1
|
Zhong R, Zheng T, Wu H, Du Y, Yang Q, Shi F, Liang P. Physicochemical characteristics and metabolite composition of fish sauce made from large yellow croaker roe enzymatic hydrolysates based on three fermentation temperatures. Food Chem 2025; 471:142756. [PMID: 39788023 DOI: 10.1016/j.foodchem.2025.142756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/08/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
Large yellow croaker roes were used to make fish sauce using enzymolysis method, and the impact of different fermentation temperatures (25, 32 and 40 °C) on the physicochemical characteristics and metabolite composition was revealed. Results indicated that compared with 25 and 32 °C, the higher contents of total acidity, amino nitrogen, total soluble nitrogen, and the deepening of the nonenzymatic browning degree of fish sauce fermented at 40 °C were obtained. The total volatile basic nitrogen content at 40 °C was lower than 32 °C. The ideal fermentation temperature should be 40 °C. The metabolomics analysis of fish sauce showed that 40 °C significantly increased the abundance of hippuric acid, 3-hydroxy hippuric acid, hydrocinnamic acid and heptanoic acid compared with other temperatures, but decreased trimethylamine N-oxide, 15-methyl palmitic acid, N6-succinyl adenosine and nicotinamide. These results expand the utilization pathways of low-value fish roes, and provide a promising reference for the manufacturing of high-quality fish sauce.
Collapse
Affiliation(s)
- Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Tingting Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Longyan University, Longyan 364012, China
| | - Hua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyu Du
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Qian Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Feifei Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China.
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China.
| |
Collapse
|
2
|
Yan Z, Lin S, Li F, Qiang J, Zhang S. Food nanotechnology: opportunities and challenges. Food Funct 2024; 15:9690-9706. [PMID: 39262316 DOI: 10.1039/d4fo02119c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Food nanotechnology, which applies nanotechnology to food systems ranging from food production to food processing, packaging, and transportation, provides tremendous opportunities for conventional food science and industry innovation and improvement. Although great progress and rapid growth have been achieved in food nanotechnology research owing to the unique food features rendered by nanotechnology, at a fundamental level, food nanotechnology is still in its initial stages and the potential adverse effects of nanomaterials are still a controversial problem that attract public attention. Food-derived nanomaterials, compared to some inorganic nanoparticles and synthetic organic macromolecules, can be digested rapidly and produce similar digestion products to those produced normally, which become the mainstream and trend for food nanotechnology in practical applications, and are expected to be a vital tool for addressing the security problem and easing public concerns. These food-derived materials enable the favourable characteristics of nanostructures to be combined with the safety, biocompatibility, and bioactivity of natural food. Very recently, diverse food-derived nanomaterials have been explored and widely applied in multiple fields. Herein, we thoroughly summarize the fabrication and development of nanomaterials for use in food technology, as well as the recent advances in the improvement of food quality, revolutionizing food supply, and boosting food industries based on foodborne nanomaterials. The current challenges in food nanotechnology are also discussed. We hope this review can provide a detailed reference for experts and food manufacturers and inspire researchers to participate in the development of food nanotechnology for highly efficient food industry growth.
Collapse
Affiliation(s)
- Zhiyu Yan
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Fanghan Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Jiaxin Qiang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Simin Zhang
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
3
|
Zhang X, Liu Z, Wang A, Zhang S, Nakamura Y, Lin S, Tang Y. Influence of fish skin gelatin-sodium alginate complex stabilized emulsion on benzyl isothiocyanate stability and digestibility in vitro and in vivo. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5680-5689. [PMID: 35388504 DOI: 10.1002/jsfa.11915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND An emulsion delivery system for benzyl isothiocyanate (BITC) was prepared using fish skin gelatin (FSG) and sodium alginate (Alg). The effects of the FSG-Alg complex on the emulsion stability and BITC release pattern from the emulsion were investigated in vitro and in vivo. RESULTS The storage stability and embedding rate of the 10 g kg-1 FSG and 2.5 g kg-1 Alg (FSG-Alg) emulsion were the highest among all samples. The FSG-Alg complex provided BITC a better protection during in vitro digestion. The microstructure of the FSG-Alg emulsions was more stable during in vitro digestion, and the bioaccessibility and retention rate of BITC were much higher compared to those of the FSG emulsion. The results of the ex vivo everted gut sac of rat intestine study showed that the FSG-Alg emulsion significantly increased the BITC absorption rate in the duodenum. CONCLUSION The FSG-Alg emulsion delivery system is a highly stable system for the delivery of BITC that improves the bioaccessibility of BITC and promotes its absorption in the duodenum. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangyu Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhiyu Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ailin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yoshimasa Nakamura
- Environmental and Life Science, Institute of Academic and Research, Okayama University, Okayama, Japan
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yue Tang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
4
|
Han J, Jiang J, Wang Q, Li P, Zhu B, Gu Q. Current Research on the Extraction, Functional Properties, Interaction with Polyphenols, and Application Evaluation in Delivery Systems of Aquatic-Based Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11844-11859. [PMID: 36112349 DOI: 10.1021/acs.jafc.2c04325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Globally, aquatic processing industries pay great attention to the production of aquatic proteins for the fulfillment of the nutritive requirements of human beings. Aquatic protein can replace terrestrial animal protein due to its high protein content, complete amino acids, unique flavor, high quality and nutritional value, and requirements of religious preferences. Due to the superior functional properties, an aquatic protein based delivery system has been proposed as a novel candidate for improving the absorption and bioavailability of bioactive substances, which might have potential applications in the food industry. This review outlines the extraction techniques for and functional properties of aquatic proteins, summarizes the potential modification technologies for interaction with polyphenols, and focuses on the application of aquatic-derived protein in delivery systems as well as their interaction with the gastrointestinal tract (GIT). The extraction techniques for aquatic proteins include water, salt, alkali/acid, enzyme, organic solvent, and ultrasound-assisted extraction. The quality and functionality of the aquatic proteins could be improved after modification with polyphenols via covalent or noncovalent interactions. Furthermore, some aquatic protein based delivery systems, such as emulsions, gels, films, and microcapsules, have been reported to enhance the absorption and bioavailability of bioactive substances by in vitro GIT, cell, and in vivo animal models. By promoting comprehensive understanding, this review is expected to provide a real-time reference for developing functional foods and potential food delivery systems based on aquatic-derived proteins.
Collapse
Affiliation(s)
- Jiarun Han
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jialan Jiang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ping Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Beiwei Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qing Gu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
5
|
Li Y, Zhang S, Bao Z, Sun N, Lin S. Explore the activation mechanism of alcalase activity with pulsed electric field treatment: Effects on enzyme activity, spatial conformation, molecular dynamics simulation and molecular docking parameters. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Tang Y, Wang X, Yu J, Song L, Lin S. Fish skin gelatin-based emulsion as a delivery system to protect lipophilic bioactive compounds during in vitro and in vivo digestion: The case of benzyl isothiocyanate. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Tang Y, Wang X, Jiang H, Song L, Cui H, Zhang Z, Lin S. Pseudosciaena crocea roe protein-stabilized emulsions for oral delivery systems: In vitro digestion and in situ intestinal perfusion study. J Food Sci 2020; 85:2923-2932. [PMID: 32839962 DOI: 10.1111/1750-3841.15371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/17/2020] [Accepted: 06/16/2020] [Indexed: 11/29/2022]
Abstract
Benzyl isothiocyanate (BITC) was encapsulated in oil-in-water emulsions stabilized by Pseudosciaena crocea roe protein isolate (PRPI). The stability, lipid digestion, BITC bioavailability, and retention rate of the emulsions were characterized using a simulated gastrointestinal tract model. Tween-corn and PRPI-medium-chain triglycerides (MCT) emulsions were used as controls. The membrane permeability and BITC absorption from these emulsions were investigated by in situ single-pass intestinal perfusion. The results showed that the PRPI-stabilized emulsions were stable under nonacidic environment conditions. Moreover, the PRPI-corn emulsion had more obvious protective effects than PRPI-MCT and Tween-corn emulsions. Atomic force and confocal laser scanning microscopy images showed that the protein hydrolyzed and oil droplets aggregated during simulated gastric phase digestion. Following the exposure of oil droplets in the small intestine phase, the PRPI-corn emulsion had a high rate of free fatty acid release (99.13 ± 2.49%), and the retention rate and bioavailability of BITC from the PRPI-corn emulsion were 75.93 ± 7.17% and 77.32 ± 5.36%, respectively, which were significantly higher than those measured for the other emulsions (P < 0.05). Moreover, the Ka and Peff of the PRPI-corn emulsion reached the maximum value at 45 min and then decreased slowly. These results suggest that the PRPI-corn emulsion delivery system is effective in encapsulating, delivering, and protecting BITC. PRACTICAL APPLICATION: This study provides some useful information for the food industry to develop a Pseudosciaena crocea roe protein isolate (PRPI) emulsion that could be successfully used to construct a BITC delivery system and improve benzyl isothiocyanate (BITC) bioavailability. The protective effect on BITC assessed in vitro simulated gastrointestinal tract and in situ single-pass intestinal perfusion are discussed.
Collapse
Affiliation(s)
- Yue Tang
- Natl. Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic Univ., Dalian, 116034, P. R. China
| | - Xiaohan Wang
- Natl. Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic Univ., Dalian, 116034, P. R. China
| | - Hui Jiang
- Natl. Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic Univ., Dalian, 116034, P. R. China
| | - Liang Song
- Natl. Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic Univ., Dalian, 116034, P. R. China
| | - Haozhe Cui
- Natl. Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic Univ., Dalian, 116034, P. R. China
| | - Zhihui Zhang
- Natl. Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic Univ., Dalian, 116034, P. R. China
| | - Songyi Lin
- Natl. Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic Univ., Dalian, 116034, P. R. China
| |
Collapse
|