1
|
Siatka T, Mát'uš M, Moravcová M, Harčárová P, Lomozová Z, Matoušová K, Suwanvecho C, Krčmová LK, Mladěnka P. Biological, dietetic and pharmacological properties of vitamin B 9. NPJ Sci Food 2025; 9:30. [PMID: 40075081 PMCID: PMC11904035 DOI: 10.1038/s41538-025-00396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Humans must obtain vitamin B9 (folate) from plant-based diet. The sources as well as the effect of food processing are discussed in detail. Industrial production, fortification and biofortification, kinetics, and physiological role in humans are described. As folate deficiency leads to several pathological states, current opinions toward prevention through fortification are discussed. Claimed risks of increased folate intake are mentioned as well as analytical ways for measurement of folate.
Collapse
Affiliation(s)
- Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Marek Mát'uš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232, Bratislava, Slovak Republic
| | - Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Patrícia Harčárová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Zuzana Lomozová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Chaweewan Suwanvecho
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
Xu L, Wang S, Tian A, Liu T, Benjakul S, Xiao G, Ying X, Zhang Y, Ma L. Characteristic Volatile Compounds, Fatty Acids and Minor Bioactive Components in Oils from Green Plum Seed by HS-GC-IMS, GC-MS and HPLC. Food Chem X 2022; 17:100530. [DOI: 10.1016/j.fochx.2022.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
|
3
|
Fyfe S, Hong H, Schirra HJ, Smyth HE, Sultanbawa Y, Rychlik M. Folate vitamers in the Australian green plum: Through growth and ripening and across locations. Front Nutr 2022; 9:1006393. [PMID: 36313068 PMCID: PMC9614220 DOI: 10.3389/fnut.2022.1006393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
The green plum is a native fruit of Australia that grows on the tree Buchanania obovata. This study aimed to confirm the high level of folate in green plums by analyzing a large number of ripe samples from multiple locations and to understand how folate vitamers change as the fruit grows through maturity stages. This study analyzed green plums for five vitamers of folate, H4folate, 5-CH3-H4folate, 5-CHO-H4folate, 10-CHO-PteGlu, and PteGlu (folic acid) using a stable isotope dilution assay on a liquid chromatograph mass spectrometer (LC-MS). Green plums were tested from four locations, two harvests and five maturity stages. Another 11 ripe samples, each from different tree clumps from one location, were also tested as were ripe red-colored green plums. The results show the 5-CH3-H4folate in green plum increases and accumulates in the fruit through development, ripening and senescence. The ripe green plums contain between 82.4 ± 5.5 and 149.4 ± 10.7 μg/100 g Fresh Weight (FW). The red-colored green plums are even higher in folate, with total folate measured as 192.5 ± 7.0 and 293.7 ± 27.4 μg/100 g FW, and further analysis of them is suggested. There is some variation in amounts of folate between fruit from different locations and sets of trees, but all ripe green plums tested are considered good dietary sources of folate.
Collapse
Affiliation(s)
- Selina Fyfe
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Hung Hong
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Horst Joachim Schirra
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Heather E. Smyth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Rychlik
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Dissanayake IH, Zak V, Kaur K, Jaye K, Ayati Z, Chang D, Li CG, Bhuyan DJ. Australian native fruits and vegetables: Chemical composition, nutritional profile, bioactivity and potential valorization by industries. Crit Rev Food Sci Nutr 2022; 63:8511-8544. [PMID: 35491610 DOI: 10.1080/10408398.2022.2057913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Australian native plants have adapted themselves to harsh climatic conditions enabling them to produce unique and high levels of secondary metabolites. Native fruits and vegetables have been an integral part of the Indigenous Australian diet and Bush medicine for centuries. They have recently gained popularity owing to their rich dietary fiber, minerals, polyphenolic and antioxidant contents. This review presents a comprehensive summary and critical assessment of the studies performed in the last few decades to understand the phytochemical and nutritional profiles and therapeutic properties of Australian native fruits and vegetables. Furthermore, the potential of these fruits and vegetables as functional food ingredients and in the prevention and treatment of different diseases is discussed. Research on the nutritional and phytochemical profiles and therapeutic activity of Australian vegetables is limited with most studies focused on native fruits. These fruits have demonstrated promising antioxidant, anticancer, anti-inflammatory and antimicrobial activities mostly in in vitro models. More research to a) identify novel bioactive compounds, b) define optimal post-harvest and extraction methods, and c) understand molecular mechanisms of pharmacological activity through preclinical and clinical studies is prudent for the prospective and wider use of Australian native fruits and vegetables by the food, pharmaceutical, and nutraceutical industries.
Collapse
Affiliation(s)
| | - Valeria Zak
- School of Science, Western Sydney University, Campbelltown, NSW, Australia
| | - Kirandeep Kaur
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Zahra Ayati
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
5
|
Fyfe S, Schirra HJ, Rychlik M, van Doorn A, Tinngi U, Sultanbawa Y, Smyth HE. Future flavours from the past: sensory and nutritional profiles of green plum (Buchanania obovata), red bush apple (Syzygium suborbiculare) and wild peach (Terminalia carpentariae) from East Arnhem Land, Australia. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
6
|
Fyfe S, Smyth HE, Schirra HJ, Rychlik M, Sultanbawa Y. The Framework for Responsible Research With Australian Native Plant Foods: A Food Chemist's Perspective. Front Nutr 2022; 8:738627. [PMID: 35096922 PMCID: PMC8795586 DOI: 10.3389/fnut.2021.738627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Australia is a rich source of biodiverse native plants that are mostly unstudied by western food science despite many of them being ethnofoods of Australian Indigenous people. Finding and understanding the relevant policy and legal requirements to scientifically assess these plants in a responsible way is a major challenge for food scientists. This work aims to give an overview of what the legal and policy framework is in relation to food chemistry on Australian native plant foods, to clarify the relationships between the guidelines, laws, policies and ethics and to discuss some of the challenges they present in food chemistry. This work provides the framework of Indigenous rights, international treaties, federal and state laws and ethical guidelines including key legislation and guidelines. It discusses the specific areas that are applicable to food chemistry: the collection of plant foods, the analysis of the samples and working with Indigenous communities. This brief perspective presents a framework that can be utilized by food chemists when developing responsible research involving plant foods native to northern Australia and can help them understand some of the complexity of working in this research area.
Collapse
Affiliation(s)
- Selina Fyfe
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Health and Food Sciences Precinct, The University of Queensland, Brisbane, QLD, Australia
| | - Heather E Smyth
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Health and Food Sciences Precinct, The University of Queensland, Brisbane, QLD, Australia
| | - Horst Joachim Schirra
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Michael Rychlik
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Health and Food Sciences Precinct, The University of Queensland, Brisbane, QLD, Australia
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Health and Food Sciences Precinct, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Fyfe S, Smyth HE, Schirra HJ, Rychlik M, Sultanbawa Y. The Nutritional Potential of the Native Australian Green Plum ( Buchanania obovata) Compared to Other Anacardiaceae Fruit and Nuts. Front Nutr 2020; 7:600215. [PMID: 33392239 PMCID: PMC7772180 DOI: 10.3389/fnut.2020.600215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023] Open
Abstract
The native Australian green plum (Buchanania obovata) is a small fruit that grows in the northern parts of the Northern Territory and Western Australia. The fruit belongs to the family Anacardiaceae, which includes the other agriculturally important fruit mangoes, pistachios and cashew nuts. The green plum is a favored species of fruit for the Aboriginal communities and an important bush food in the Northern Territory. To date, only minimal scientific studies have been performed on the green plum as a food. This review is about plant foods in the family Anacardiaceae and the key nutritional compounds that occur in these fruit and nuts. It looks at the more traditional nutrient profiles, some key health metabolites, allergens and anti-nutrients that occur, and the role these foods play in the health of populations. This provides a guide for future studies of the green plum to show what nutritional and anti-nutritional properties and compounds should be analyzed and if there are areas where future studies should focus. This review includes an update on studies and analysis of the green plum and how its nutritional properties give it potential as a food for diet diversification in Australia.
Collapse
Affiliation(s)
- Selina Fyfe
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia
| | - Heather E. Smyth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia
| | | | - Michael Rychlik
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia
| |
Collapse
|
8
|
Jakobsen J, Melse-Boonstra A, Rychlik M. Challenges to Quantify Total Vitamin Activity: How to Combine the Contribution of Diverse Vitamers? Curr Dev Nutr 2019; 3:nzz086. [PMID: 31598575 PMCID: PMC6776468 DOI: 10.1093/cdn/nzz086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
This state-of-the-art review aims to highlight the challenges in quantifying vitamin activity in foods that contain several vitamers of a group, using as examples the fat-soluble vitamins A and D as well as the water-soluble folate. The absorption, metabolism, and physiology of these examples are described along with the current analytical methodology, with an emphasis on approaches to standardization. Moreover, the major food sources for the vitamins are numerated. The article focuses particularly on outlining the so-called SLAMENGHI factors influencing a vitamer's' ability to act as a vitamin, that is, molecular species, linkage, amount, matrix, effectors of absorption, nutrition status, genetics, host-related factors, and the interaction of these. After summarizing the current approaches to estimating the total content of each vitamin group, the review concludes by outlining the research gaps and future perspectives in vitamin analysis. There are no standardized methods for the quantification of the vitamers of vitamin A, vitamin D, and folate in foods. For folate and β-carotene, a difference in vitamer activity between foods and supplements has been confirmed, whereas no difference has been observed for vitamin D. For differences in vitamer activity between provitamin A carotenoids and retinol, and between 25-hydroxyvitamin D and vitamin D, international consensus is lacking. The challenges facing each of the specific vitamin communities are the gaps in knowledge about bioaccessibility and bioavailability for each of the various vitamers. The differences between the vitamins make it difficult to formulate a common strategy for assessing the quantitative differences between the vitamers. In the future, optimized stationary digestive models and the more advanced dynamic digestive models combined with in vitro models for bioavailability could more closely resemble in vivo results. New knowledge will enable us to transfer nutrient recommendations into improved dietary advice to increase public health throughout the human life cycle.
Collapse
Affiliation(s)
- Jette Jakobsen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alida Melse-Boonstra
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Michael Rychlik
- Technical University of Munich, Freising, Germany
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, Australia
| |
Collapse
|
9
|
Brimblecombe J. Harnessing the power, know-how and capacity of those considered most vulnerable in designing and implementing policy. Nutr Diet 2018; 75:445-447. [PMID: 30537055 DOI: 10.1111/1747-0080.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Julie Brimblecombe
- Department of Nutrition, Dietetics and Food, Monash University; Honorary Fellow, Menzies School of Health Research
| |
Collapse
|