1
|
Dong CL, Huang XY, Lu MX, Du YZ. High temperature-induced Cscaspase-8 disrupts the developmental relationship between Chilo suppressalis and its endoparasitoid. Int J Biol Macromol 2024; 282:137493. [PMID: 39537076 DOI: 10.1016/j.ijbiomac.2024.137493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Host hemolymph is an important place of growth and development for most endoparasitoids. Immunofluorescence assay showed that parasitism induced Chilo suppressalis larvae to produce large numbers of granulocytes, but high temperatures led to granulocytes apoptosis and loss of phagocytosis. In addition, high temperatures activated the endoplasmic reticulum apoptotic pathway, leading to apoptosis of prohemocytes. In the present study, the initiator Cscaspase-8 was obtained from the rice pest C. suppressalis. The results of real-time PCR showed that Cscaspase-8 expression was highest in hemocytes; furthermore, transcription was most highly in female adults. Cscaspase-8 was significantly induced when larvae were exposed to 39 °C for a 2-h period. Cscaspase-8 expression was significantly elevated after 2 d of parasitism. Results of the interference test showed that the survival rate of C. suppressalis larvae is not affected by Cscaspase-8 gene silencing under high temperature and parasitism stress. However, developmental delays were observed in Cotesia chilonis larvae when the host Cscaspase-8 gene was knocked down. These results contribute to the current knowledge on the regulatory mechanisms of apoptosis in insects subjected to high temperature and parasitism stress.
Collapse
Affiliation(s)
- Chuan-Lei Dong
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Yin Huang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Ming-Xing Lu
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| | - Yu-Zhou Du
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Xiao L, Gheysen G, Yang M, Xiao X, Xu L, Guo X, Yang L, Liu W, He Y, Peng D, Peng H, Ma K, Long H, Wang G, Xiao Y. Brown planthopper infestation on rice reduces plant susceptibility to Meloidogyne graminicola by reducing root sugar allocation. THE NEW PHYTOLOGIST 2024; 242:262-277. [PMID: 38332248 DOI: 10.1111/nph.19570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Plants are simultaneously attacked by different pests that rely on sugars uptake from plants. An understanding of the role of plant sugar allocation in these multipartite interactions is limited. Here, we characterized the expression patterns of sucrose transporter genes and evaluated the impact of targeted transporter gene mutants and brown planthopper (BPH) phloem-feeding and oviposition on root sugar allocation and BPH-reduced rice susceptibility to Meloidogyne graminicola. We found that the sugar transporter genes OsSUT1 and OsSUT2 are induced at BPH oviposition sites. OsSUT2 mutants showed a higher resistance to gravid BPH than to nymph BPH, and this was correlated with callose deposition, as reflected in a different effect on M. graminicola infection. BPH phloem-feeding caused inhibition of callose deposition that was counteracted by BPH oviposition. Meanwhile, this pivotal role of sugar allocation in BPH-reduced rice susceptibility to M. graminicola was validated on rice cultivar RHT harbouring BPH resistance genes Bph3 and Bph17. In conclusion, we demonstrated that rice susceptibility to M. graminicola is regulated by BPH phloem-feeding and oviposition on rice through differences in plant sugar allocation.
Collapse
Affiliation(s)
- Liying Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, Ghent, 9000, Belgium
| | - Mingwei Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lihe Xu
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoli Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijie Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yueping He
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Kangsheng Ma
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haibo Long
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Gaofeng Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yannong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Wu Z, Yuan R, Gu Q, Wu X, Gu L, Ye X, Zhou Y, Huang J, Wang Z, Chen X. Parasitoid Serpins Evolve Novel Functions to Manipulate Host Homeostasis. Mol Biol Evol 2023; 40:msad269. [PMID: 38061001 PMCID: PMC10735303 DOI: 10.1093/molbev/msad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Parasitoids introduce various virulence factors when parasitism occurs, and some taxa generate teratocytes to manipulate the host immune system and metabolic homeostasis for the survival and development of their progeny. Host-parasitoid interactions are extremely diverse and complex, yet the evolutionary dynamics are still poorly understood. A category of serpin genes, named CvT-serpins, was discovered to be specifically expressed and secreted by the teratocytes of Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella. Genomic and phylogenetic analysis indicated that the C. vestalis serpin genes are duplicated and most of them are clustered into 1 monophyletic clade. Intense positive selection was detected at the residues around the P1-P1' cleavage sites of the Cv-serpin reactive center loop domain. Functional analyses revealed that, in addition to the conserved function of melanization inhibition (CvT-serpins 1, 16, 18, and 21), CvT-serpins exhibited novel functions, i.e. bacteriostasis (CvT-serpins 3 and 5) and nutrient metabolism regulation (CvT-serpins 8 and 10). When the host-parasitoid system is challenged with foreign bacteria, CvT-serpins act as an immune regulator to reprogram the host immune system through sustained inhibition of host melanization while simultaneously functioning as immune effectors to compensate for this suppression. In addition, we provided evidence that CvT-serpin8 and 10 participate in the regulation of host trehalose and lipid levels by affecting genes involved in these metabolic pathways. These findings illustrate an exquisite tactic by which parasitoids win out in the parasite-host evolutionary arms race by manipulating host immune and nutrition homeostasis via adaptive gene evolution and neofunctionalization.
Collapse
Affiliation(s)
- Zhiwei Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ruizhong Yuan
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Qijuan Gu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaotong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Licheng Gu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yuenan Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| | - Zhizhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
- The Rural Development Academy, Zhejiang University, Hangzhou, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Teng Z, Huo M, Zhou Y, Zhou Y, Liu Y, Lin Y, Zhang Q, Zhang Z, Wan F, Zhou H. Circadian Activity and Clock Genes in Pachycrepoideus vindemmiae: Implications for Field Applications and Circadian Clock Mechanisms of Parasitoid Wasps. INSECTS 2023; 14:insects14050486. [PMID: 37233114 DOI: 10.3390/insects14050486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Despite the importance of circadian rhythms in insect behavior, our understanding of circadian activity and the molecular oscillatory mechanism in parasitoid wasp circadian clocks is limited. In this study, behavioral activities expected to be under the control of the endogenous circadian system were characterized in an ectoparasitoid wasp, Pachycrepoideus vindemmiae. Most adults exhibited emergence between late night and early morning, while mating only occurred during the daytime, with a peak at midday. Oviposition had three peaks in the early morning, late day, or early night and late night. Additionally, we identified eight putative clock genes from P. vindemmiae. The quantitative PCR (qPCR) results indicate that most clock genes showed significant rhythmic expressions. Our comparative analysis of clock genes in P. vindemmiae and 43 other parasitoid wasps revealed that none of the wasps possessed the timeless and cry1 genes commonly found in some other insect species, suggesting that the circadian clock system in parasitoid wasps is distinct from that in other non-Hymenoptera insects such as Drosophila. Thus, this study attempted to build the first hypothetical circadian clock model for a parasitoid wasp, thus generating hypotheses and providing a platform for the future functional characterization of P. vindemmiae clock genes as well as those of other parasitoid wasps. Finally, these findings on P. vindemmiae circadian activity will aid the development of effective field release programs for biological control, which can be tested under field conditions.
Collapse
Affiliation(s)
- Ziwen Teng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengran Huo
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanan Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuqi Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yunjie Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Lin
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qi Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhiqi Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fanghao Wan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongxu Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Laboratory for Biological Invasions and Ecological Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
5
|
Dong CL, Zhu F, Du YZ, Lu MX. Depending on different apoptosis pathways, the effector Cscaspase-3 in Chilo suppressalis exposed to temperature and parasitic stress was induced. Int J Biol Macromol 2023; 238:124270. [PMID: 37003373 DOI: 10.1016/j.ijbiomac.2023.124270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Apoptosis is a form of programmed cell death (PCD) that is largely triggered by caspases through both the mitochondria-dependent and mitochondria-independent pathways. The rice stem borer, Chilo suppressalis, serves as an economically important pest of rice, which is often suffered by temperature and parasitic stress under natural conditions. In the present study, effector Cscaspase-3 encoding caspase was obtained from the rice pest Chilo suppressalis. CsCaspase-3 possesses p20 and p10 subunits, two active sites, four substrate-binding sites, and two cleavage motifs. Real-time quantitative PCR showed that Cscaspase-3 was expressed at maximal levels in hemocytes; furthermore, transcription was most highly in female adults. Expression of Cscaspase-3 was induced by hot and cold temperatures, with the highest expression at 39 °C. Cscaspase-3 expression was also significantly induced at 10 h, 2 d, 5 d, and 7 d of parasitism. Flow cytometry results showed that both temperature and parasitism trigger apoptosis, but only parasitism induces apoptosis via the mitochondrial apoptosis pathway in C. suppressalis. RNAi-mediated silencing of Cscaspase-3 expression reduced C. suppressalis survival at -3 °C. This study provides a foundation for further studies of caspases in insects during biotic and abiotic stress.
Collapse
Affiliation(s)
- Chuan-Lei Dong
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Feng Zhu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210000, PR China
| | - Yu-Zhou Du
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China.
| | - Ming-Xing Lu
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Hilker M, Salem H, Fatouros NE. Adaptive Plasticity of Insect Eggs in Response to Environmental Challenges. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:451-469. [PMID: 36266253 DOI: 10.1146/annurev-ento-120120-100746] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Insect eggs are exposed to a plethora of abiotic and biotic threats. Their survival depends on both an innate developmental program and genetically determined protective traits provided by the parents. In addition, there is increasing evidence that (a) parents adjust the egg phenotype to the actual needs, (b) eggs themselves respond to environmental challenges, and (c) egg-associated microbes actively shape the egg phenotype. This review focuses on the phenotypic plasticity of insect eggs and their capability to adjust themselves to their environment. We outline the ways in which the interaction between egg and environment is two-way, with the environment shaping the egg phenotype but also with insect eggs affecting their environment. Specifically, insect eggs affect plant defenses, host biology (in the case of parasitoid eggs), and insect oviposition behavior. We aim to emphasize that the insect egg, although it is a sessile life stage, actively responds to and interacts with its environment.
Collapse
Affiliation(s)
- Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany;
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen, Germany;
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|