1
|
Yan Z, Alimu R, Wan J, Liao X, Lin S, Dai S, Chen F, Zhang S, Tong Y, Liu H, Qin R, Liu J. Composition of major quinochalcone hydroxysafflor yellow A and anhydrosafflor yellow B is associated with colour of safflower (Carthamus tinctorius) during colour-transition but not with overall antioxidant capacity: A study on 144 cultivars. Food Res Int 2022; 162:112098. [PMID: 36461404 DOI: 10.1016/j.foodres.2022.112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022]
Abstract
Yellow pigments in the water-extract of safflower (Carthamus tinctorius L.) belong to quinochalcone flavonoid family and are widely used as food colourants. The aim of the study was to characterize the main quinochalcone compounds in safflower water-extract during blooming period when floret changed colour. Mass-spectrometry results showed that hydroxysafflor yellow A (HSYA) and anhydrosafflor yellow B (AHSYB) were the most abundant. Based on 370 florets samples collected from 144 cultivars, the contents of HSYA and AHSYB were determined, which showed that only AHSYB content had relatively strong positive association with colour indexes. The ratio of HSYA/AHSYB and visual colour exhibited certain patterns: yellow = 2, orange = 3-4, red = more dispersed, mostly falling 5-6. Most of the florets had HSYA increased first and decreased, while AHSYB decreased all the time when floret changed colour as yellow → orange → red. Regardless of the composition of HSYA/AHSYB in florets, the antioxidant capacities of safflower petal water-extracts were the same.
Collapse
Affiliation(s)
- Zhen Yan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Rebiguli Alimu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Jiawei Wan
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Xuewei Liao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Shimin Lin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Shijie Dai
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Fei Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Shuang Zhang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Yiqi Tong
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China.
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central MinZu University, Wuhan 430074, China.
| |
Collapse
|
2
|
Guo L, Qiu H, Zhou Y, Du J, Kan H. Composition Analysis and Antioxidant Activity of Purified
Boletus auripes
Pigment Using Macroporous resin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Guo
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education Southwest Forestry University Kunming 650224 P. R. China
- School of Life Science Southwest Forestry University Kunming, 650224 P. R. China
| | - Huiting Qiu
- School of Life Science Southwest Forestry University Kunming, 650224 P. R. China
| | - Yu Zhou
- School of Life Science Southwest Forestry University Kunming, 650224 P. R. China
| | - Jiamin Du
- School of Life Science Southwest Forestry University Kunming, 650224 P. R. China
| | - Huan Kan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education Southwest Forestry University Kunming 650224 P. R. China
- School of Life Science Southwest Forestry University Kunming, 650224 P. R. China
| |
Collapse
|
3
|
Optimization of Ultrasound-Assisted Cellulase Extraction from Nymphaea hybrid Flower and Biological Activities: Antioxidant Activity, Protective Effect against ROS Oxidative Damage in HaCaT Cells and Inhibition of Melanin Production in B16 Cells. Molecules 2022; 27:molecules27061914. [PMID: 35335279 PMCID: PMC8949894 DOI: 10.3390/molecules27061914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, ultrasonic-assisted cellulase extraction (UCE) was applied to extract flavonoids and polyphenols from the Nymphaea hybrid flower. The extraction conditions were optimized using the response surface method (RSM) coupled with a Box-Behnken design. The crude extract of Nymphaea hybrid (NHE) was further purified using AB-8 macroporous resins, and the purified extract (NHEP) was characterized by FTIR and HPLC. In vitro activity determination by chemical method showed that NHEP displayed strong free radical scavenging abilities against the DPPH and ABTS radicals, good reduction power, and hyaluronidase inhibition. The cell viability by CCK-8 assays showed that NHEP had no significant cytotoxicity for B16 and HaCaT cells when the concentration was below 100 μg/mL and 120 μg/mL, respectively. NHEP with a concentration of 20–160 μg/mL can more effectively reduce the ROS level in H2O2 damaged HaCaT cells compared with 10 μg/mL of VC. The 40 μg/mL of NHEP had similar activity against intracellular melanin production in the B16 melanoma cells compared with 20 μg/mL Kojic acid. Good activities of antioxidation, whitening and protective effect against H2O2-induced oxidative damage promote the potential for NHEP as a functional raw material in the field of cosmetics and medicine.
Collapse
|
4
|
Chen G, Li C, Zhang L, Yang J, Meng H, Wan H, He Y. Hydroxysafflor yellow A and anhydrosafflor yellow B alleviate ferroptosis and parthanatos in PC12 cells injured by OGD/R. Free Radic Biol Med 2022; 179:1-10. [PMID: 34923102 DOI: 10.1016/j.freeradbiomed.2021.12.262] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/13/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022]
Abstract
Ferroptosis and parthanatos are two types of programmed cell death associated with cerebral ischemia. There is a sizeable interest in seeking chemical components for the regulation of ferroptosis and parthanatos. Hydroxysafflor yellow A (HSYA) and anhydrosafflor yellow B (AHSYB) mitigated cell death caused by oxidative stress due to antioxidant capacity, yet the mechanism is still uncertain. Thus, we investigated whether HSYA and AHSYB prevent death through these two pathways with the aim to elucidate their potential protective mechanisms of cerebral ischemia. In this study, oxidative stress model was established by treating PC12 cells with oxygen glucose deprivation and reperfusion (OGD/R). Cellular functions and signaling pathways were analyzed in PC12 cells using cell counting kit-8 (CCK-8), flow cytometry, ELISA, iron assay kit, transmission electron microscopy (TEM), immunofluorescence, and western blot analysis. And the research proved HSYA and AHSYB protected cells from oxidative stress. The phenomenon is associated with ferroptosis and parthanatos. HSYA and AHSYB upregulated cystine/glutamate antiporter system xc- (system xc-) and glutathione peroxidase 4 (GPX4), returned the levels of GSH/GSSG ratio, reactive oxygen species (ROS) and iron ion, as well as alleviated lipid peroxidation. By reason of reducing ROS, HSYA and AHSYB restrained poly(ADP-ribose) polymerase-1 (PARP-1) overactivation, reduced the production of excess poly(ADP-ribose) (PAR) polymer and apoptosis inducing factor (AIF) nuclear translocation. The results suggested that HSYA and AHSYB limited ferroptosis and parthanatos to alleviate oxidative stress in PC12 cells. These findings may have implications for improving understanding of how drugs reduce oxidative stress and develop new strategies for treating degenerative diseases such as cerebral ischemia.
Collapse
Affiliation(s)
- Guangwei Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang Li
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huanhuan Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|