1
|
Zhang K, Qiu D, Zhao L, Yan C, Jin L, Liao W. Geographical Variation in Body Size in the Asian Common Toad ( Duttaphrynus melanostictus). Life (Basel) 2023; 13:2219. [PMID: 38004360 PMCID: PMC10672612 DOI: 10.3390/life13112219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The geographic variation in life-history traits of organisms and the mechanisms underlying adaptation are interesting ideas in evolutionary biology. This study investigated age and body size of the Asian common toad (Duttaphrynus melanostictus) among five populations along a geographical gradient. We found that geographical variation in age was non-significant among populations but there was a significant and positive correlation between mean age and body size. Although the body size values at 1043 m are quite different from other sites, after controlling for age effects, there was a significant positive correlation between altitude and body size. Our findings followed the predictions of Bergmann's rule, suggesting that the body size of D. melanostictus is potentially influenced by the low air temperatures at higher altitudes.
Collapse
Affiliation(s)
- Kunhao Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (K.Z.); (D.Q.); (L.Z.); (C.Y.)
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| | - Duojing Qiu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (K.Z.); (D.Q.); (L.Z.); (C.Y.)
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| | - Li Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (K.Z.); (D.Q.); (L.Z.); (C.Y.)
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| | - Chengzhi Yan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (K.Z.); (D.Q.); (L.Z.); (C.Y.)
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| | - Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (K.Z.); (D.Q.); (L.Z.); (C.Y.)
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (K.Z.); (D.Q.); (L.Z.); (C.Y.)
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| |
Collapse
|
2
|
Sfara E, El-Hani CN. Ecosystem health and malfunctions: an organisational perspective. BIOLOGY & PHILOSOPHY 2023; 38:37. [PMID: 37720550 PMCID: PMC10501940 DOI: 10.1007/s10539-023-09927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023]
Abstract
A recent idea of "ecosystem health" was introduced in the 1970s and 1980s to draws attention to the fact that ecosystems can become ill because of a reduction of properties such as primary productivity, functions and diversity of interactions among system components. Starting from the 1990s, this idea has been deeply criticized by authors who argued that, insofar as ecosystems show many differences with respect to organismic features, these two kinds of systems cannot share a typical organismic property such as health. In recent years, an organisational approach in philosophy of biology and ecology argued that both organisms and ecosystems may share a fundamental characteristic despite their differences, namely, organisational closure. Based on this kind of closure, scholars have also discussed health and malfunctional states in organisms. In this paper, we examine the possibility of expanding such an organisational approach to health and malfunctions to the ecological domain. Firstly, we will see that a malfunction is related to a lower effectiveness in the functional behaviour of some biotic components with respect to other systemic components. We will then show how some introduced species do not satisfactorily interact in an organisational closure with other ecosystem components, thus posing a threat to the self-maintenance of the ecosystem in which they are found. Accordingly, we will argue that an ecosystem can be said to be healthy when it is a vital environment organisationally grounded on its intrinsic capacity to ensure, under favourable conditions, appropriate functional behaviours for ecosystem components and ecosystem self-maintenance.
Collapse
Affiliation(s)
- Emiliano Sfara
- National Institute in Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, Brazil
| | - Charbel N. El-Hani
- National Institute in Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
3
|
Deng W, Jin L, Qiu D, Yan C, Liao W. Geographic Variation in Organ Size in a Toad ( Duttaphrynus melanostictus). Animals (Basel) 2023; 13:2645. [PMID: 37627435 PMCID: PMC10451166 DOI: 10.3390/ani13162645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Adaptive evolution is the process by which organisms change their morphological, physiological and biochemical characteristics to adapt to different environments during long-term natural selection. Especially, researching variation in organ size can provide important insights into morphological adaptation in amphibians. In this study, we comparatively studied differences in organ sizes (heart, lungs, liver, gallbladder, kidneys, spleen, digestive tract, testes and brain) among five geographical populations of the Asian common toad Duttaphrynus melanostictus. Our results revealed significant variations in the size of these nine specific organs among the populations. Notably, we observed a significant positive correlation between the relative size of the testes and latitude and/or altitude. However, no correlation was found between the relative size of the heart and the length of the digestive tract with altitude across populations, respectively, contradicting Hesse's rule and the digestion theory. These findings suggest that our study does not provide substantial theoretical support for the adaptive evolution of organ size in this particular toad species, but rather contributes to the understanding of the evolution and adaptations of species' different environmental conditions. Further research is warranted to delve deeper into the factors influencing organ size in amphibian populations.
Collapse
Affiliation(s)
- Weiye Deng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| | - Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| | - Duojing Qiu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| | - Chengzhi Yan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province, Yaan 625407, China
| |
Collapse
|
4
|
Testing the Role of Natural and Sexual Selection on Testes Size Asymmetry in Anurans. BIOLOGY 2023; 12:biology12020151. [PMID: 36829429 PMCID: PMC9952133 DOI: 10.3390/biology12020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Directional asymmetry in testes size is commonly documented in vertebrates. The degree of testes size asymmetry has been confirmed to be associated with natural and sexual selection. However, the role of natural and sexual selection driving variations in testes size asymmetry among species of anurans are largely unknown. Here, we studied the patterns of variations in testes size asymmetry and the factors shaping its variations among 116 anuran species. The results indicated that the left size-biased testes in 110 species (94.83% of 116 species) is more common than the right size-biased testes in six species. For all studied species, the degree of testes size asymmetry was positively associated with relative livers and body fat mass, following the prediction of the packaging hypothesis. We also found that the postcopulatory sperm competition (e.g., residual testes size) was positively associated with the degree of testes asymmetry. However, environmental stress (e.g., high latitude, precipitation seasonality and temperature seasonality) did not promote more symmetrical testes for all species. Our findings suggest that both natural selection for larger livers in body space and sexual selection for rapid increase in testis mass for most species during the breeding season can play key roles in driving in testes size asymmetry across anuran species.
Collapse
|
5
|
Vaughn PL, Colwell C, Livingston EH, McQueen W, Pettit C, Spears S, Tuhela L, Gangloff EJ. Climbing and Clinging of Urban Lizards are Differentially Affected by Morphology, Temperature, and Substrate. Integr Org Biol 2023; 5:obad006. [PMID: 36844391 PMCID: PMC9952060 DOI: 10.1093/iob/obad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Urbanization alters the environment along many dimensions, including changes to structural habitat and thermal regimes. These can present challenges, but may also provide suitable habitat for certain species. Importantly, the functional implications of these habitat shifts can be assessed through the morphology-performance-fitness paradigm, though these relationships are complicated by interactions among habitat choice, other abiotic factors, and morphology across scales (i.e., micromorphology and gross anatomy). The common wall lizard (Podarcis muralis) is one example of a cosmopolitan and successful urban colonizer. Quantifying both shifts in morphology over time and morphology-performance relationships under various ecological contexts can provide insight into the success of species in a novel environment. To examine how morphological variation influences performance, we measured seven gross morphological characteristics and utilized scanning electron microscopy to obtain high-resolution images of a claw from individuals living in established populations in Cincinnati, Ohio, USA. We used a geometric morphometric approach to describe variation in claw shape and then compared the claws of contemporary lizards to those of museum specimens collected approximately 40 years ago, finding that claw morphology has not shifted over this time. We then performed laboratory experiments to measure the clinging and climbing performance of lizards on materials that mimic ecologically relevant substrates. Each individual was tested for climbing performance on two substrates (cork and turf) and clinging performance on three substrates (cork, turf, and sandpaper) and at two temperatures (24ºC and 34ºC). Clinging performance was temperature insensitive, but determined by substrate-specific interactions between body dimensions and claw morphology. Conversely, the main determinant of climbing performance was temperature, though lizards with more elongate claws, as described by the primary axis of variation in claw morphology, climbed faster. Additionally, we found strong evidence for within-individual trade-offs between performance measures such that individuals who are better at clinging are worse at climbing and vice versa. These results elucidate the complex interactions shaping organismal performance in different contexts and may provide insight into how certain species are able to colonize novel urban environments.
Collapse
Affiliation(s)
- P L Vaughn
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - C Colwell
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - E H Livingston
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - W McQueen
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - C Pettit
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - S Spears
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - L Tuhela
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - E J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| |
Collapse
|
6
|
Geographical Variation in Body Size and the Bergmann's Rule in Andrew's Toad ( Bufo andrewsi). BIOLOGY 2022; 11:biology11121766. [PMID: 36552274 PMCID: PMC9775554 DOI: 10.3390/biology11121766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Environmental variation likely modifies the life-history traits of vertebrates. As ectothermic vertebrates, it is possible that the body size of amphibians is impacted by environmental conditions. Here, we firstly quantified age and body size variation in the Andrew's toad (Bufo andrewsi) across the Hengduan Mountains. Then, we examined the environmental correlates of this variation based on the literature and our unpublished data on the age and body size of the Andrew's toad from 31 populations distributed in southwestern China. Although our analysis revealed significant variations in age and body size across B. andrewsi populations, neither latitude nor altitude correlated with this variability in age and body size. We found that age at sexual maturity, mean age, and longevity increased with decreasing annual mean temperature, whereas age at sexual maturity increased with decreasing temperature seasonality, implying that temperature was a crucial habitat characteristic that modulated age structure traits. Moreover, we revealed positive associations between age structure and UV-B seasonality, and negative relationships between both mean age and longevity and precipitation seasonality. We also found that body size increased with increasing precipitation in the driest month and UV-B seasonality. However, body size did not covary with temperature, signifying no support for Bergmann's rule. These findings help us to understand amphibians' abilities to adapt to environmental variation, which is particularly important in order to provide a theorical basis for their conservation.
Collapse
|
7
|
Jiang Y, Zhao L, Luan X, Liao W. Testis Size Variation and Its Environmental Correlates in Andrew's Toad ( Bufo andrewsi). Animals (Basel) 2022; 12:3011. [PMID: 36359135 PMCID: PMC9657756 DOI: 10.3390/ani12213011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/27/2023] Open
Abstract
Reproductive investments influenced by environmental conditions vary extensively among geographically distinct populations. However, investigations of patterns of intraspecific variation in male reproductive investments and the mechanisms shaping this variation in anurans remain scarce. Here, we focused on the variation in testis size in 14 populations of the Andrew's toad Bufo andrewsi, a species with weak dispersal ability but wide distribution in southwestern China, to establish whether male reproductive investment varies on an environmental gradient. Our analysis revealed a significant variation in relative testis size across populations, and a positive correlation between testis size and body condition. We, however, found no geographic trends explaining the variability in the testis size. The relative testis size did not increase with increasing latitude or altitude. We also found no relationship between relative testis size and rainfall, but a negative correlation with the coefficient of variation of temperature, with larger testes under stable environments. These findings suggest that the decreased male reproductive investment of this species may be a consequence of harsher or fluctuating environmental conditions.
Collapse
Affiliation(s)
- Ying Jiang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| | - Li Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| | - Xiaofeng Luan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
| |
Collapse
|
8
|
Fedele E, Mori E, Giampaoli Rustichelli M, Del Sala F, Giannini F, Meriggi M, Santini G, Zaccaroni M. Alien versus alien: spatiotemporal overlaps among introduced ungulates in a Mediterranean island ecosystem. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractAssessing the spatiotemporal behaviour of alien species is pivotal to designing effective management plans. Interspecific niche partitioning among ungulates is reported as a strategy to avoid direct interactions. The Mediterranean mouflon and wild boar are two ungulates introduced to Elba island for hunting and aesthetic purposes. We used intensive camera trapping to test whether species occupancy and temporal activity rhythms would vary in response to the presence or absence of the co-occurring species through multi-species occupancy modelling. Our findings report a lack of spatial and temporal segregation between the two species for the late spring–summer and late summer–autumn seasons. In contrast, results for the winter–early spring period suggest that spatial partitioning between wild boar and mouflon is present in areas with high artificial cover (e.g., paved roads). Animals may indeed exploit roads to move more rapidly in search of food; however, their occurrence in these areas seems to be influenced by the presence of the other species.
Collapse
|
9
|
Hileman ET, Powell R, Gifford ME. Senescence and Differential Size-Based Survival in Puerto Rican Giant Groundlizards, Pholidoscelis exsul (Squamata: Teiidae), on Guana Island, British Virgin Islands. HERPETOLOGICA 2022. [DOI: 10.1655/herpetologica-d-22-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eric T. Hileman
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Mississippi State, MS 39762, USA
| | - Robert Powell
- Department of Biology, Avila University, Kansas City, MO 64145, USA
| | - Matthew E. Gifford
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| |
Collapse
|
10
|
Zhu X, Chen C, Jiang Y, Zhao L, Jin L. Geographical variation of organ size in Andrew’s toad (Bufo andrewsi). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.972942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenotypic variation of morphological and physiological traits is assumed to be generated from spatial heterogeneity in environments, and it has been regarded as an important concern domain in evolutionary biology. Organs display markedly size variation among populations along environmental gradients and this variation is associated with changes in oxygen supply and energy demands. Here, we investigated geographical variation in the relative size of organs (i.e., brain, heart, lung, gallbladder, livers, spleen, kidneys, and digestive tract) among 14 populations of Andrew’s toad (Bufo andrewsi) transcending an elevational range from 864 to 2,367 m, and spanning 8° latitude. We found that although the relative sizes of the eight specific organs varied significantly among populations, none organ size was affected by altitude and latitude. However, based on the combined the new data and published data we found a negative relationship between the relative size of the heart and latitude, contrasting to the Hesse’s rule. We also found that the relative size of livers was positively linked to latitude, suggesting that more energy demands and intakes due to slower metabolism in high latitude shaped the evolution of larger livers.
Collapse
|
11
|
Hanslowe EB, Yackel Adams AA, Nafus MG, Page DA, Bradke DR, Erickson FT, Bailey LL. Chew-cards can accurately index invasive rat densities in Mariana Island forests. NEOBIOTA 2022. [DOI: 10.3897/neobiota.74.80242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rats (Rattus spp.) are likely established on 80–90% of the world’s islands and represent one of the most damaging and expensive biological invaders. Effective rat control tools exist but require accurate population density estimates or indices to inform treatment timing and effort and to assess treatment efficacy. Capture-mark-recapture data are frequently used to produce robust density estimates, but collecting these data can be expensive, time-consuming, and labor-intensive. We tested a potentially cheaper and easier alternative, chew-cards, as a count-based (quantitative) index of invasive rat densities in tropical forests in the Mariana Islands, an archipelago in the western North Pacific Ocean. We trialed chew-cards in nine forest grids on two Mariana Islands by comparing the proportion of cards chewed to capture-mark-recapture density estimates and manipulated rat densities to test whether the relationship was retained. Chew-card counts were positively correlated with rat capture-mark-recapture density estimates across a range of rat densities found in the region. Additionally, the correlation between the two sampling methods increased with the number of days chew-cards were deployed. Specifically, when chew-cards were deployed for five nights, a 10% increase in the proportion of cards chewed equated to an estimated increase in rat density of approximately 2.4 individuals per ha (R2 = 0.74). Chew-cards can provide a valid index of rat densities in Mariana Island forests and are a cheaper alternative to capture-mark-recapture sampling when relative differences in density are of primary interest. New cost-effective monitoring tools can enhance our understanding and management of invaded islands while stretching limited resources further than some conventional approaches, thus improving invasive species management on islands.
Collapse
|
12
|
Vaughn PL, Mcqueen W, Gangloff EJ. Moving to the city: testing the implications of morphological shifts on locomotor performance in introduced urban lizards. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Understanding how morphology affects performance in novel environments and how populations shift their morphology in response to environmental selective pressures is necessary to understand how invaders can be successful. We tested these relationships in a global colonizer, the common wall lizard (Podarcis muralis), translocated to Cincinnati, OH, USA 70 years ago. We investigated how morphology shifts in this population inhabiting a novel environment, how these morphological shifts influence locomotor performance and how performance changes in novel conditions. We compared the morphology of museum specimens and current lizards to see which aspects of morphology have shifted over time. Although overall body size did not change, most body dimensions reduced in size. We measured sprint speed with a full-factorial design of substrate type, incline angle and obstacles. We identified a pattern of negative correlation in sprint performance between conditions with and without obstacles. The locomotor advantage of larger body size was diminished when obstacles were present. Finally, there was no relationship between individual variation in contemporary morphology and sprint performance, providing no support to the hypothesis that these shifts are attributable to selective pressures on locomotor performance in the conditions tested.
Collapse
Affiliation(s)
| | - Wyatt Mcqueen
- Department of Zoology, Ohio Wesleyan University, Delaware, OH, USA
| | - Eric J Gangloff
- Department of Zoology, Ohio Wesleyan University, Delaware, OH, USA
| |
Collapse
|