1
|
Zhao GJ, Wang Y, An JH, Tang WY, Xu XD, Ren K. LncRNA DANCR promotes macrophage lipid accumulation through modulation of membrane cholesterol transporters. Aging (Albany NY) 2024; 16:12510-12524. [PMID: 38968577 PMCID: PMC11466482 DOI: 10.18632/aging.205992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/30/2024] [Indexed: 07/07/2024]
Abstract
The progression of atherosclerosis (AS), the pathological foundation of coronary artery disease (CAD), is featured by massive lipid deposition in the vessel wall. LncRNAs are implicated in lipid disorder and AS, whereas the specific role of lncRNA DANCR in atherogenesis remains unknown. Here, we demonstrated that DANCR promotes macrophage lipid accumulation by regulating the expression of membrane cholesterol transport proteins. qPCR showed that compared to control groups, CAD patients and atherosclerotic mice had higher DANCR levels. Treating human THP-1 macrophages and mouse RAW264.7 macrophages with ox-LDL significantly upregulated the expression levels of DANCR. Oil Red O staining showed that the silence of DANCR robustly reduced, while overexpression of DANCR significantly increased the numbers and size of lipid droplets in ox-LDL-treated THP-1 macrophages. In contrast, the opposite phenomena were observed in DANCR overexpressing cells. The expression of ABCA1, ABCG1, SR-BI, and NBD-cholesterol efflux was increased obviously by DANCR inhibition and decreased by DANCR overexpression, respectively. Furthermore, transfection with DANCR siRNA induced a robust decrease in the levels of CD36, SR-A, and Dil-ox-LDL uptake, while DANCR overexpression amplified the expression of CD36, SR-A and the uptake of Dil-ox-LDL in lipid-laden macrophages. Lastly, we found that the effects of DANCR on macrophage lipid accumulation and the expression of membrane cholesterol transport proteins were not likely related to miR-33a. The present study unraveled the adverse role of DANCR in foam cell formation and its relationship with cholesterol transport proteins. However, the competing endogenous RNA network underlying these phenomena warrants further exploration.
Collapse
Affiliation(s)
- Guo-Jun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Jun-Hong An
- College of Medicine, Dali University, Dali 671003, Yunnan, China
| | - Wan-Ying Tang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Xiao-Dan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P.R. China
| | - Kun Ren
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, Anhui, P.R. China
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, P.R. China
| |
Collapse
|
2
|
Shibata M, Tawada H, Nagai K, Taniguchi S. Supportive Effects of Online Hemodiafiltration Therapy on the Nutritional State and Lipid Profile in Very Elderly Dialysis Patients. Blood Purif 2021; 51:690-697. [PMID: 34695820 DOI: 10.1159/000518704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/18/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Online hemodiafiltration (HDF) therapy has been recognized as one of the potential dialysis modalities. However, the long-term effects of online HDF therapy on very elderly dialysis patients older than 75 years have yet to be fully elucidated. METHODS Seventy-four very elderly patients older than 75 years undergoing maintenance dialysis therapy were studied retrospectively. Twenty-four (mean ± SE, 81.5 ± 1.0 years) were treated by predilution online HDF, and fifty (81.2 ± 0.6 years) were treated by conventional hemodialysis (HD) for 3 years. Laboratory data related to the nutritional state and lipid profile were collected. Body composition was measured by a bioelectrical impedance method. RESULTS Dry weight and body mass index decreased in HD patients (2.9%, p = 0.003 and 3.1%, p = 0.001, respectively), while no significant changes were found in online HDF patients. Serum albumin levels reduced in both HD and online HDF groups (3.5%, p = 0.003 and 2.9%, p = 0.026, respectively). The geriatric nutritional risk index decreased in HD patients (3.0%, p < 0.001), while no significant change was shown in online HDF patients. Body composition analysis demonstrated a significant decrease in intracellular water and increases in extracellular water and edema ratio in both groups. Fat mass and %fat showed significant decreases in HD patients (8.1%, p = 0.003 and 7.3%, p = 0.003, respectively), but no significant changes in online HDF patients. Among laboratory data, serum high-density lipoprotein cholesterol levels did not change in HD patients. However, the levels elevated significantly (10.6%, p = 0.03) in online HDF patients. DISCUSSION/CONCLUSION These results indicated that the time-dependent deterioration of the nutritional state in very elderly dialysis patients was inevitable; however, such deterioration was not prominent in online HDF patients. Moreover, the lipid profile showed unique changes in online HDF patients. In order to treat very elderly dialysis patients, online HDF should preferentially be taken into consideration because the maintenance of general condition seems to be a practical goal against the natural time-dependent deterioration.
Collapse
Affiliation(s)
- Masanori Shibata
- Japan Association for Clinical Engineers, Tokyo, Japan.,Department of Hemodialysis, Koujukai Rehabilitation Hospital, Kita-Nagoya, Japan
| | | | - Kojiro Nagai
- Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | | |
Collapse
|
3
|
Girndt M, Trojanowicz B, Ulrich C. Monocytes in Uremia. Toxins (Basel) 2020; 12:toxins12050340. [PMID: 32455723 PMCID: PMC7290468 DOI: 10.3390/toxins12050340] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Monocytes play an important role in both innate immunity and antigen presentation for specific cellular immune defense. In patients with chronic renal failure, as well as those treated with maintenance hemodialysis, these cells are largely dysregulated. There is a large body of literature on monocyte alterations in such patients. However, most of the publications report on small series, there is a vast spectrum of different methods and the heterogeneity of the data prevents any meta-analytic approach. Thus, a narrative review was performed to describe the current knowledge. Monocytes from patients with chronic renal failure differ from those of healthy individuals in the pattern of surface molecule expression, cytokine and mediator production, and function. If these findings can be summarized at all, they might be subsumed as showing chronic inflammation in resting cells together with limited activation upon immunologic challenge. The picture is complicated by the fact that monocytes fall into morphologically and functionally different populations and population shifts interact heavily with dysregulation of the individual cells. Severe complications of chronic renal failure such as impaired immune defense, inflammation, and atherosclerosis can be related to several aspects of monocyte dysfunction. Therefore, this review aims to provide an overview about the impairment and activation of monocytes by uremia and the resulting clinical consequences for renal failure patients.
Collapse
|
4
|
IL-8 negatively regulates ABCA1 expression and cholesterol efflux via upregulating miR-183 in THP-1 macrophage-derived foam cells. Cytokine 2019; 122:154385. [DOI: 10.1016/j.cyto.2018.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 02/08/2023]
|
5
|
Gao JH, Zeng MY, Yu XH, Zeng GF, He LH, Zheng XL, Zhang DW, Ouyang XP, Tang CK. Visceral adipose tissue-derived serine protease inhibitor accelerates cholesterol efflux by up-regulating ABCA1 expression via the NF-κB/miR-33a pathway in THP-1 macropahge-derived foam cells. Biochem Biophys Res Commun 2018; 500:318-324. [PMID: 29653102 DOI: 10.1016/j.bbrc.2018.04.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/23/2022]
Abstract
Atherosclerosis is a dyslipidemia disease characterized by foam cell formation driven by the accumulation of lipids. Visceral adipose tissue-derived serine protease inhibitor (vaspin) is known to suppress the development of atherosclerosis via its anti-inflammatory properties, but it is not yet known whether vaspin affects cholesterol efflux in THP-1 macrophage-derived foam cells. Here, we investigated the effects of vaspin on ABCA1 expression and cholesterol efflux, and further explored the underlying mechanism. We found that vaspin decreased miR-33a levels, which in turn increased ABCA1 expression and cholesteorl efflux. We also found that inhibition of NF-κB reduced miR-33a expression and vaspin suppressed LPS-mediated NF-κB phosphorylation. Our findings suggest that vaspin is not only a regular of inflammasion but also a promoter of cholesterol efflux.
Collapse
Affiliation(s)
- Jia-Hui Gao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Meng-Ya Zeng
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China; Department of Cardiovascular Medicine, Chenzhou NO.1 People's Hospital, Chenzhou, Hunan 423000, China
| | - Xiao-Hua Yu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Gao-Feng Zeng
- Department of Cardiovascular Medicine, Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Lin-Hao He
- School of Pharmacy and life Science College, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Xin-Ping Ouyang
- Department of Physiology, The Neuroscience Institute, Medical College, University of South China, Hengyang, Hunan, 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Dlouha D, Blaha M, Blaha V, Fatorova I, Hubacek JA, Stavek P, Lanska V, Parikova A, Pitha J. Analysis of circulating miRNAs in patients with familial hypercholesterolaemia treated by LDL/Lp(a) apheresis. ATHEROSCLEROSIS SUPP 2017; 30:128-134. [PMID: 29096828 DOI: 10.1016/j.atherosclerosissup.2017.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND LDL/Lp(a) apheresis therapy is a well-established method of aggressively lowering LDL and Lp(a). Recently, miRNAs have been discussed as markers of vascular status including atherosclerosis. MiRNAs inhibit post-transcriptional processes through RNA duplex formation resulting in gene silencing or regulation of gene expression. MATERIALS AND METHODS We measured a profile of 175 plasma-circulating miRNAs using pre-defined Serum/Plasma Focus Human microRNA PCR Panels in pooled samples of 11 subjects with familial hypercholesterolaemia under long-term apheresis treatment. Subsequently we analysed expressions of ten pre-selected miRNAs potentially involved in lipid homeostasis in the same group of subjects. We compared plasma-circulating miRNA levels isolated from peripheral blood collected immediately before and after apheresis. RESULTS The greatest differences in plasma levels were found in miR-451a, miR-16, miR-19a/b, miR-223 and miR-185. In subsequent individual miRNA assay we detected a significant increase in miR-33b levels after apheresis (P < 0.05). Additionally, correlations between plasma lipids and miR-33a (P < 0.04) and miR-122 (P < 0.01) have been determined. Moreover, miR-122 levels in LDLR homozygotes were higher compared to heterozygotes after, but not before, apheresis treatment (P < 0.04). CONCLUSIONS LDL/Lp(a) apheresis has an impact on miRNAs associated with lipid homeostasis and vascular status.
Collapse
Affiliation(s)
- Dana Dlouha
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Milan Blaha
- 4th Department of Internal Medicine, Charles University School of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Vladimir Blaha
- Department of Gerontology and Metabolism, Charles University School of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Ilona Fatorova
- 4th Department of Internal Medicine, Charles University School of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Jaroslav A Hubacek
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Stavek
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vera Lanska
- Medical Statistical Unit, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alena Parikova
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Pitha
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Internal Medicine, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
MicroRNA-33a-5p Modulates Japanese Encephalitis Virus Replication by Targeting Eukaryotic Translation Elongation Factor 1A1. J Virol 2016; 90:3722-34. [PMID: 26819305 PMCID: PMC4794666 DOI: 10.1128/jvi.03242-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/13/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Japanese encephalitis virus (JEV) is a typical mosquito-borne flavivirus responsible for acute encephalitis and meningitis in humans. However, the molecular mechanism for JEV pathogenesis is still unclear. MicroRNAs (miRNAs) are small noncoding RNAs that act as gene regulators. They are directly or indirectly involved in many cellular functions owing to their ability to target mRNAs for degradation or translational repression. However, how cellular miRNAs are regulated and their functions during JEV infection are largely unknown. In the present study, we found that JEV infection downregulated the expression of endogenous cellular miR-33a-5p. Notably, artificially transfecting with miR-33a-5p mimics led to a significant decrease in viral replication, suggesting that miR-33a-5p acts as a negative regulator of JEV replication. A dual-luciferase reporter assay identified eukaryotic translation elongation factor 1A1 (EEF1A1) as one of the miR-33a-5p target genes. Our study further demonstrated that EEF1A1 can interact with the JEV proteins NS3 and NS5 in replicase complex. Through this interaction, EEF1A1 can stabilize the components of viral replicase complex and thus facilitates viral replication during JEV infection. Taken together, these results suggest that miR-33a-5p is downregulated during JEV infection, which contributes to viral replication by increasing the intracellular level of EEF1A1, an interaction partner of JEV NS3 and NS5. This study provides a better understanding of the molecular mechanisms of JEV pathogenesis. IMPORTANCE MiRNAs are critical regulators of gene expression that utilize sequence complementarity to bind to and modulate the stability or translation efficiency of target mRNAs. Accumulating data suggest that miRNAs regulate a wide variety of molecular mechanisms in the host cells during viral infections. JEV, a neurotropic flavivirus, is one of the major causes of acute encephalitis in humans worldwide. The roles of cellular miRNAs during JEV infections are widely unexplored. The present study explores a novel role of miR-33a-5p as a negative regulator of JEV replication. We found EEF1A1 as a direct target of miR-33a-5p. We also demonstrated that EEF1A1 interacts with and stabilize the components of JEV replicase complex, which positively regulates JEV replication. These findings suggest a new insight into the molecular mechanism of JEV pathogenesis and provide a possible therapeutic entry point for viral encephalitis.
Collapse
|
8
|
Hu Y, Jiang L, Lai W, Qin Y, Zhang T, Wang S, Ye X. MicroRNA-33a disturbs influenza A virus replication by targeting ARCN1 and inhibiting viral ribonucleoprotein activity. J Gen Virol 2015; 97:27-38. [PMID: 26498766 DOI: 10.1099/jgv.0.000311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In order to explore the roles of microRNA(s) [miRNA(s)] in the influenza A virus life cycle, we compared the miRNA profiles of 293T and HeLa cell lines, as influenza A virus can replicate efficiently in 293T cells but only poorly in HeLa cells. We analysed differentially expressed miRNAs and identified five, including miR-33a, that could disturb influenza A virus replication significantly. Using TargetScan analysis, we found that ARCN1 could be a potential target of miR-33a. To confirm whether miR-33a could truly target ARCN1, we generated a luciferase reporter for the ARCN1 3' untranslated region (UTR) and performed a luciferase assay. The data indicated that miR-33a could suppress the luciferase activity of the reporter for the ARCN1 3' UTR but not a reporter in which the predicted miR-33a targeting sites on ARCN1 3' UTR were mutated. We performed immunoblotting to confirm that miR-33a could downregulate the protein level of ARCN1. Consistently, the level of ARCN1 protein in HeLa cells was significantly lower than that in 293T cells. We also demonstrated that ectopic expression of ARCN1 could partially rescue the inhibitory effect of miR-33a on virus replication. Furthermore, we demonstrated that miR-33a could impede virus replication at the stage of virus internalization, which was similar to the pattern for knockdown of ARCN1, indicating that miR-33a inhibits influenza virus infection by suppressing ARCN1 expression. In addition, we found that miR-33a could also weaken the viral ribonucleoprotein activity in an ARCN1-independent manner. In conclusion, we found that miR-33a is a novel inhibitory factor for influenza A virus replication.
Collapse
Affiliation(s)
- Yi Hu
- Center for Molecular Immunology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, PR China
| | - Liangzhen Jiang
- Graduate University of Chinese Academy of Sciences, , Beijing 100101, PR China
| | - Wenbin Lai
- Graduate University of Chinese Academy of Sciences, , Beijing 100101, PR China
| | - Yujie Qin
- Graduate University of Chinese Academy of Sciences, , Beijing 100101, PR China
| | - Tinghong Zhang
- Graduate University of Chinese Academy of Sciences, , Beijing 100101, PR China
| | - Shixiong Wang
- Graduate University of Chinese Academy of Sciences, , Beijing 100101, PR China
| | - Xin Ye
- Center for Molecular Immunology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, PR China
| |
Collapse
|
9
|
Wang Y, Zhou X, Shan B, Han J, Wang F, Fan X, Lv Y, Chang L, Liu W. Downregulation of microRNA‑33a promotes cyclin‑dependent kinase 6, cyclin D1 and PIM1 expression and gastric cancer cell proliferation. Mol Med Rep 2015; 12:6491-500. [PMID: 26352175 PMCID: PMC4626191 DOI: 10.3892/mmr.2015.4296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 08/04/2015] [Indexed: 12/23/2022] Open
Abstract
Although microRNA‑33 (miR‑33) family members are known to be involved in the regulation and balancing of cholesterol metabolism, fatty acid oxidation and insulin signaling, their functions in carcinogenesis are controversial and the underlying mechanisms have remained elusive. Gastric cancer is the fourth most common malignancy in the world; however, the dysregulation and function of miR‑33 family members in gastric cancer have not been extensively studied. The present study reported that a miR‑33 family member, miR‑33a, was significantly downregulated in gastric cancer tissues and gastric cancer cell lines. Of note, the expression of miR‑33a was inversely correlated with pathological differentiation and metastasis as well as gastric cancer biomarker CA199. A cell‑counting kit‑8 assay showed that transfection of the SGC‑7901 gastric cell line with miR‑33a‑overexpression plasmid inhibited the capability of the cells to proliferate. Furthermore, overexpression of miR‑33a led to cell cycle arrest of SGC‑7901 cells in G1 phase. In addition, a luciferase reporter assay showed that miR‑33a directly targeted cyclin‑dependent kinase 6 (CDK6), cyclin D1 (CCND1) and serine/threonine kinase PIM‑1. In gastric cancer specimens, the reduced expression of miR‑33a was associated with increased expression of CDK‑6, CCND1 and PIM1. However, only PIM1 expression was significantly increased in cancer tissues compared with that in their adjacent tissues. The present study revealed that miR‑33a was downregulated in gastric cancer tissues and cell lines, while forced overexpression of miR‑33a decreased CDK‑6, CCND1 and PIM1 expression to inhibit gastric cancer cell proliferation by causing G1 phase arrest. miR‑33a overexpression may therefore resemble an efficient strategy for gastric cancer therapy.
Collapse
Affiliation(s)
- Yudong Wang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xinliang Zhou
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jing Han
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Feifei Wang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiaojie Fan
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yalei Lv
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liang Chang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Wei Liu
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
10
|
Zhang N, Lei J, Lei H, Ruan X, Liu Q, Chen Y, Huang W. MicroRNA-101 overexpression by IL-6 and TNF-α inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. Exp Cell Res 2015; 336:33-42. [PMID: 26033364 DOI: 10.1016/j.yexcr.2015.05.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/24/2015] [Accepted: 05/27/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND MicroRNAs play key roles in regulating cholesterol homeostasis. Here, we investigated the role of microRNA-101 (miR-101) in regulating ATP-binding cassette transporter A1 (ABCA1) expression and cholesterol efflux under non-inflammatory and inflammatory conditions in human THP-1-derived macrophages and HepG2 hepatoblastoma cells. METHODS The cell lines were transfected with one of four lentiviral vectors: miR-101, miR-101 control, anti-miR-101, or anti-miR-101 control. A luciferase reporter assay was used to examine miR-101 binding to the 3' untranslated region (UTR) of ABCA1. Western blotting was conducted to assess ABCA1 protein expression. Cells were loaded with BODIPY-cholesterol and stained with oil red O to assess cholesterol efflux. RESULTS The luciferase activity assay revealed that wild-type miR-101 binding at site 2 significantly repressed ABCA1 3' UTR activity, suggesting that miR-101 directly targets the ABCA1 mRNA at site 2. In both cell lines, Western blotting revealed that miR-101 expression negatively regulates ABCA1 protein expression and significantly suppresses cholesterol efflux to ApoA1 under both low-density lipoprotein (LDL) and non-LDL conditions, which was confirmed by pronounced lipid inclusions visible by oil red O staining. In HepG2 cells, both IL-6 and TNF-α treatments produced significant miR-101 overexpression; however, in THP-1-derived macrophages, only IL-6 treatment produced significant miR-101 overexpression. Anti-mir-101 transfection under both IL-6 and TNF-α treatment conditions led to ABCA1 upregulation, indicating that miR-101 expression represses ABCA1 expression under inflammatory conditions. CONCLUSIONS miR-101 promotes intracellular cholesterol retention under inflammatory conditions through suppressing ABCA1 expression and suggests that the miR-101-ABCA1 axis may play an intermediary role in the development of NAFLD and vascular atherosclerosis.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - JiaYan Lei
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Lei
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiongzhong Ruan
- Centre for Lipid Research, Key Laboratory of Metabolism on Lipid and Glucose, Chongqing Medical University, Chongqing, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Qing Liu
- Centre for Clinical Research, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Metabolism on Lipid and Glucose, Chongqing Medical University, Chongqing, China
| | - Wei Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|