1
|
Zupančič O, Kushwah V, Paudel A. Pancreatic lipase digestion: The forgotten barrier in oral administration of lipid-based delivery systems? J Control Release 2023; 362:381-395. [PMID: 37579977 DOI: 10.1016/j.jconrel.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
This review highlights the importance of controlling the digestion process of orally administered lipid-based delivery systems (LBDS) and their performance. Oral LBDS are prone to digestion via pancreatic lipase in the small intestine. Rapid or uncontrolled digestion may cause the loss of delivery system integrity, its structural changes, reduced solubilization capacity and physical stability issues. All these events can lead to uncontrolled drug release from the digested LBDS into the gastrointestinal environment, exposing the incorporated drug to precipitation or degradation by luminal proteases. To prevent this, the digestion rate of orally administered LBDS can be estimated by appropriate choice of the formulation type, excipient combinations and their ratios. In addition, in vitro digestion models like pH-stat are useful tools to evaluate the formulation digestion rate. Controlling digestion can be achieved by conventional lipase inhibitors like orlistat, sterically hindering of lipase adsorption on the delivery system surface with polyethylene glycol (PEG) chains, lipase desorption or saturation of the interface with surfactants as well as formulating LBDS with ester-free excipients. Recent in vivo studies demonstrated that digestion inhibition lead to altered pharmacokinetic profiles, where Cmax and Tmax were reduced in spite of same AUC compared to control or even improved oral bioavailability.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Varun Kushwah
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; Graz University of Technology, Institute of Process and Particle Engineering, Inffeldgasse 13/3, 8010 Graz, Austria.
| |
Collapse
|
2
|
Vivanco-Maroto SM, Gallo V, Miralles B, Recio I. CCK and GLP-1 response on enteroendocrine cells of semi-dynamic digests of hydrolyzed and intact casein. Food Res Int 2023; 171:113047. [PMID: 37330851 DOI: 10.1016/j.foodres.2023.113047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
A semi-dynamic gastrointestinal device was employed to explore the link between protein structure and metabolic response upon digestion for two different substrates, a casein hydrolysate and the precursor micellar casein. As expected, casein formed a firm coagulum that remained until the end of the gastric phase while the hydrolysate did not develop any visible aggregate. Each gastric emptying point was subjected to a static intestinal phase where the peptide and amino acid composition changed drastically from that found during the gastric phase. Gastrointestinal digests from the hydrolysate were characterized by a high abundancy of resistant peptides and free amino acids. Although all gastric and intestinal digests from both substrates induced the secretion of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) in STC-1 cells, GLP-1 levels were maximum in response to gastrointestinal digests from the hydrolysate. The enrichment of protein ingredients with gastric-resistant peptides by enzymatic hydrolysis is proposed as strategy to deliver protein stimuli to the distal gastrointestinal tract to control food intake or type 2 diabetes.
Collapse
Affiliation(s)
| | - Veronica Gallo
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Beatriz Miralles
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Isidra Recio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
3
|
Wu Y, Li X, Ma M, Hu G, Fu X, Liu J. Characterization of the Dynamic Gastrointestinal Digests of the Preserved Eggs and Their Effect and Mechanism on HepG2 Cells. Foods 2023; 12:foods12040800. [PMID: 36832875 PMCID: PMC9955911 DOI: 10.3390/foods12040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
Preserved eggs, an alkaline-fermented food, have been widely searched for their anti-inflammatory activity. Their digestive characteristics in the human gastrointestinal tract and anti-cancer mechanism have not been well explained. In this study, we investigated the digestive characteristics and anti-tumor mechanisms of preserved eggs using an in vitro dynamic human gastrointestinal-IV (DHGI-IV) model. During digestion, the sample pH dynamically changed from 7.01 to 8.39. The samples were largely emptied in the stomach with a lag time of 45 min after 2 h. Protein and fat were significantly hydrolyzed with 90% and 87% digestibility, respectively. Moreover, preserved eggs digests (PED) significantly increased the free radical scavenging activity of ABTS, DPPH, FRAP and hydroxyl groups by 15, 14, 10 and 8 times more than the control group, respectively. PED significantly inhibited the growth, cloning and migration of HepG2 cells at concentrations of 250-1000 μg/mL. Meanwhile, it induced apoptosis by up/down-regulating the expression of the pro-apoptotic factor Bak and the anti-apoptotic gene Bcl-2 in the mitochondrial pathway. PED (1000 μg/mL) treatment resulted in 55% higher ROS production than the control, which also led to apoptosis. Furthermore, PED down-regulated the expression of the pro-angiogenic genes HIF-1α and VEGF. These findings provided a reliable scientific reference for the study of the anti-tumor activity of preserved eggs.
Collapse
Affiliation(s)
- Yan Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiujuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meihu Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| | - Gan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Fu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Jihong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
An In Vitro Model to Investigate the Potential of Solid Dispersions to Form Pharmacobezoars. Pharmaceutics 2022; 14:pharmaceutics14122608. [PMID: 36559103 PMCID: PMC9785156 DOI: 10.3390/pharmaceutics14122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The formation of pharmacobezoars from suspensions of spray-dried amorphous solid dispersions (SD-ASDs) of new chemical entities (NCEs) and hydroxypropyl methylcellulose acetate succinate (HPMC-AS) represents a non-compound related adverse effect in preclinical oral toxicity studies in rodents. Whereas the contribution of the insolubility of the carrier polymer to this process taking place in the acidic environment of the rodent stomach is conclusive, unawareness of the extent of in vivo pharmacobezoar formation is adverse. In order to evaluate the risk of pharmacobezoar formation before in vivo administration, we subsequently introduce an in vitro model to assess the agglomeration potential of solid dispersions. To verify that the pharmacobezoar formation potential can be assessed based on the observed agglomeration potential, we conducted a sequence of experiments with two HPMC-AS-based SD-ASD formulations. In vitro, we found their different in vivo pharmacobezoar formation potential reflected by a significantly increased agglomerated mass of formulation 1 per day compared to formulation 2. In order to find an approach to reduce the agglomeration potential of solid dispersion from suspensions, we further applied the model to investigate the impact of the viscosity of the vehicle used to prepare suspensions on agglomerate formation.
Collapse
|
5
|
Feng J, Wu P, Chen XD. Quantitative visualization study on the physical movement and gastric emptying of diced carrot particle in a transparent rat stomach-duodenum model. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, a transparent soft-elastic silicone rat stomach model was prepared to visualize the gastric movement and emptying of one individual diced carrot in a dynamic in vitro rat stomach system. The influences of the viscosity of solution medium, the pattern of gastric peristalsis and the extraction rate of the emptying pump on the location and gastric residence time of the carrot particle were examined. A proper medium viscosity could promote the emptying of the carrot particle. Compared to the combined actions of plate and roller, gastric residence time of the carrot particle was reduced from 32.3 to 19.8 min under the single plate compression. This time was also shortened from 34.8 to 12.3 min when the extraction rate of emptying pump was changed from 100 mL/min to 400 mL/min. Knowledge gained from this work is unique and may provide new insights for optimizing biomimic gastrointestinal models.
Collapse
Affiliation(s)
- Jiajun Feng
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science , Soochow University , Suzhou 215123 , Jiangsu Province , China
| | - Peng Wu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science , Soochow University , Suzhou 215123 , Jiangsu Province , China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science , Soochow University , Suzhou 215123 , Jiangsu Province , China
| |
Collapse
|
6
|
O'Farrell C, Stamatopoulos K, Simmons M, Batchelor H. In vitro models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 178:113924. [PMID: 34390774 DOI: 10.1016/j.addr.2021.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orally ingestible medical devices offer significant opportunity in the diagnosis and treatment of gastrointestinal conditions. Their development necessitates the use of models that simulate the gastrointestinal environment on both a macro and micro scale. An evolution in scientific technology has enabled a wide range of in vitro, ex vivo and in vivo models to be developed that replicate the gastrointestinal tract. This review describes the landscape of the existing range of in vitro tools that are available to characterize ingestible devices. Models are presented with details on their benefits and limitations with regards to the evaluation of ingestible devices and examples of their use in the evaluation of such devices is presented where available. The multitude of models available provides a suite of tools that can be used in the evaluation of ingestible devices that should be selected on the functionality of the device and the mechanism of its function.
Collapse
Affiliation(s)
- Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
7
|
Peng Z, Wu P, Wang J, Dupont D, Menard O, Jeantet R, Chen XD. Achieving realistic gastric emptying curve in an advanced dynamic in vitro human digestion system: experiences with cheese-a difficult to empty material. Food Funct 2021; 12:3965-3977. [PMID: 33977933 DOI: 10.1039/d0fo03364b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nowadays, in vitro digestion models have received growing interest in recent years to track the digestive fate of foods in the gastrointestinal tract. A major challenge in the development of more physiologically relevant in vitro gastric models is to simulate realistic gastric emptying. In this study, an advanced dynamic in vitro human gastric system was investigated for its potential in achieving the above. The mechanisms for controlling the gastric emptying rate by modulations of the peristaltic moving distance, the pylorus opening size/frequency, and the stomach tilting angle in relation to time are illustrated. With solid cheese, a difficult food material for emptying, different combinations of the operational parameters of the stomach system were evaluated. The system was steered to attain consistent gastric emptying curve with the theoretical data by optimizing operational parameters. By fitting the gastric retention data with a power-exponential model, which is a common approach for describing gastric emptying, the total meal achieved an average emptying half-time (t1/2) of 84.5 min and a curve shape coefficient (β) of 1.69, similar to the theoretical data reported in the literature, where the values of t1/2 and β were 85 min and 1.8, respectively (p > 0.05). Furthermore, the mean median particle size was significantly decreased from the initial 2.80 mm (cheese cubes) to the final 1.35 mm (p < 0.05). There are few particles greater than 2 mm observed in the emptied cheese digesta throughout the digestion process. These suggest the powerful gastric grinding and sieving capacity exhibited by the in vitro system. The current study demonstrates that a well-considered in vitro system can offer a reasonable approach for tracking the structural and physicochemical changes of foods during digestion in the stomach, which is practically meaningful.
Collapse
Affiliation(s)
- Zhen Peng
- Department of Chemical Engineering and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China and School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Peng Wu
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Jingjing Wang
- Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, 215152, Jiangsu Province, China
| | - Didier Dupont
- STLO, UMR 1253, INRA, Agrocampus Ouest, 35000 Rennes, France
| | - Oliva Menard
- STLO, UMR 1253, INRA, Agrocampus Ouest, 35000 Rennes, France
| | - Romain Jeantet
- STLO, UMR 1253, INRA, Agrocampus Ouest, 35000 Rennes, France
| | - Xiao Dong Chen
- Department of Chemical Engineering and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China and School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
8
|
Wu P, Chen XD. Validation of in vitro bioaccessibility assays — a key aspect in the rational design of functional foods towards tailored bioavailability. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Zhong C, Langrish T. Response to comments on "A comparison of different physical stomach models and an analysis of shear stresses and strains in these system" by Wu and Chen (2020). Food Res Int 2020; 137:109442. [PMID: 33233122 DOI: 10.1016/j.foodres.2020.109442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
Physical stomach (in-vitro) models have considerable potential for answering questions about the dissolution and delivery of tablets, as well as answering fundamental questions about the hydrodynamics of the stomach and ultimately investigating diseases of the human gastrointestinal system. Physical gastrointestinal models have been compared in terms of their advantages and disadvantages. The structures of the produced stomach parts have been compared among the in-vitro models. The possible materials to manufacture the stomach models have also been summarized. This letter to the editor responds to the correspondence by Wu and Chen (2020) about our paper, aiming to further check and describe the substance in our paper.
Collapse
Affiliation(s)
- Chao Zhong
- Drying and Process Technology Group, School of Chemical and Biomolecular Engineering, Building J01, The University of Sydney, Darlington, NSW 2006, Australia
| | - Timothy Langrish
- Drying and Process Technology Group, School of Chemical and Biomolecular Engineering, Building J01, The University of Sydney, Darlington, NSW 2006, Australia.
| |
Collapse
|
10
|
Comments on "A comparison of different physical stomach models and an analysis of shear stresses and strains in these system" by Zhong and Langrish (2020). Food Res Int 2020; 137:109429. [PMID: 33233111 DOI: 10.1016/j.foodres.2020.109429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 11/22/2022]
Abstract
Understanding of the fate of foods or specific nutrient(s) during digestion within the different compartments of the gastrointestinal (GI) tract is important for making healthier food products and formulate appropriate dietary advice. In vitro GI models have been extensively employed for digestion-related studies in recent years because they can overcome many of the difficulties associated with human or animal studies as the latter are not always technically, financially and ethically feasible. The origins, mechanisms, advantages/disadvantages and applications of typical in vitro physical stomach models have been summarized and compared in many review papers. These will contribute to the design and construction of more advanced and physiologically-relevant in vitro GI models. The letter to the editor comments on a recently published review paper aiming to clarify some inaccurate descriptions of the rat and human stomach systems in terms of the mechanisms of gastric peristalsis and the materials of construction for the stomach models.
Collapse
|
11
|
Wu P, Chen XD. On designing biomimic in vitro human and animal digestion track models: ideas, current and future devices. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Shang L, Wang Y, Ren Y, Ai T, Zhou P, Hu L, Wang L, Li J, Li B. In vitro gastric emptying characteristics of konjac glucomannan with different viscosity and its effects on appetite regulation. Food Funct 2020; 11:7596-7610. [PMID: 32869813 DOI: 10.1039/d0fo01104e] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Konjac glucomannan (KGM) is associated with the satiety-enhancing property by imparting the food matrix with high viscosity. In the present study, rheology tests on KGM sol with different viscosities were conducted to understand its flow behavior as they presented in the mouth and stomach, and the in vitro gastric emptying characteristics of KGM were examined with a human gastric simulator. Then, their effects on subjective appetite, glycemia, and appetite-related hormones (insulin, GLP-1, PYY3-36, CCK-8, ghrelin) response were investigated by conducting a randomized, single-blind, crossover trial in 22 healthy adults (11 female and 11 male, mean age (years): 23.2 ± 2.0, BMI (kg m-2): 20.6 ± 2.1). The blood samples and ratings for subjective appetite were collected at regular time intervals after the subjects were fed with four test breakfasts (one control treatment and three experimental treatments) on four different days. An ad libitum lunch was provided to the subjects once they consumed the breakfasts and their food intake was recorded. As the viscosity increased, the gastric emptying rate was delayed despite a large part of the chyme viscosity lost during digestion. The satiating capacity of the test breakfast was significantly enhanced as its viscosity increased, the and subjects' sensation for hunger, fullness, desire-to-eat, and prospective food consumption differed significantly (p = 0.006, 0.000, 0.002, and 0.001, respectively) between the treatments. The secretion of glycemia and satiety-related hormones were beneficially modulated by the increased viscosity of the test meal but a small decrease in the ad libitum food intake was observed after the intervention of the viscous test breakfasts. Overall, elevating the meal viscosity moderately by using KGM could contribute to combating the challenge of hunger for people in the bodyweight management.
Collapse
Affiliation(s)
- Longchen Shang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Yi Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Yanyan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Tingyang Ai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Peiyuan Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Ling Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. and Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| |
Collapse
|
13
|
A comparison of different physical stomach models and an analysis of shear stresses and strains in these system. Food Res Int 2020; 135:109296. [DOI: 10.1016/j.foodres.2020.109296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 01/28/2023]
|
14
|
Wu P, Chen XD. Further comments on "A comparison of different physical stomach models and an analysis of shear stresses and strains in these system" by Zhong and Langrish (2020). Food Res Int 2020; 136:109542. [PMID: 32846597 DOI: 10.1016/j.foodres.2020.109542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/01/2022]
Abstract
Recently, Zhong and Langrish (2020a) presented an excellent review on typical in vitro physical stomach models reported in literature with an emphasis on their structures, materials, peristalsis, shear stress, pros and cons. We read it with great interest and provided further information (Wu & Chen, 2020) on our home-made rat and human stomach systems which were discussed in the review. Zhong and Langrish (2020b) followed up with a response letter to our note providing their observations on the matters. The current letter hopefully provides a sufficient response to their comments. It is believed through this back-and-forth process, the issues of uncertainty are nicely clarified for interested readers.
Collapse
Affiliation(s)
- Peng Wu
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Xiao Dong Chen
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
15
|
Li C, Yu W, Wu P, Chen XD. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Liu D, Dhital S, Wu P, Chen XD, Gidley MJ. In Vitro Digestion of Apple Tissue Using a Dynamic Stomach Model: Grinding and Crushing Effects on Polyphenol Bioaccessibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:574-583. [PMID: 31820633 DOI: 10.1021/acs.jafc.9b05649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Food structure is a key determinant for the release of phenolic compounds during gastric and intestinal digestion. We evaluated the bioaccessibility of polyphenols from apple tissue during gastric digestion in vitro from bio-mechanical perspectives including the effects of gastric juice and mucin on the apple tissue matrix under simulated stomach peristalsis. The gastric model system was effective in releasing polyphenols because of simultaneous compression and extrusion, with 3 times higher release from coarse than from fine particles. However, bioaccessibility of polyphenols was reduced up to 44% in the presence of both cell walls and gastric mucin. Most individual phenolic molecules were gradually released and were stable in the gastric environment, except for procyanidin B2. The study suggests that the bioaccessibility of polyphenols from apples in the upper digestive tract is dependent on mechanical disintegration and the residual matrix present in the swallowed bolus.
Collapse
Affiliation(s)
- Dongjie Liu
- Key Laboratory of Plant Cell Walls & Plant Resistance, Molecular Analysis & Genetic Improvement Center, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , China
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Sushil Dhital
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation , The University of Queensland , St Lucia , Queensland 4072 , Australia
- Department of Chemical Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Peng Wu
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Xiao-Dong Chen
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation , The University of Queensland , St Lucia , Queensland 4072 , Australia
| |
Collapse
|
17
|
Zhao B, Sun S, Lin H, Chen L, Qin S, Wu W, Zheng B, Guo Z. Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction. ULTRASONICS SONOCHEMISTRY 2019; 52:50-61. [PMID: 30528211 DOI: 10.1016/j.ultsonch.2018.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/11/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Complex starch is gaining research attention due to its unique physicochemical and functional properties. Lotus seed starch (LS) suspensions (6.7%, w/v) with added green tea polyphenols (GTPs) (10%, w/w) were subjected to ultrasound (200-1000 W)-microwave (150-225 W) (UM) treatment for 15 min. The effects of UM treatment on the physicochemical properties of the LS-GTP system were investigated and exceeded that of microwave or ultrasound alone. The properties (morphology, X-ray diffraction pattern and so on) were affected by GTPs to various extents, depending on ultrasonic power. These influences may be explained by the non-covalent interactions between GTPs and LS. V-type LS-GTP inclusion complex and non-inclusive complex formation were observed. Their morphology and the distribution of GTPs molecules within them were estimated using scanning electron microscopy and confocal laser scanning microscopy. Furthermore, the digestion of LS-GTP complex was investigated by a dynamic in vitro rat stomach-duodenum (DIVRSD) model, lower digestion efficiency of LS has been achieved and the residues showed gradual improvement in morphology. These all experimental results do provide new insight into the complex starch production.
Collapse
Affiliation(s)
- Beibei Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siwei Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liding Chen
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Weiguo Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
18
|
Wang J, Wu P, Liu M, Liao Z, Wang Y, Dong Z, Chen XD. An advanced near real dynamicin vitrohuman stomach system to study gastric digestion and emptying of beef stew and cooked rice. Food Funct 2019; 10:2914-2925. [DOI: 10.1039/c8fo02586j] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A near real dynamicin vitrohuman stomach (new DIVHS) system has recently been advanced in this study, based on the previous rope-drivenin vitrohuman stomach model (RD-IV-HSM).
Collapse
Affiliation(s)
- Jingjing Wang
- Suzhou Key Laboratory of Green Chemical Engineering
- School of Chemical and Environmental Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Peng Wu
- Suzhou Key Laboratory of Green Chemical Engineering
- School of Chemical and Environmental Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Minghui Liu
- Suzhou Key Laboratory of Green Chemical Engineering
- School of Chemical and Environmental Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhenkai Liao
- Xiao Dong Pro-health (Suzhou) Instrumentation Co. Ltd
- Suzhou 215123
- China
| | - Yong Wang
- Nutrition & Health Research Institute
- COFCO Corporation
- Beijing Key Laboratory of Nutrition & Health and Food Safety
- Beijing 102209
- China
| | - Zhizhong Dong
- Nutrition & Health Research Institute
- COFCO Corporation
- Beijing Key Laboratory of Nutrition & Health and Food Safety
- Beijing 102209
- China
| | - Xiao Dong Chen
- Suzhou Key Laboratory of Green Chemical Engineering
- School of Chemical and Environmental Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
19
|
Delaplace G, Gu Y, Liu M, Jeantet R, Xiao J, Chen XD. Homogenization of liquids inside a new soft elastic reactor: Revealing mixing behavior through dimensional analysis. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Xiao J, Zou C, Liu M, Zhang G, Delaplace G, Jeantet R, Chen XD. Mixing in a soft-elastic reactor (SER) characterized using an RGB based image analysis method. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Liu M, Xiao J, Chen XD. A Soft-Elastic Reactor Inspired by the Animal Upper Digestion Tract. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201600617] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Minghui Liu
- Soochow University; Suzhou Key Laboratory of Green Chemical Engineering; School of Chemical and Environmental Engineering; College of Chemistry, Chemical Engineering and Materials Science; 199 Ren'ai Road 215123 Suzhou, Jiangsu Province China
| | - Jie Xiao
- Soochow University; Suzhou Key Laboratory of Green Chemical Engineering; School of Chemical and Environmental Engineering; College of Chemistry, Chemical Engineering and Materials Science; 199 Ren'ai Road 215123 Suzhou, Jiangsu Province China
| | - Xiao Dong Chen
- Soochow University; Suzhou Key Laboratory of Green Chemical Engineering; School of Chemical and Environmental Engineering; College of Chemistry, Chemical Engineering and Materials Science; 199 Ren'ai Road 215123 Suzhou, Jiangsu Province China
- Monash University; Department of Chemical Engineering, Clayton Campus; 3600 Melbourne Australia
| |
Collapse
|
22
|
Zhang X, Liao Z, Wu P, Chen L, Chen XD. Effects of the gastric juice injection pattern and contraction frequency on the digestibility of casein powder suspensions in an in vitro dynamic rat stomach made with a 3D printed model. Food Res Int 2018; 106:495-502. [DOI: 10.1016/j.foodres.2017.12.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 11/28/2022]
|