1
|
Levinger R, Tussia-Cohen D, Friedman S, Lender Y, Nissan Y, Fraimovitch E, Gavriel Y, Tearle JLE, Kolodziejczyk AA, Moon KM, Gomes T, Kunowska N, Weinberg M, Donati G, Foster LJ, James KR, Yovel Y, Hagai T. Single-cell and Spatial Transcriptomics Illuminate Bat Immunity and Barrier Tissue Evolution. Mol Biol Evol 2025; 42:msaf017. [PMID: 39836373 PMCID: PMC11817796 DOI: 10.1093/molbev/msaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Bats have adapted to pathogens through diverse mechanisms, including increased resistance-rapid pathogen elimination, and tolerance-limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology), several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that the elevated basal expression of innate immune genes may lead to increased resistance to infection. Here, we test whether such transcriptional patterns occur in Egyptian fruit bat tissues through single-cell and spatial transcriptomics of gut, lung, and blood cells, comparing gene expression between bat, mouse, and human. Despite numerous recent loss and expansion events of interferons in the bat genome, interferon expression and induction are remarkably similar to that of mouse. In contrast, central complement system genes are highly and uniquely expressed in key regions in bat lung and gut epithelium, unlike in human and mouse. Interestingly, the unique expression of these genes in the bat gut is strongest in the crypt, where developmental expression programs are highly conserved. The complement system genes also evolve rapidly in their coding sequences across the bat lineage. Finally, the bat complement system displays strong hemolytic activity. Together, these results indicate a distinctive transcriptional divergence of the complement system, which may be linked to bat resistance, and highlight the intricate evolutionary landscape of bat immunity.
Collapse
Affiliation(s)
- Roy Levinger
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Tussia-Cohen
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sivan Friedman
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yan Lender
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yomiran Nissan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Evgeny Fraimovitch
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yuval Gavriel
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jacqueline L E Tearle
- Translational Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | | | - Kyung-Mee Moon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, BC, Canada
| | - Tomás Gomes
- Fundação GIMM - Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Natalia Kunowska
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Maya Weinberg
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, BC, Canada
| | - Kylie R James
- Translational Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Yossi Yovel
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Wang Z, Tian S, Pang J, Zhang X, Hao X, Zhang L, Zhao H. Comparative analysis of chromosome-level genomes provides insights into chromosomal evolution in Chiroptera. Integr Zool 2024. [PMID: 39415355 DOI: 10.1111/1749-4877.12915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Chiroptera (bats) presents a fascinating model due to its remarkable variation in chromosome numbers, which range from 14 to 62. This astonishing diversity makes bats an excellent subject for studying chromosome evolution. The black-bearded tomb bat (Taphozous melanopogon) occupies a pivotal phylogenetic position within Chiroptera, emphasizing its crucial role in the systematic examination of bat chromosome evolution. In this study, we present the first chromosome-level genome of T. melanopogon within the family Emballonuridae. Together with previously published genomes, we construct a strongly supported phylogenetic tree of bats, which supports that Emballonuridae forms a basal group within Yangochiroptera. Furthermore, we reconstruct ancestral karyotypes at key nodes along the bat phylogeny and conduct a synteny analysis among the genomes of 12 bat species. Our findings identified evolutionary breakpoint regions (EBRs) that are of particular interest. Notably, some bat genomes exhibit an enrichment of genes related to host defense against microbial pathogens within EBRs. Remarkably, one species possesses multiple copies of some β-defensin genes, while six other species have experienced the loss of some β-defensin genes due to EBRs. Furthermore, some olfactory receptor genes are located in EBRs of 12 species, 4 of which have a significant enrichment in sensory perception of smell. Together, our comparative genomic analysis underscores the potential link between chromosome rearrangements and the adaptation of bats to defend against microbial pathogens.
Collapse
Affiliation(s)
- Zerong Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of the Ministry of Education, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shilin Tian
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of the Ministry of Education, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
- Novogene Bioinformatics Institute, Beijing, China
| | - Jiaxin Pang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of the Ministry of Education, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangyi Zhang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of the Ministry of Education, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangyu Hao
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Libiao Zhang
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huabin Zhao
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of the Ministry of Education, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Luo T, Li L, Wang Q, Liu W, Guo J, Yan Y, Chris N, Zhou Y, Zhao J. The changes in zoological publication rates and focal subdisciplines between 1960 and 2022. Integr Zool 2024. [PMID: 39075983 DOI: 10.1111/1749-4877.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Since ancient times, zoology, as the branch of biology dealing with animals, has been a cornerstone of natural science and has developed substantially over the last century. We conducted a bibliometric analysis using structural topic modeling (STM) to determine changes in the representation of principal zoological subdisciplines in the literature between 1960 and 2022. We collated a corpus of 217 414 articles from 88 top-ranked zoology journals and identified three main fields: (i) ecology, (ii) evolution, and (iii) applied research. Within these, we identified 10 major subdisciplines. The number of studies published per year grew from 118 in 1960 to 6635 in 2022. Macroscale-related subdisciplines increased while classical and traditional subdisciplines decreased. Mammals (34.4%) and insects (18.1%) were the dominant taxa covered, followed by birds (15.2%) and fish (8.0%). Research on mammals, insects, and fish involved a broad range of subdisciplines, whereas studies of birds focused on ecological subdisciplines. Most publications were from the United States, followed by the United Kingdom, Germany, Canada, Australia, China, and Japan, with two developing countries, China and South Africa among the top 15 countries. There were different subdiscipline biases between countries, and the gross domestic product of each country correlated positively with its publication output (R2 = 0.681). We discuss our findings in the context of advances in technological innovations and computing power, as well as the emergence of ecology as a formal sister discipline, driven by changing environmental pressures and societal values. We caution that valuable publications from traditional zoological fields must not be completely supplanted by more contemporary topics and increasingly sophisticated analyses.
Collapse
Affiliation(s)
- Tianbao Luo
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Liyu Li
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Qian Wang
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Wentong Liu
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Jinyu Guo
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Yimei Yan
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Newman Chris
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Oxford, UK
| | - Youbing Zhou
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang, China
- Hubei International Scientific and Technological Cooperation Center of Ecological Conservation and Management in Three Gorges Area, China Three Gorges University, Yichang, China
| | - Jin Zhao
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang, China
- Hubei International Scientific and Technological Cooperation Center of Ecological Conservation and Management in Three Gorges Area, China Three Gorges University, Yichang, China
| |
Collapse
|
4
|
Li W, Li J, Hussain K, Peng K, Yu J, Xu M, Yang S. Transporters and phytohormones analysis reveals differential regulation of ryegrass (Lolium perenne L.) in response to cadmium and arsenic stresses. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134228. [PMID: 38626683 DOI: 10.1016/j.jhazmat.2024.134228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024]
Abstract
Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.
Collapse
Affiliation(s)
- Wenwen Li
- School of Ecology and Environment at Anhui Normal University, Wuhu, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, China
| | - Jie Li
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Khateeb Hussain
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Kaihao Peng
- Beijing Peace Carbon Environmental Technology Co. Ltd, China
| | - Jiaming Yu
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Miaoqing Xu
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Shiyong Yang
- School of Ecology and Environment at Anhui Normal University, Wuhu, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, China.
| |
Collapse
|
5
|
Demian WL, Cormier O, Mossman K. Immunological features of bats: resistance and tolerance to emerging viruses. Trends Immunol 2024; 45:198-210. [PMID: 38453576 DOI: 10.1016/j.it.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
Bats are among the most diverse mammalian species, representing over 20% of mammalian diversity. The past two decades have witnessed a disproportionate spillover of viruses from bats to humans compared with other mammalian hosts, attributed to the viral richness within bats, their phylogenetic likeness to humans, and increased human contact with wildlife. Unique evolutionary adaptations in bat genomes, particularly in antiviral protection and immune tolerance genes, enable bats to serve as reservoirs for pandemic-inducing viruses. Here, we discuss current limitations and advances made in understanding the role of bats as drivers of pandemic zoonoses. We also discuss novel technologies that have revealed spatial, dynamic, and physiological factors driving virus and host coevolution.
Collapse
Affiliation(s)
- Wael L Demian
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Olga Cormier
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Karen Mossman
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|