchemical measures for controlling pest slug populations remains limited, particularly in the context of variable outdoor conditions. Neuropeptides and their corresponding receptors have been proposed as promising biological targets for the development of new pest management strategies. RESULTS A total of 23 bioactive peptides belonging to the PRX family, previously identified from the grey garden slug, D. reticulatum, were injected into or fed to this species. The detrimental effects of these peptides, including a reduction in body weight and an inhibition of feeding activity, were evaluated in feeding choice tests with D. reticulatum. Furthermore, the bioactive peptide formulated with a lipid particle demonstrated a feeding deterrent effect. One of the myomodulin (MM) peptides, APPLPRY, demonstrated a significant reduction in feeding activity, resulting in a reduction in slug weight or mortality in just 30 min. CONCLUSION The results represent the first evidence of a bioactive peptide having detrimental effects on D. reticulatum including causing feeding deterrent for this slug pest. The in vivo results provide insights into the potential development of active ingredients for managing slugs in the field. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Briana Price
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Muhammad Hafeez
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, OR, USA
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Ruth Martin
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Casey Richart
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| | - Rory Mc Donnell
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
2
|
Shahid S, Amir MB, Ding TB, Liu TX, Smagghe G, Shi Y. RNAi of Neuropeptide CCHamide-1 and Its Receptor Indicates Role in Feeding Behavior in the Pea Aphid, Acyrthosiphon pisum. INSECTS 2024; 15:939. [PMID: 39769541 PMCID: PMC11678771 DOI: 10.3390/insects15120939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Neuropeptide CCHamide-1 (abbreviated as CCHa1) is a recently discovered peptide that is present in many arthropods and is the ligand of the CCHa1R, a member of the G protein-coupled receptors (GPCRs) superfamily, which plays a regulatory role in diverse physiological processes such as feeding, circadian rhythm, insulin production, lipid metabolism, growth, and reproduction. However, the function of this gene in aphids is still unknown. Here, we characterized and determined the potential role of CCHa1/CCHa1R signaling in the pea aphid, Acyrthosiphon pisum, which is a notorious pest in agriculture. The docking analysis revealed that the CCHa1 peptide binds to its receptor CCHa1R through specific amino acid residues, which are critical for maintaining the structural and functional integrity of the peptide-receptor complex. Quantitative real-time reverse transcription-PCR (qRT-PCR) revealed the expression levels of CCHa1/CCHa1R transcripts in different development stages and different tissues, indicating that the CCHa1 expression was high in the first nymphal instar compared to the upcoming nymphal instars and adults, and was predominantly high in the brain. The CCHa1/CCHa1R transcript levels were significantly upregulated in starved aphids compared to fed aphids. Moreover, RNAi knockdown by the injection of dsRNA-CCHa1 and dsRNA-CCHa1R significantly reduced the corresponding expression of the target gene and reduced their food intake in adult aphids, as revealed by the electrical penetration graph results. CCHa1/CCHa1R-silencing also reduced the reproduction, but not the survival, in A. pisum. Our data demonstrated that CCHa1/CCHa1R play a role in the regulation of feeding in A. pisum, suggesting a role of the CCHa1 signaling pathway in the aphids relating to their nutritional status.
Collapse
Affiliation(s)
- Sohaib Shahid
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (S.S.); (M.B.A.); (T.-B.D.); (T.-X.L.)
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Bilal Amir
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (S.S.); (M.B.A.); (T.-B.D.); (T.-X.L.)
| | - Tian-Bo Ding
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (S.S.); (M.B.A.); (T.-B.D.); (T.-X.L.)
| | - Tong-Xian Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (S.S.); (M.B.A.); (T.-B.D.); (T.-X.L.)
- Institute of Entomology, Guizhou University, Guiyang 550025, China;
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang 550025, China;
- Cellular and Molecular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Yan Shi
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (S.S.); (M.B.A.); (T.-B.D.); (T.-X.L.)
| |
Collapse
|
3
|
Price BE, Jang HS, Parks RK, Choi MY. Functional expression and characterization of CAPA receptor in the digestive tract and life stages of Drosophila suzukii, and differential activities with insect PRXamide peptides. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22080. [PMID: 39148444 DOI: 10.1002/arch.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 08/17/2024]
Abstract
Spotted-wing drosophila, Drosophila suzukii (Matsumura), is an invasive vinegar fly that is a major threat to the small fruits industries globally. Insect capa genes encode multiple neuropeptides, including CAPA-periviscerokinin (CAPA-PVK) peptides, that are specifically known to cause diuresis or anti-diuresis in various organisms. Here we identified and characterized a corresponding G protein-coupled receptor (GPCR) of the D. suzukii CAPA-PVK peptides: CAPA receptor (CAPA-R). To better characterize the behavior of D. suzukii CAPA-R, we used insect cell-based functional expression assays to evaluate responses of CAPA-R against D. suzukii CAPA-PVKs, CAPA-PVKs from five species in Insecta, one species from Mollusca, modified CAPA-PVK peptides, and some PRXamide family peptides: pyrokinin (PK), diapause hormone (DH), and ecdysis-triggering hormone (ETH). Functional studies revealed that the D. suzukii CAPA-R is strongly activated by both of its own natural D. suzukii CAPA-PVKs, and interestingly, it was strongly activated by other CAPA-PVK peptides from Frankliniella occidentallis (Thysanoptera), Solenopsis invicta (Hymenoptera), Helicoverpa zea (Lepidoptera) and Plutella xylostella (Lepidoptera). However, D. suzukii CAPA-R was not activated by Mollusca CAPA-PVK or the other PRXamide peptides. Gene expression analyses showed that the CAPA-R was highly expressed in the Malpighian tubules and moderately in hindgut compared to other digestive organs or the rest of body, supporting diuretic/antidiuretic functionality. When compared across life stages of D. suzukii, expression of CAPA-R was approximately 1.5x greater in the third instar than the other stages and minimally detected in the eggs, 4-day old pupae and 3-day old adults. Our results functionally characterized the D. suzukii CAPA-R and a few short peptides were identified as potential biological targets to exploit the CAPA-R for D. suzukii management.
Collapse
Affiliation(s)
- Briana E Price
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| | - Hyo Sang Jang
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
- Department of Horticulture, Oregon State University, Corvallis, Oregon, USA
| | - Ryssa K Parks
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
- Department of Horticulture, Oregon State University, Corvallis, Oregon, USA
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Chinta S, Vander Meer R, O’Reilly E, Choi MY. Insecticidal Effects of Receptor-Interference Isolated Bioactive Peptides on Fire Ant Colonies. Int J Mol Sci 2023; 24:13978. [PMID: 37762281 PMCID: PMC10530802 DOI: 10.3390/ijms241813978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Receptor-interference (Receptor-i) is a novel technology used to identify bioactive peptides as agonists or antagonists against a specific receptor, primarily targeting G-protein-coupled receptors (GPCRs). Using Receptor-i methodology, we targeted the pheromone biosynthesis activating neuropeptide receptor (PBAN-R) of the red imported fire ant (Solenopsis invicta). Based on previous studies, we selected four bioactive peptides cyclized with two cysteines: CVKLGSHFC, CIQQGSHFC, CERVGSHFC, and CMARYMSAC, and we conducted small-scale feeding bioassays, measuring fire ant worker mortality. All peptides reduced ant survival; however, CMARYMSAC (MARY) and CIQQGSHFC (IQQG) were the most effective and were selected for feeding trials against large, fully functional fire ant field colonies containing queen, brood, and up to 8000 workers. At the end of the experiment, day 84, synthetic peptide MARY killed over 80% of the workers and two of four queens. IQQG killed over 70% of the workers and three of four queens. The surviving two MARY queens lost an average of 21% of their starting weight. The surviving IQQG queen lost 31% of its weight. In contrast, control colony queens gained an average of 11% of their starting weight. These results provide proof-of-concept for the Receptor-i technology and will synergize applications to other agricultural and medical pests.
Collapse
Affiliation(s)
- Satya Chinta
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
- Foresight Science and Technology, Hopkinton, MA 01748, USA
| | - Robert Vander Meer
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
| | - Erin O’Reilly
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
| | - Man-Yeon Choi
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, OR 97330, USA
| |
Collapse
|
5
|
Shi Y, Li H, Nachman RJ, Liu TX, Smagghe G. Insecticidal efficacy and risk assessment of different neuropeptide analog combinations against the peach-potato aphid following topical exposure. PEST MANAGEMENT SCIENCE 2023; 79:226-233. [PMID: 36129097 DOI: 10.1002/ps.7192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Insect neuropeptides control essential physiological metabolic activities. In our previous studies, Capability/CAP2b (PK/CAPA) analog 1895 applied alone or as a combination of CAPA analogs (1895 + 2315) was reported to decrease aphid fitness. While this was obtained with the combination of two peptide analogs of the same neuropeptide class, the effect of combining peptide analogs of different neuropeptide classes has not been explored so far. RESULTS In this study, we assessed the effect of combinations of the PK/CAPA analog 1895 with neuropeptide analogs of four different classes [adipokinetic hormone (AKH) analog: 2271; myosuppressin analog: 2434; kinin analog: 2460; tachykinin-related peptide analog: 2463] on the fitness of aphids. We found that the combination of 1895 and AKH analog 2271 was the most effective one to control Myzus persicae. The triple combination 1895 + 2271 + 2315 provided a synergistic effect by further increasing aphid mortality and reducing reproduction relative to 1895 + 2315. Additionally, a biosafety assessment of the combination 1895 + 2271 + 2315 showed no significant lethal nor sub-lethal effects on survival rates and food intake for the pollinator (Bombus terrestris) and the two representative natural enemies (Harmonia axyridis and Nasonia vitripennis). CONCLUSION These results could facilitate establishment of the triple combination 1895 + 2271 + 2315, and/or inclusion of second generation analogs, as alternatives to broad spectrum and less friendly insecticides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Shi
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Hao Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ronald J Nachman
- Insect Neuropeptide Laboratory, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture, College Station, TX, USA
| | - Tong-Xian Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Short Neuropeptide F and Its Receptor Regulate Feeding Behavior in Pea Aphid (Acyrthosiphon pisum). INSECTS 2022; 13:insects13030282. [PMID: 35323580 PMCID: PMC8950018 DOI: 10.3390/insects13030282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary We know that neuropeptides and G protein-coupled receptors regulate the physiology and behavior of animals and that the pea aphid (Acyrthosiphon pisum) is a serious agricultural pest and model insect. In this study, we investigated the short neuropeptide F and its receptor in pea aphid. Feeding analysis showed that the probing time and total phloem duration significantly decreased in response to sNPF and predicted sNPFR gene silencing in RNAi assays. The silencing of sNPF significantly reduced the aphid’s reproduction but not survival. Our findings will help in the design of control strategies by using the molecular biological approach. Abstract Insect short neuropeptide F (sNPF), an ortholog of prolactin-releasing peptide of invertebrates, regulates diverse biological processes, including feeding, olfaction, locomotion, and sleep homeostasis in insects. However, its function is still unclear in an important model insect and agricultural pest, the pea aphid (Acyrthosiphon pisum). Here, we investigated short neuropeptide F (ApsNPF) and its receptor (ApsNPFR) in A. pisum. The sNPF gene contains three exons and two long introns. In addition, the genome contains a single sNPF receptor with seven transmembrane domains. Stage- and tissue-specific transcript profiling by qRT-PCR revealed that ApsNPF and ApsNPFR were mainly expressed in the central nervous system. The receptor was also detected in antennae, midgut, and integument. The highest expression levels were found in first instar nymphs compared to other developmental stages. Besides, the starvation-induced pattern indicated that the sNPF network depends on the nutritional state of the insect. An electrical penetration graph showed that probing time and phloem duration of A. pisum on broad bean plants decreased in response to dssNPF and dssNPFR in RNAi assays. sNPF silencing reduced the number of nymphs per female but not aphid survival. We believe that our results advance in-depth knowledge of the sNPF/sNPFR signaling cascade and its place in regulating feeding behavior in insects. In turn, it may contribute to the potential design of new strategies to control aphids, with a focus on the sNPF system.
Collapse
|
7
|
Kong X, Li ZX, Gao YQ, Liu FH, Chen ZZ, Tian HG, Liu TX, Xu YY, Kang ZW. Genome-Wide Identification of Neuropeptides and Their Receptors in an Aphid Endoparasitoid Wasp, Aphidius gifuensi. INSECTS 2021; 12:insects12080745. [PMID: 34442310 PMCID: PMC8397052 DOI: 10.3390/insects12080745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
In insects, neuropeptides and their receptors not only play a critical role in insect physiology and behavior but also are the potential targets for novel pesticide discoveries. Aphidius gifuensis is one of the most important and widespread aphid parasitoids, and has been successfully used to control aphid. In the present work, we systematically identified neuropeptides and their receptors from the genome and head transcriptome of A. gifuensis. A total of 35 neuropeptide precursors and 49 corresponding receptors were identified. The phylogenetic analyses demonstrated that 35 of these receptors belong to family-A, four belong to family-B, two belong to leucine-rich repeat-containing GPCRs, four belong to receptor guanylyl cyclases, and four belong to receptor tyrosine kinases. Oral ingestion of imidacloprid significantly up-regulated five neuropeptide precursors and four receptors whereas three neuropeptide precursors and eight receptors were significantly down-regulated, which indicated that these neuropeptides and their receptors are potential targets of some commercial insecticides. The RT-qPCR results showed that dopamine receptor 1, dopamine receptor 2, octopamine receptor, allatostatin-A receptor, neuropeptides capa receptor, SIFamide receptor, FMRFamide receptor, tyramine receptor and short neuropeptide F predominantly were expressed in the head whilst the expression of ion transport peptide showed widespread distribution in various tissues. The high expression levels of these genes suggest their important roles in the central nervous system. Taken together, our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in the regulation of the physiology and behavior of solitary wasps. Furthermore, this information could also aid in the design and discovery of specific and environment-friendly insecticides.
Collapse
Affiliation(s)
- Xue Kong
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Zhen-Xiang Li
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Yu-Qing Gao
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Fang-Hua Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Zhen-Zhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling 712100, China;
| | - Tong-Xian Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Yong-Yu Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
- Correspondence: (Y.-Y.X.); (Z.-W.K.)
| | - Zhi-Wei Kang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling 712100, China;
- Correspondence: (Y.-Y.X.); (Z.-W.K.)
| |
Collapse
|