1
|
Zhu H, Li L, Ma Y, Luo H, El-Sappah AH, Liu Y, Sun X, Pan S, Mehmood MA, Sun Y, Wang N. Volatilomics and Lipidomics revealed flavoring mechanism in baijiu brewed from diverse Sorghum varieties. Food Chem 2025; 485:144503. [PMID: 40319596 DOI: 10.1016/j.foodchem.2025.144503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Sorghum is crucial in Baijiu brewing. Previous studies have shown that glutinous sorghum (LS) and non-glutinous sorghum (FS) significantly affect Zaopei's lipid metabolism and lipids affect flavor perception. This study aimed to explore the quality differences in Baijiu brewed with different sorghum varieties and the effects of lipids. Sensory evaluation, volatilomics, and lipidomics were used to analyze differences in flavors and lipids. The results showed that significant differences in flavor existed between the two types of Baijiu. The aged flavor of LS was more pronounced and its mouthfeel was smoother. However, the FS showed a more intense aroma release. In addition, FA 18:1;O3 (fatty acyls), acetaldehyde, and ethyl caprylate contributed to the smoothness and softness of Baijiu. These results suggest that the lipid composition of Baijiu affects its aroma and taste, thus providing a reference basis for selecting suitable raw sorghum materials to enhance the quality of Baijiu.
Collapse
Affiliation(s)
- Hui Zhu
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China
| | - Linjuan Li
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China
| | - Yi Ma
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China
| | - Huibo Luo
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China
| | - Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, China; Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ying Liu
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd, Yibin 644000, China
| | - Xiaoke Sun
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd, Yibin 644000, China
| | - Shijiang Pan
- Yibin City Agricultural and Rural Bureau, Yibin 644000, China
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Ning Wang
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China.
| |
Collapse
|
2
|
Luo Q, Lu Y, Li X, Su J, Zhao P, Zhang Z, Gu Y, Zhao D, Zheng J. Paracoccus yibinensis sp. nov., a novel bacterium with astaxanthin producing isolated from the environment of Chinese distilled Baijiu. Antonie Van Leeuwenhoek 2025; 118:74. [PMID: 40268785 DOI: 10.1007/s10482-025-02082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
An aerobic, Gram-stain-negative bacterium, designated as strain WLY502T, was isolated from the environment of Baobaoqu starter production. The strain was with a short rod shape cells 0.5-0.7 μm wide and 1.1-2.0 μm long, arranged singly or in pairs. The isolate was able to grow at temperatures of 20-37 °C (optimum growth at 25 °C), at pH 5.0-10.0 (optimum growth at pH 7.0) and in the presence of 0-5% (w/v) NaCl (optimum growth with 0% NaCl). Ribose, xylose, arabinose, mannose, glucose and galactose were the major cell-wall sugar. The meso-diaminopimelic acid (meso-DAP) was the diagnostic amino acid. The main polar lipids of strain WLY502T included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), unidentified aminolipids (UAL 1-2), unidentified aminophospholipid (UAPL), unidentified aminophospholipid (UAPL), unidentified phospholipid (UPL), unidentified lipids (UL 1-5), glycolipid (GL). Ubiquinone Q-10 was predominant menaquinone and C18:1 ω7c (80.5%) was the major fatty acid. Comparisons of 16S rRNA gene sequence indicated that strain WLY502T was most closely related to Paracoccus acridae SCU-M53T (98.48%), Paracoccus haematequi M1-83T (98.40%). The average nucleotide identity (ANI) values strain WLY502T and the two type strains mentioned above were 91.19% and 70.96%. The average amino identity (AAI) value between them were 93.42% and 87.19%. Additionally, the digital DNA-DNA hybridization (dDDH) value between them is 42.9% and 30.1%. The genomic DNA G + C content was 64.99%. Strain WLY502T could produce astaxanthin and contains several genes (such as MalK, UgpE, UgpA, PRK07067, PBP2 TMBP ike, YcjU, YjiC, crtI-fam, crtY, ERG9, and IspA) involved in astaxanthin. Therefore, strain WLY502T may have development and utilisation value in flavouring agents. Based on the evidence presented, strain WLY502T (CICC 25237T = JCM 36429T) is proposed as the type strain of a novel species, designated as Paracoccus yibinensis sp. nov.
Collapse
Affiliation(s)
- Qingchun Luo
- Wuliangye Yibin Co., Ltd., Yibin, 644000, Sichuan, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, 644007, China
| | - Yanping Lu
- Wuliangye Yibin Co., Ltd., Yibin, 644000, Sichuan, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, 644007, China
| | - Xi Li
- Wuliangye Yibin Co., Ltd., Yibin, 644000, Sichuan, China
| | - Jian Su
- Wuliangye Yibin Co., Ltd., Yibin, 644000, Sichuan, China
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin, 644000, Sichuan, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, 644007, China
| | - Pengju Zhao
- Wuliangye Yibin Co., Ltd., Yibin, 644000, Sichuan, China
| | - Zhu Zhang
- Wuliangye Yibin Co., Ltd., Yibin, 644000, Sichuan, China
| | - Yang Gu
- Wuliangye Yibin Co., Ltd., Yibin, 644000, Sichuan, China
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd., Yibin, 644000, Sichuan, China
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin, 644000, Sichuan, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, 644007, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin, 644000, Sichuan, China.
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin, 644000, Sichuan, China.
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, 644007, China.
| |
Collapse
|
3
|
Chen Z, Tang S, Zhu X, Zhu G, Luo X, Wang X. Environmental Stress and the Deterministic Assembly of Bacterial Communities in Daqu: The Role of Amino Acid Content Fluctuations. Foods 2025; 14:725. [PMID: 40077428 PMCID: PMC11898458 DOI: 10.3390/foods14050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 03/14/2025] Open
Abstract
Bacterial communities are highly susceptible to fluctuations in amino acid content. To investigate the response of microbial communities in daqu to environmental perturbations, we employed high-throughput sequencing and statistical analyses. Samples were collected from two workshops (A and B) at distinct stages of daqu fermentation and storage. Our analysis, using the β-nearest taxon index (βNTI), revealed that fungal community assembly is shaped by both stochastic and deterministic processes. In contrast, bacterial communities exhibited a shift towards deterministic assembly under environmental stress, with fluctuations in amino acid content being a primary driver. Notably, communities with active amino acid metabolism displayed a greater involvement of stochastic processes and harbored a higher number of bacterial keystone taxa, which contributed to the stability of microbial networks. This study provides novel insights into the complex interplay between microbial communities and their environment in the context of daqu.
Collapse
Affiliation(s)
- Zhihao Chen
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (Z.C.); (X.Z.); (X.L.)
| | - Shaopei Tang
- Kweichow Zhen Distillery Co., Ltd., Zunyi 563000, China; (S.T.); (G.Z.)
| | - Xia Zhu
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (Z.C.); (X.Z.); (X.L.)
| | - Guojun Zhu
- Kweichow Zhen Distillery Co., Ltd., Zunyi 563000, China; (S.T.); (G.Z.)
| | - Xiaoye Luo
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (Z.C.); (X.Z.); (X.L.)
| | - Xiaodan Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (Z.C.); (X.Z.); (X.L.)
| |
Collapse
|
4
|
Li S, Han Y, Yan M, Qiu S, Lu J. Machine Learning and Multi-Omics Integration to Reveal Biomarkers and Microbial Community Assembly Differences in Abnormal Stacking Fermentation of Sauce-Flavor Baijiu. Foods 2025; 14:245. [PMID: 39856911 PMCID: PMC11765235 DOI: 10.3390/foods14020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Stacking fermentation is critical in sauce-flavor Baijiu production, but winter production often sees abnormal fermentations, like Waistline and Sub-Temp fermentation, affecting yield and quality. This study used three machine learning models (Logistic Regression, KNN, and Random Forest) combined with multi-omics (metagenomics and flavoromics) to develop a classification model for abnormal fermentation. SHAP analysis identified 13 Sub-Temp Fermentation and 9 Waistline microbial biomarkers, along with 9 Sub-Temp Fermentation and 12 Waistline flavor biomarkers. Komagataeibacter and Gluconacetobacter are key for normal fermentation, while Ligilactobacillus and Lactobacillus are critical in abnormal cases. Excessive acid and ester markers caused unbalanced aromas in abnormal fermentations. Additionally, ecological models reveal the bacterial community assembly in abnormal fermentations was influenced by stochastic factors, while the fungal community assembly was influenced by deterministic factors. RDA analysis shows that moisture significantly drove Sub-Temp fermentation. Differential gene analysis and KEGG pathway enrichment identify metabolic pathways for flavor markers. This study provides a theoretical basis for regulating stacking fermentation and ensuring Baijiu quality.
Collapse
Affiliation(s)
- Shuai Li
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China;
| | - Yueran Han
- Guizhou Guotai Distillery Co., Ltd., Renhuai 564501, China; (Y.H.); (M.Y.)
| | - Ming Yan
- Guizhou Guotai Distillery Co., Ltd., Renhuai 564501, China; (Y.H.); (M.Y.)
| | - Shuyi Qiu
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China;
| | - Jun Lu
- Guizhou Guotai Distillery Co., Ltd., Renhuai 564501, China; (Y.H.); (M.Y.)
| |
Collapse
|
5
|
Wang D, Wu C, Hu J, Hu F, Liu L, Huang H, Yang J, Zhao W, Xie D, Zhang J, Zhu A. Exploring the impact mechanisms on different mechanized airing approaches during second round heap fermentation of sauce-flavor Baijiu: From physicochemical parameters, microbial diversity to volatile flavor compounds. Food Res Int 2025; 199:115359. [PMID: 39658161 DOI: 10.1016/j.foodres.2024.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
The airing process of sauce-flavor Baijiu is a critical operation that serves the functions of cooling, homogenizing, and facilitating microbial proliferation and metabolism. Comprehensive analysis of physicochemical parameters, bacterial and fungal community of fermented grains, and volatile flavor compounds of soy-sauce (Jiangxiang) and mellow-sweet (Chuntian) typical base liquors among traditional (CT) and two different mechanized (JXA and JXB) airing operations were investigated. The results indicated that the dynamic variation patterns of moisture content, total titratable acidity, starch content, lactic acid, acetic acid, pH, and dominated microbial composition among CT, JXA, and JXB were similar, while minor bacterial genera with relative abundance including unclassified Micrococcineae, unclassified Rhizobiales, etc, and dominated fungi such as Torulaspora, Hyphopichia, Candida, Pichia, and Penicillium were profoundly influenced by mechanized airing operations, especially by JXB. A total of 100 and 101 volatile flavor compounds were qualitatively and quantitatively detected from soy-sauce (Jiangxiang) and mellow-sweet (Chuntian) typical base liquors. Mechanized airing operations were more consistent with CT for mellow-sweet (Chuntian) typical base liquors, but 2,3-dimethyl-5-ethylpyrazine, 2,3-dimethylpyrazine, tetramethylpyrazine and ethyl benzoate etc. were more abundant in soy-sauce (Jiangxiang) typical base liquors by mechanized airing operations, which were mainly associated with Leuconostoc, Acetoanaerobium, Limnohabitans and Bradyhizobium etc. This study provides a theoretical evidence for understanding the relationships among physicochemical parameters, microbial communities and volatile flavor compounds during second round heap fermentation of sauce-flavor Baijiu, laying a foundation for further elucidating the mechanized brewing mechanisms.
Collapse
Affiliation(s)
- Diqiang Wang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China.
| | - Cheng Wu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China.
| | - Jianfeng Hu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China.
| | - Feng Hu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China
| | - Liping Liu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Heou Huang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Junlin Yang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Wenyu Zhao
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Dan Xie
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Jian Zhang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Anran Zhu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| |
Collapse
|
6
|
Chen ZP, Cao Q, Meng TT, Shi W, Zhang XJ, Chai LJ, Shi JS, Chen FW, Wang ST, Zhang SY, Shen CH, Lu ZM, Xu ZH. Yeast community in the first-round fermentation of sauce-flavor Baijiu: Source, succession and metabolic function. Food Res Int 2025; 200:115466. [PMID: 39779106 DOI: 10.1016/j.foodres.2024.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Yeasts play a crucial role in determining the quality and yield of sauce-flavor Baijiu, yet the source, succession, and metabolic functions of the yeast community in fermented grains during stacking fermentation remains unclear. In this study, amplicon sequencing combined with solid-state fermentation was used to investigate the structure and function of yeast community during the first-round fermentation of sauce-flavor Baijiu. The richness and diversity of yeast community increased throughout fermentation, with 83.05 % of yeast ASV sourced from the fermentation environment. Fourteen yeast genera were identified, with Wickerhamomyces (29.6 %), Saccharomycopsis (25.0 %), and Torulaspora (14.9 %) being the predominant genera. These genera showed distinct spatial distributions throughout the fermentation stack. Spearman correlation analysis indicated positive correlations between the three genera and multiple volatiles in fermented grains alcohols and esters. After solid-state fermentation in pure culture, T. delbrueckii ME22, S. fibuligera ME8, and W. anomalus ME57 produced distinct floral, fruity, and sweet flavor compounds, such as phenylethyl alcohol, isoamyl alcohol, ethyl acetate, phenethyl acetate, and isoamyl acetate. T. delbrueckii ME22 demonstrated a great capacity for cellulose degradation, whereas S. fibuligera ME8 exhibited enhanced capabilities for protein and starch degradation. This study provides a theoretical reference for the application of yeast in the fermentation of sauce-flavor Baijiu.
Collapse
Affiliation(s)
- Zheng-Pei Chen
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Qian Cao
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Tian-Tian Meng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Shi
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Juan Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Li-Juan Chai
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- School of School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Fu-Wei Chen
- Guizhou Zhongjian Wine Industry Group Co. LTD, Zunyi 564500, PR China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Su-Yi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Zhen-Ming Lu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China.
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
7
|
Xu Y, Yang L, Yang Y, Yang F. Unraveling Shengmuxiang in Jiang-flavor base baijiu using a combination of metabolomics and sensomics strategy. Food Chem X 2024; 24:101851. [PMID: 39398868 PMCID: PMC11470176 DOI: 10.1016/j.fochx.2024.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Shengmuxiang (SMX), an important aroma in Jiang-flavor base baijiu, significantly influences the quality of the product. This study employed untargeted metabolomics combined with sensomics to explore the key compounds responsible for SMX. Results indicated that SMX samples had higher intensities of green and woody-like odors compare to control samples. A total of 87 aroma compounds were identified by headspace solid phase microextraction combined with gas chromatography-mass spectrometry technology. Based on the variable projection importance, PCA and OPLS-DA were employed to identify 22 potential marker compounds. Quantitative results combined with hierarchical cluster and OAV analysis revealed that 9 aroma compounds (OAV > 1) had high concentrations in SMX samples. Aroma recombination and omission experiments further indicated that acetaldehyde and acetal were the key compounds responsible for the characteristic aroma of SMX in Jiang-flavor base baijiu. These findings provide valuable insights into the distinct aroma profile of SMX and offer a basis for quality control of Jiang-flavor base baijiu.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| | - Lizhang Yang
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| | - Yubo Yang
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| | - Fan Yang
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| |
Collapse
|
8
|
Guan T, Wei X, Qiu X, Liu Y, Yu J, Hou R, Liu M, Mao Y, Liu Q, Tian L, He Z, Xiang S. Precipitation and temperature drive microbial community changes affecting flavor quality of Nongxiangxing Daqu. Food Chem X 2024; 24:102063. [PMID: 39717403 PMCID: PMC11665295 DOI: 10.1016/j.fochx.2024.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024] Open
Abstract
Nongxiangxing Baijiu is the most famous Baijiu flavor in China, and its characteristic style is closely related to Nongxiangxing Daqu used in fermentation. However, there are few reports about the difference of Daqu quality between seasonal variations. In this study, precipitation and temperature drove changes in microbial communities that resulted in differences in the flavor of Daqu produced in different seasons. For example, the average daily temperature in summer was as high as 27.29 ± 2.24 °C, which was significantly higher than other seasons (p < 0.01). Bacillus was abundant in the Daqu produced in this season, while tetramethylpyrazine flavor was more prominent, up to 1556.95 ± 153.92 μg/kg. Metabolomics studies identified major pathways associated with the weak flavor of spring_Daqu. In addition, LEFSe analysis revealed the marked microorganisms in different seasons. These results revealed the differences in seasonal Daqu, thus contributing to the scientific and rational use of Daqu.
Collapse
Affiliation(s)
- Tongwei Guan
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province,Chengdu 610039, China
| | - Xinyue Wei
- Sichuan Mianzhu Jiannanchun Liquor Co., Ltd, Mianzhu 618200, China
| | - Xianping Qiu
- Sichuan Quanxing of Liquor Co., Ltd., Chengdu 610000, China
| | - Ying Liu
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province,Chengdu 610039, China
| | - Jianshen Yu
- Sichuan Quanxing of Liquor Co., Ltd., Chengdu 610000, China
| | - Rui Hou
- Sichuan Mianzhu Jiannanchun Liquor Co., Ltd, Mianzhu 618200, China
| | - Maoke Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, China
| | - Yichen Mao
- Xinjiang Kaiduhe Liquor Co., Ltd, Hejing 841302, China
| | - Qingru Liu
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province,Chengdu 610039, China
| | - Lei Tian
- College of Food and Biological Engineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province,Chengdu 610039, China
| | - Zongjun He
- Sichuan Tujiu Liquor Co., Ltd, Nanchong 637919, China
| | | |
Collapse
|
9
|
Wu X, Zhao X, Wang L, Chen B, Li F, Tang Z, Wu F. Unraveling the regional environmental ecology dominated baijiu fermentation microbial community succession and associated unique flavor. Front Microbiol 2024; 15:1487359. [PMID: 39545237 PMCID: PMC11560788 DOI: 10.3389/fmicb.2024.1487359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Chinese baijiu as one of the famous distilled liquor in which fermented in open environments, with various microorganisms (i.e., bacteria, fungi, and yeast) involved in their brewing process, and created corresponding unique flavor. However, the sources of environmentally enriched microbial communities associated with liquor fermentation are still being characterized yet. Given the dependence of microbial growth and reproduction on environmental ecology, it is important to understand the correlation between baijiu fermentation microbial community and surrounding environmental ecology (i.e., temperature, humidity, wind, and precipitation). This study systematically overviewed the sources of microorganisms in the Jiang-flavor-Baijiu fermentation system. The results showed that microorganisms in baijiu brewing (i.e., mold, lactic acid bacteria, and yeast) mainly originated from surrounding environmental matrices, including the air (i.e., Yeast, Streptomyces and Bacillus), soil (i.e., Xanthomonas, Methanococcus and Comamonas) and water (i.e., Flavobacterium, Acinetobacter, and Pseudomonas) via atmospheric transport, raw material transfer and surface runoff. In addition, the unique baijiu fermentation microbial community diversity depends on local geology and meteorological conditions, highlighting that the structural stability and diversity of the microorganisms in the Baijiu brewing process dominated by local environmental ecology. We also explored the regional environmental conditions on the microbial community and found that the unique Jiang-flavor-Baijiu fermentation microbial community diversity depends on local geology and meteorological conditions. The Jiang-flavor-Baijiu workshop is located in the basin of the middle-and low latitude mountainous areas, with sufficient solar irradiation and rainfall, high air humidity, and low wind speed that favor the growth and propagation of Baijiu fermentation microorganisms. Therefore, the obtained conclusions provide new insights unraveling the key factor controlling the unique flavor of Chinese Baijiu, where protecting the ecology of baijiu brewing-regions is fundamental for maintaining the long-term quality of baijiu.
Collapse
Affiliation(s)
- Xiaowei Wu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Li Wang
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
- Chishui River Middle Basin, Watershed Ecosystem, Observation and Research Station of Guizhou Province, Guiyang, China
| | - Bi Chen
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
- Chishui River Middle Basin, Watershed Ecosystem, Observation and Research Station of Guizhou Province, Guiyang, China
| | - Fangzhou Li
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
- Chishui River Middle Basin, Watershed Ecosystem, Observation and Research Station of Guizhou Province, Guiyang, China
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
10
|
Cheng W, Lan W, Chen X, Xue X, Liang H, Zeng H, Li R, Pan T, Li N, Yang H. Source and succession of microbial communities and tetramethylpyrazine during the brewing process of compound-flavor Baijiu. Front Microbiol 2024; 15:1450997. [PMID: 39165577 PMCID: PMC11333356 DOI: 10.3389/fmicb.2024.1450997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Pyrazines are important flavor components and healthy active components in Baijiu, which including tetramethylpyrazine (TTMP). During the brewing process, the traceability of microbial communities and the content distribution characteristics of TTMP are important for improving the quality and style characteristics of compound-flavored Baijiu (CFB). However, the traceability analysis of microorganisms in fermented grains (FG)-used in the production of CFB-lacks quantitative and systematic evaluation. In this study, the microbial communities and TTMP content of Jiuqu (JQ), Liangpei (LP), FG, and pit mud (CP) used in CFB production were characterized; further, coordinate and discriminant analyses were employed to determine differences in microbial communities. Additionally, traceability and correlation analyses were performed to reveal the origin of microbial communities in FG. The source, content, and distribution characteristics of TTMP based on the brewing process have also been discussed. The results showed that most of the bacterial and fungal communities at different levels of FG came from other sources, and the microorganisms of Cladosporium, Acetobacter, Aspergillus, Methanosarcina, and Bacillus were considered have a osculating correlations with TTMP content of FG. Taken together, this study provides insights into the origin of microbial communities in FG and the distribution characteristics of TTMP based on the CFB brewing process. The current findings are conducive for optimizing the fermentation process and improving the quality and style characteristics of CFB.
Collapse
Affiliation(s)
- Wei Cheng
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang, Anhui, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'An, Shaanxi, China
| | - Xijia Xue
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang, Anhui, China
| | - Huipeng Liang
- Technology Research Institute, China Resources Snow Breweries Co., Ltd., Beijing, China
| | - Huawei Zeng
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Ruilong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Tianquan Pan
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang, Anhui, China
| | - Na Li
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang, Anhui, China
| | - Hongwen Yang
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang, Anhui, China
| |
Collapse
|
11
|
Tang J, Lin B, Shan Y, Ruan S, Jiang W, Li Q, Zhu L, Li R, Yang Q, Du H, Yang S, Sun Q, Chen S. Effects of sorghum varieties on microbial communities and volatile compounds in the fermentation of light-flavor Baijiu. Front Microbiol 2024; 15:1421928. [PMID: 39144211 PMCID: PMC11322492 DOI: 10.3389/fmicb.2024.1421928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Light-flavor Baijiu (LFB) fermentation is a representative spontaneous mixed-culture solid-state fermentation process in which sorghum is used as the raw material. Raw materials and microorganisms are crucial to the flavor formation and quality of LFB. However, the microbial and physicochemical dynamics of different sorghum varieties during LFB fermentation, as well as their impact on flavor compounds are still largely unknown. Herein, PacBio single-molecule real-time (SMRT) sequencing and headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) were applied to investigate microbial community succession and volatile flavor formation in glutinous/non-glutinous sorghum-based fermented grains during LFB fermentation. Fermented grains made of glutinous sorghum Liangnuo No. 1 (GLN) had higher bacterial α-diversity and lower fungal α-diversity than those with fermented grains prepared with non-glutinous red sorghum (NRS) (p < 0.05). The dominant microbial species were Saccharomyces cerevisiae, Acetobacter pasteurinus, and Lactobacillus helveticus, the latter two of which were the predominant bacteria observed at the end of fermentation in GLN and NRS, respectively. Moisture content and reducing sugar had a more significant impact on the microorganisms in GLN, while amino acid nitrogen, total free amino acids, and residual starch were the main driving factors driving the microbial community in NRS. The correlation network and discriminant analysis indicated that a relatively high content of 4-vinylguaiacol showed a significant positive association with significant differential microbial species in GLN. These results provided valuable insights for improving the quality of LFB.
Collapse
Affiliation(s)
- Jie Tang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Bin Lin
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Yimin Shan
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Song Ruan
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Wei Jiang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Qun Li
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Liping Zhu
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Rui Li
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Qiang Yang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Hai Du
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shengzhi Yang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Qi Sun
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Shenxi Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| |
Collapse
|
12
|
Chen C, Yang H, Zhang K, Ye G, Luo H, Zou W. Revealing microbiota characteristics and predicting flavor-producing sub-communities in Nongxiangxing baijiu pit mud through metagenomic analysis and metabolic modeling. Food Res Int 2024; 188:114507. [PMID: 38823882 DOI: 10.1016/j.foodres.2024.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The microorganisms of the pit mud (PM) of Nongxiangxing baijiu (NXXB) have an important role in the synthesis of flavor substances, and they determine attributes and quality of baijiu. Herein, we utilize metagenomics and genome-scale metabolic models (GSMMs) to investigate the microbial composition, metabolic functions in PM microbiota, as well as to identify microorganisms and communities linked to flavor compounds. Metagenomic data revealed that the most prevalent assembly of bacteria and archaea was Proteiniphilum, Caproicibacterium, Petrimonas, Lactobacillus, Clostridium, Aminobacterium, Syntrophomonas, Methanobacterium, Methanoculleus, and Methanosarcina. The important enzymes ofPMwere in bothGH and GT familymetabolism. A total of 38 high-quality metagenome-assembled genomes (MAGs) were obtained, including those at the family level (n = 13), genus level (n = 17), and species level (n = 8). GSMMs of the 38 MAGs were then constructed. From the GSMMs, individual and community capabilities respectively were predicted to be able to produce 111 metabolites and 598 metabolites. Twenty-three predicted metabolites were consistent with the metabonomics detected flavors and served as targets. Twelve sub-community of were screened by cross-feeding of 38 GSMMs. Of them, Methanobacterium, Sphaerochaeta, Muricomes intestini, Methanobacteriaceae, Synergistaceae, and Caloramator were core microorganisms for targets in each sub-community. Overall, this study of metagenomic and target-community screening could help our understanding of the metabolite-microbiome association and further bioregulation of baijiu.
Collapse
Affiliation(s)
- Cong Chen
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| | - Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kaizheng Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| | - Guangbin Ye
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| | - Huibo Luo
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China; Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, China.
| |
Collapse
|
13
|
Kang J, Huang X, Li R, Zhang Y, Chen XX, Han BZ. Deciphering the core microbes and their interactions in spontaneous Baijiu fermentation: A comprehensive review. Food Res Int 2024; 188:114497. [PMID: 38823877 DOI: 10.1016/j.foodres.2024.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The spontaneous Baijiu fermentation system harbors a complex microbiome that is highly dynamic in time and space and varies depending on the Jiuqu starters and environmental factors. The intricate microbiota presents in the fermentation environment is responsible for carrying out various reactions. These reactions necessitate the interaction among the core microbes to influence the community function, ultimately shaping the distinct Baijiu styles through the process of spontaneous fermentation. Numerous studies have been conducted to enhance our understanding of the diversity, succession, and function of microbial communities with the aim of improving fermentation manipulation. However, a comprehensive and critical assessment of the core microbes and their interaction remains one of the significant challenges in the Baijiu fermentation industry. This paper focuses on the fermentation properties of core microbes. We discuss the state of the art of microbial traceability, highlighting the crucial role of environmental and starter microbiota in the Baijiu brewing microbiome. Also, we discuss the various interactions between microbes in the Baijiu production system and propose a potential conceptual framework that involves constructing predictive network models to simplify and quantify microbial interactions using co-culture models. This approach offers effective strategies for understanding the core microbes and their interactions, thus beneficial for the management of microbiota and the regulation of interactions in Baijiu fermentation processes.
Collapse
Affiliation(s)
- Jiamu Kang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China; School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiaoning Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rengshu Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuandi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xiao-Xue Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
14
|
Xie P, Shao M, Deng X, Ren Y, Chen M, Jiang Y, Shen J. Bacterial composition and physicochemical characteristics of sorghum based on environmental factors in different regions of China. Front Microbiol 2024; 15:1422471. [PMID: 39006754 PMCID: PMC11240854 DOI: 10.3389/fmicb.2024.1422471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
The fermentation process for Jiang-flavored baijiu using sorghum as the raw material involves a variety of microorganisms. However, the specific physicochemical characteristics of sorghum and microbial composition on its surface have not been fully elucidated. We aimed to perform a comprehensive comparative analysis of the variations in physicochemical properties and surface microflora in waxy sorghum samples from three prominent production regions in China (Renhuai, Jinsha, and Duyun). Multivariate statistical assessments were conducted that incorporated local soil and climate variables. The results showed that Cyanobacteria, unclassified bacteria, Proteobacteria, Firmicutes, and Bacteroidota were the dominant bacteria in these regions. These bacteria were associated with ethyl acetate, ethyl caprylate, ethyl lactate, and butyl groups, which synergistically produce flavorful compounds. The surface bacterial communities were affected by soil total phosphorus, altitude, diurnal temperature range, monthly mean temperature, precipitation, and effective accumulated temperature. The findings of this study provide a new perspective on microorganisms related to Jiang-flavored baijiu and can help establish a reference for the stability of liquor quality.
Collapse
Affiliation(s)
- Peiyun Xie
- Guizhou Light Industry Technical College, Guiyang, China
| | - Mingbo Shao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xiaofeng Deng
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yan Ren
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Manjing Chen
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yuwen Jiang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jiaqi Shen
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
15
|
Li W, Zhang H, Wang R, Zhang C, Li X. Temporal Profile of the Microbial Community and Volatile Compounds in the Third-Round Fermentation of Sauce-Flavor baijiu in the Beijing Region. Foods 2024; 13:670. [PMID: 38472783 PMCID: PMC10931104 DOI: 10.3390/foods13050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Sauce-flavor baijiu produced in the Beijing and Guizhou regions has regional characteristic flavors, but the differences in flavor compounds and reasons for their formation remain unclear. The sauce-flavor baijiu brewing process involves several rounds of fermentation. In this study, we investigated the temporal distribution of microbial communities and flavor substances during the third round of sauce-flavor baijiu fermentation in the Beijing region, and we then compared and analyzed the differences of flavor substances and microorganisms in the fermented grains of sauce-flavor baijiu in the Beijing and Guizhou regions. It was found that 10 bacterial genera and 10 fungal genera were dominant in the fermented grains. The acidity of the fermented grains had a significant driving effect on the microbial community succession. A total of 81 volatile compounds were identified and quantified in the fermented grains, of which esters and alcohols were relatively abundant. The differences in 30 microbial community compositions and their resulting differences in terms of the fermentation parameters of fermented grains are responsible for the differences in the profiles of flavor compounds between sauce-flavor baijiu produced in the Beijing and Guizhou regions.
Collapse
Affiliation(s)
- Weiwei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (W.L.); (H.Z.); (R.W.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hui Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (W.L.); (H.Z.); (R.W.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Runnan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (W.L.); (H.Z.); (R.W.)
| | - Chengnan Zhang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing 100084, China;
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (W.L.); (H.Z.); (R.W.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
16
|
Zhou J, Li X, Li S, Ding H, Lang Y, Xu P, Wang C, Wu Y, Liu X, Qiu S. Airborne microorganisms and key environmental factors shaping their community patterns in the core production area of the Maotai-flavor Baijiu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169010. [PMID: 38040348 DOI: 10.1016/j.scitotenv.2023.169010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Airborne microorganisms are important parts of the Moutai-flavor Baijiu brewing microbial community, which directly affects the quality of Baijiu. However, environmental factors usually shape airborne microbiomes in different distilleries, even in the different production areas of the same distillery. Unfortunately, current understanding of environmental factors shaping airborne microbiomes in distilleries is very limited. To bridge this gap, we compared airborne microbiomes in the Moutai-flavor Baijiu core production areas of different distilleries in the Chishui River Basin and systematically investigated the key environmental factors that shape the airborne microbiomes. The top abundant bacterial communities are mainly affiliated to the phyla Actinobacteriota, Firmicutes, and Proteobacteri, whereas Ascomycota and Basidiomycota are the predominant fungal communities. The Random Forest analysis indicated that the biomarkers in three distilleries are Saccharomonospora and Bacillus, Thermoactinomyces, Oceanobacillus, and Methylobacterium, which are the core functional flora contributing to the production of Daqu. The correlation and network analyses showed that the distillery age and environmental temperature have a strong regulatory effect on airborne microbiomes, suggesting that the fermentation environment has a domesticating effect on air microbiomes. Our findings will greatly help us understand the relationship between airborne microbiomes and environmental factors in distilleries and support the production of the high-quality Moutai-flavor Baijiu.
Collapse
Affiliation(s)
- Jianli Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuanchen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Shuaijinyi Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Hexia Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Ying Lang
- Guizhou Wangmao Jiuqu Research Institute, Changling Road, Guiyang 550003, China
| | - Peng Xu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Chunxiao Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yuangen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, China.
| | - Shuyi Qiu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
17
|
Xu Y, Qiao X, He L, Wan W, Xu Z, Shu X, Yang C, Tang Y. Airborne microbes in five important regions of Chinese traditional distilled liquor ( Baijiu) brewing: regional and seasonal variations. Front Microbiol 2024; 14:1324722. [PMID: 38264484 PMCID: PMC10803494 DOI: 10.3389/fmicb.2023.1324722] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Baijiu is one of the six primary distilled spirits in the world. It is produced through the solid-state fermentation of grains in the open environment, so high-quality Baijiu brewing largely depends on terrior. Environmental microbes are one of the most important factors affecting the quality, quantity, and flavors of Baijiu. As atmosphere is a pool and transport pathway for microbes from the ambient environment to Baijiu brewing ecosystems, we explored the functional microbes of Baijiu brewing in five important regions. The regions fell into two topographical types, namely, plain and river-valley. In total, 41 functional microbes were identified rich (relative abundance >0.1%) in at least one of the regions, such as the fungi of Aspergillus, Candida, Cladosporium, Debaryomyces, Penicillium, Pichia, Rhizopus, Saccharomyces, and Wickerhamomyces and the bacteria of Acetobacter, Bacillus, Clostridium, Enterobacter, Lactobacillus, Methanosarcina, Methanobacterium, Methanobrevibacter, and Pseudomonas. However, some functional bacteria (e.g., Clostridia, Gluconacetobacter, and Weissella) and fungi (e.g., Dekkera, Eurotium, Issatchenkia, Mucor, and Phoma) were not rich or were not detected in the atmosphere. Airborne microbiomes and the Phylogenetic Diversity (PD) index were significantly different between the main brewing season (winter) and the summer break in each region, except for the fungi in one region. In winter, airborne microbiomes were significantly different among almost all the regions. The relative abundance of bacterial fermentation function in each region increased from summer to winter. The relative abundances of fungal yeast function were higher in winter for the plain regions but were higher in summer for the river-valley regions. In sum, our results suggested that: (1) atmosphere was one but not the sole important source of functional microbes for Baijiu brewing and (2) microbiomes in different regions might be quite different but they could share some major functions related to Baijiu brewing.
Collapse
Affiliation(s)
- Yan Xu
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Xue Qiao
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, China
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu, China
| | - Lei He
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Wujie Wan
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Zhongjun Xu
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, China
| | - Xi Shu
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, China
| | - Cheng Yang
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, China
| | - Ya Tang
- College of Architecture and Environment, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Pan Y, Wang Y, Hao W, Zhou S, Duan C, Li Q, Wei J, Liu G. Exploring the Role of Active Functional Microbiota in Flavor Generation by Integrated Metatranscriptomics and Metabolomics during Niulanshan Baijiu Fermentation. Foods 2023; 12:4140. [PMID: 38002197 PMCID: PMC10669994 DOI: 10.3390/foods12224140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Active functional microbiota for producing volatile flavors is critical to Chinese baijiu fermentation. Microbial communities correlated with the volatile metabolites are generally explored using DNA-based sequencing and metabolic analysis. However, the active functional microbiota related to the volatile flavor compounds is poorly understood. In this study, an integrated metatranscriptomic and metabolomics analysis was employed to unravel the metabolite profiles comprehensively and the contributing active functional microbiota for flavor generation during Niulanshan baijiu fermentation. A total of 395, 83, and 181 compounds were annotated using untargeted metabolomics, including LC-MS, GC-MS, and HS-SPME-GC-MS, respectively. Significant variances were displayed in the composition of compounds among different time-point samples according to the heatmaps and orthogonal partial least-square discriminant analysis. The correlation between the active microbiota and the volatile flavors was analyzed based on the bidirectional orthogonal partial least squares discriminant analysis (O2PLS-DA) model. Six bacterial genera, including Streptococcus, Lactobacillus, Pediococcus, Campylobacter, Yersinia, and Weissella, and five fungal genera of Talaromyces, Aspergillus, Mixia, Rhizophagus, and Gloeophyllum were identified as the active functional microbiota for producing the volatile flavors. In summary, this study revealed the active functional microbial basis of unique flavor formation and provided novel insights into the optimization of Niulanshan baijiu fermentation.
Collapse
Affiliation(s)
- Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.P.); (C.D.); (Q.L.)
| | - Ying Wang
- Niulanshan Distillery, Beijing Shunxin Agriculture Company Limited, Beijing 101301, China; (Y.W.); (W.H.); (S.Z.)
| | - Wenjun Hao
- Niulanshan Distillery, Beijing Shunxin Agriculture Company Limited, Beijing 101301, China; (Y.W.); (W.H.); (S.Z.)
| | - Sen Zhou
- Niulanshan Distillery, Beijing Shunxin Agriculture Company Limited, Beijing 101301, China; (Y.W.); (W.H.); (S.Z.)
| | - Chengbao Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.P.); (C.D.); (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiushi Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.P.); (C.D.); (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinwang Wei
- Niulanshan Distillery, Beijing Shunxin Agriculture Company Limited, Beijing 101301, China; (Y.W.); (W.H.); (S.Z.)
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (Y.P.); (C.D.); (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Yang L, Zeng S, Zhou M, Li Y, Jiang Z, Cheng P, Zhang C. Comprehensive genomic and metabolomic analysis revealed the physiological characteristics and pickle like odor compounds metabolic pathways of Bacillus amyloliquefaciens ZZ7 isolated from fermented grains of Maotai-flavor baijiu. Front Microbiol 2023; 14:1295393. [PMID: 37965559 PMCID: PMC10642760 DOI: 10.3389/fmicb.2023.1295393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Pickle like odor (PLO) is one of the main defective flavors of Maotai flavor baijiu (MFB). Understanding and controlling the PLO compounds producing strains not only solves the problem of PLO from the source, but also ensures the high-quality production of MFB. However, the relevant research on PLO compounds producing strains has not been reported in MFB. In this study, we identified a Bacillus amyloliquefaciens ZZ7 with high yield of PLO compounds in the fermented grains of MFB, and measured its physiological characteristics. It produces 627 volatile compounds and 1,507 non-volatile compounds. There are 7 volatile sulfur compounds that cause the PLO, the content of dimethyl disulfide, dimethyl trisulfide, and dimethyl sulfur is relatively high, accounting for 89.43% of the total volatile sulfur compounds. The genome size of B. amyloliquefaciens ZZ7 is 3,902,720 bp with a GC content of 46.09%, and a total of 3,948 protein coding genes were predicted. Moreover, the functional annotation of coding genes and an assessment of the metabolic pathways were performed by genome annotation, showing it has strong ability to transport and metabolize amino acids and carbohydrates. Comprehensive genomic and metabolomic analysis, the metabolic pathway of PLO compounds of B. amyloliquefaciens ZZ7 was revealed, which mainly involves 12 enzymes including sulfate adenylyltransferase, cysteine synthase, cystathionine γ-synthase, etc. This work provides biological information support at both genetic and metabolic levels for the mechanism of B. amyloliquefaciens ZZ7 to synthesize PLO compounds, and provides a direction for the subsequent genetic modification of ZZ7 to solve PLO from the source in the MFB.
Collapse
Affiliation(s)
- Liang Yang
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
| | - Shuangran Zeng
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
| | - Meidi Zhou
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
| | - Yuetao Li
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Zeyuan Jiang
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
| | | | - Chunlin Zhang
- Department of Brewing Engineering, Moutai Institute, Renhuai, China
| |
Collapse
|
20
|
Peng Q, Zheng H, Li S, Meng K, Yu H, Zhang Y, Yang X, Li L, Xu Z, Xie G, Liu S, Elsheery NI, Wu P. Analysis on driving factors of microbial community succession in Jiuyao of Shaoxing Huangjiu (Chinese yellow rice wine). Food Res Int 2023; 172:113144. [PMID: 37689907 DOI: 10.1016/j.foodres.2023.113144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 09/11/2023]
Abstract
The microbial ecosystem of fermented food is greatly disturbed by human activities.Jiuyao is important saccharification starter for brewing huangjiu. The interaction between environmental factors and microorganisms significantly affected the microbial community structure at different stages of Jiuyao manufacturing. This study combined environmental factor analysis and high-throughput sequencing technology to comprehensively analyze the specific changes of microbial community and environmental factors in each fermentation stage of Jiuyao production and their correlation. The results showed that the activities of liquefaction enzyme, glycosylation enzyme and acid protease reached the highest value on the 8 th day (192 h) after the beginning of fermentation, and the cellulase activity reached the highest value at the end of fermentation. Pediococcus(37.5 %-58.2 %), Weissella(9.2 %-27.0 %) and Pelomonas(0.1 %-12.1 %) were the main microbial genera in the genus bacteria, and Saccharomycopsis(37.1 %-52.0 %), Rhizopus(12.5 %-31.0 %) and Saccharomyces(4.0 %-20.5 %) were the main microbial genera in the genus fungi. The results of correlation analysis showed that the microbial communities in Jiuyao were closely related to environmental factors. Most microbial communities were positively correlated with temperature, but negatively correlated with ambient humidity, CO2 concentration, acidity and water content of Jiuyao. In addition, the transcription levels of enzymes related to microbial glucose metabolism in Jiuyao were higher in the late stage of Jiuyao fermentation. Interestingly, these enzymes had high transcription levels in fungi such as Saccharomycopsis, Rhizopus and Saccharomyces, as well as in bacteria such as Pediococcus and Lactobacillus. This study provides a reference for revealing the succession rule of microbial community structure caused by environmental factors during the preparation of Jiuyao in Shaoxing Huangjiu.
Collapse
Affiliation(s)
- Qi Peng
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China; National Engineering Research Center for Chinese CRW (Branch Center), Shaoxing 312000, China
| | - Huajun Zheng
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Shanshan Li
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Kai Meng
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Hefeng Yu
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Yuhao Zhang
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Xinyi Yang
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Linyuan Li
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Zhuoqin Xu
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Shuangping Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nabil I Elsheery
- Agriculture Botany Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
21
|
Yang L, Xian C, Li P, Wang X, Song D, Zhao L, Zhang C. The spatio-temporal diversity and succession of microbial community and its environment driving factors during stacking fermentation of Maotai-flavor baijiu. Food Res Int 2023; 169:112892. [PMID: 37254340 DOI: 10.1016/j.foodres.2023.112892] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Stacking fermentation is an important stage of microbial expansion and enrichment in the brewing process of Maotai-flavor baijiu and has an important impact on quality. However, the structure and succession of microbial communities at different spatial points of fermented grains, as well as the key environmental factors driving community assembly, remain unclear. Here, we analyzed spatio-temporal similarities and differences in the microbial community structure and succession during 1-6 rounds of stacking fermentation of Maotai-flavor baijiu. The microbial diversity and richness in the pile center were higher than those at the pile surface. The dominant bacterial genus changed from Lactobacillus to Acetobacter, while the dominant fungal genus Pichia was gradually replaced by Candida, however, some microorganisms (Acetobacter, Thermoascus) could not occupy community dominance in both the pile surface and the pile center of fermented grains. Most of the biomarkers (Kroppenstedtia, Thermomyces, etc.) of the pile surface showed thermostable or thermophilic characteristics, while most biomarkers (Aspergillus, Hyphopicia, etc.) of the pile center were functional microorganisms. Furthermore, pH and moisture were the main environmental driving factors of community construction at the pile surface and the pile center, respectively, with starch and reducing sugars having a greater impact on the microbial community assembly of the pile center than that of the pile surface. The main differences in the metabolic pathways of the dominant bacterial genera of the pile surface and the pile center were concentrated around cell growth and death, amino acids, leading to enrichment and growth of microbial communities at the pile surface and nitrogen utilization at the pile center, respectively. This study reveals the spatio-temporal differences in microbial community structure, succession and corresponding environmental driving factors during stacking fermentation, which will provide guidance for regulating the microbial community diversity to produce high-quality Maotai-flavor baijiu.
Collapse
Affiliation(s)
- Liang Yang
- Department of Brewing engineering, Moutai Institute, Renhuai 564501, China
| | - Chun Xian
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai 564501, China
| | - Peng Li
- Kweichow Moutai Distillery Co., Ltd., Maotai Town, Zunyi City, Guizhou 564501, China
| | - Xiangyong Wang
- Department of Brewing engineering, Moutai Institute, Renhuai 564501, China
| | - Dandan Song
- Department of Brewing engineering, Moutai Institute, Renhuai 564501, China
| | - Liang Zhao
- Department of Brewing engineering, Moutai Institute, Renhuai 564501, China
| | - Chunlin Zhang
- Department of Brewing engineering, Moutai Institute, Renhuai 564501, China.
| |
Collapse
|
22
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
23
|
Yang L, Chen R, Liu C, Chen L, Yang F, Wang L. Spatiotemporal accumulation differences of volatile compounds and bacteria metabolizing pickle like odor compounds during stacking fermentation of Maotai-flavor baijiu. Food Chem 2023; 426:136668. [PMID: 37356241 DOI: 10.1016/j.foodchem.2023.136668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Pickle like odor (PLO) is undesirable in Maotai-flavor baijiu; however, its formation mechanism is unclear. Furthermore, there is a lack of understanding of the spatiotemporal accumulation of volatile compounds (including PLO compounds, PLOC) and of the microorganisms responsible for the production of PLOC during stacking fermentation. In this study, we analyzed the spatiotemporal distribution differences of 132 volatile compounds in piled fermented grains. PLOC (n = 5) were higher in pile surface than in pile center, reaching their highest levels at 6th and 5th rounds, respectively. The microorganisms in pile center were more conducive to the formation of alcohols, while those in the pile surface more promoted the synthesis of esters. Rhodococcus and Zygosaccharomyces promoted the formation of PLOC. Acetobacter was negatively correlated with the content of sulfur compounds by promoting their conversion into non-volatile sulfur compounds, thereby reducing the content of PLOC. This study provides information on the spatiotemporal differences of volatile compounds (especially PLOC) in piled fermented grains and identified the microorganisms that produce PLOC.
Collapse
Affiliation(s)
- Liang Yang
- Department of Brewing Engineering, Moutai Institute, Renhuai 564501, China; Kweichow Moutai Group, Guizhou, China
| | - Renyuan Chen
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai 564501, China
| | - Chao Liu
- Kweichow Moutai Distillery Co., Ltd., Maotai Town, Zunyi City, Guizhou 564501, China
| | - Liangqiang Chen
- Kweichow Moutai Distillery Co., Ltd., Maotai Town, Zunyi City, Guizhou 564501, China
| | - Fan Yang
- Kweichow Moutai Distillery Co., Ltd., Maotai Town, Zunyi City, Guizhou 564501, China
| | - Li Wang
- Kweichow Moutai Group, Guizhou, China.
| |
Collapse
|
24
|
Zhao J, Yang Y, Teng M, Zheng J, Wang B, Mallawaarachchi V, Lin Y, Fang Z, Shen C, Yu S, Yang F, Qiao L, Wang L. Metaproteomics profiling of the microbial communities in fermentation starters ( Daqu) during multi-round production of Chinese liquor. Front Nutr 2023; 10:1139836. [PMID: 37324728 PMCID: PMC10267310 DOI: 10.3389/fnut.2023.1139836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction The special flavor and fragrance of Chinese liquor are closely related to microorganisms in the fermentation starter Daqu. The changes of microbial community can affect the stability of liquor yield and quality. Methods In this study, we used data-independent acquisition mass spectrometry (DIA-MS) for cohort study of the microbial communities of a total of 42 Daqu samples in six production cycles at different times of a year. The DIA MS data were searched against a protein database constructed by metagenomic sequencing. Results The microbial composition and its changes across production cycles were revealed. Functional analysis of the differential proteins was carried out and the metabolic pathways related to the differential proteins were explored. These metabolic pathways were related to the saccharification process in liquor fermentation and the synthesis of secondary metabolites to form the unique flavor and aroma in the Chinese liquor. Discussion We expect that the metaproteome profiling of Daqu from different production cycles will serve as a guide for the control of fermentation process of Chinese liquor in the future.
Collapse
Affiliation(s)
- Jinzhi Zhao
- Kweichow Moutai Group, Renhuai, Guizhou, China
- Department of Chemistry, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Chemistry, Fudan University, Shanghai, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | | | | | - Bing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Vijini Mallawaarachchi
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
- Flinders Accelerator for Microbiome Exploration, Flinders University, Bedford Park, SA, Australia
| | - Yu Lin
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
| | - Ziyu Fang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai, China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| |
Collapse
|
25
|
Cheng W, Chen X, Guo Y, Zhou D, Zeng H, Fu H. The microbial diversity and flavour metabolism of Chinese strong flavour Baijiu: a review. JOURNAL OF THE INSTITUTE OF BREWING 2023. [DOI: 10.58430/jib.v129i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Strong flavour Baijiu is widely consumed in China and is produced by the fermentation of grains using microbial starters. However, a comprehensive understanding of the diversity and metabolic characteristics of microbial communities involved in the solid-state fermentation of Baijiu is important for determining the relationship between microbial composition, flavour metabolism and understanding Baijiu fermentation conditions. Although studies have examined the metabolic pathways and impact of major processes on flavour compounds in strong flavour Baijiu, aspects of the fermentation process remain unexplored. In this review, methods are discussed for the optimisation of microbial diversity in strong flavour Baijiu and associated effects on the flavour of Baijiu. Recent studies are reviewed on starters (Daqu), fermented grains (Jiupei), and pit mud together with the effects of microbial composition on the quality of strong flavour Baijiu. The challenges of Baijiu research and production are discussed, including the role of the microbial diversity of Daqu and Jiupei in the flavour composition of strong flavour Baijiu. This review contributes to the current understanding of processing strong flavour Baijiu and serves as a reference for screening flavour related microorganisms, which is valuable for improving the quality of strong flavour Baijiu.
Collapse
|
26
|
Yu Y, Yu W, Jin Y. Peptidomics analysis of Jiang-Flavor Daqu from high-temperature fermentation to mature and in different preparation season. J Proteomics 2023; 273:104804. [PMID: 36587731 DOI: 10.1016/j.jprot.2022.104804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
Jiang-Flavor Daqu (JFDQ) is a grain-type fermented starter for brewing Chinese liquor. Peptides, the metabolites of proteins in JFDQ, are important for the quality and flavor of JFDQ or even the liquor. The peptide variations in the progress of JFDQ preparation were investigated using RPLC-MS/MS. The JFDQ after high-temperature fermenting (HTF_SU) and after ripening (M_SU), as well as the mature JFDQ prepared in spring (M_SP) and in summer (M_SU), were compared respectively. These two groups were investigated from peptides, precursor proteins, abundance, interactions, and potential antimicrobial peptides (pAMPs). A total of 177, 158, and 262 peptides from HTF_SU, M_SP, and M_SU were identified, respectively. Significant differences (P < 0.01) in the abundance of shared peptides were found in different fermentation stage group (HTF_M), and stronger positive correlations were observed in different preparation season group (MSP_MSU). The interactions of the shared peptides in HTF_M and in MSP_MSU were investigated respectively. In addition, 8 pAMPs in HTF_SU, 5 in M_SP, and 22 in M_SU were predicted using CAMPR3, and their core functional regions were analyzed. This systematic study demonstrated the influences of fermentation stage and preparation season on the peptide profiles in JFDQ, which would provide theoretical guidance and be helpful for JFDQ production. SIGNIFICANCE: Peptidomics analysis showed that the peptide profiles of JFDQ varied in different fermentation stages and different preparation seasons, which mainly resulted from the peptides with high abundance, high interaction degrees, and potential antimicrobial activity, as well as the important precursor proteins such as glutens. This systematic study would benefit for the insufficiency of peptide research of JFDQ till now, and provide theoretical guidance for JFDQ production.
Collapse
Affiliation(s)
- Yang Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wenhao Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| |
Collapse
|
27
|
Liu X, Ma D, Yang C, Yin Q, Liu S, Shen C, Mao J. Microbial community succession patterns and drivers of Luxiang-flavor Jiupei during long fermentation. Front Microbiol 2023; 14:1109719. [PMID: 36846777 PMCID: PMC9950560 DOI: 10.3389/fmicb.2023.1109719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023] Open
Abstract
Luxiang-flavor Baijiu is the mainstream of Baijiu production and consumption in China, and the microbial composition has a great influence on the flavor and quality of Baijiu. In this study, we combined multi-omics sequencing technology to explore the microbial composition, dynamics and metabolite changes of Luxiang-flavor Jiupei during long fermentation periods. The results showed that based on the interaction between environmental constraints and microorganisms, Jiupei microorganisms formed different ecological niches and functional differentiation, which led to the formation of Jiupei stable core microorganisms. The bacteria were mainly Lactobacillus and Acetobacter, and the fungi were mainly Kazachstani and Issatchenkia. Most bacteria were negatively correlated with temperature, alcohol and acidity, and for the fungi, starch content, reducing sugar content and temperature had the most significant effects on community succession. Macroproteomic analysis revealed that Lactobacillus jinshani had the highest relative content; microbial composition, growth changes and functions were more similar in the pre-fermentation period (0-18 days); microorganisms stabilized in the late fermentation period (24-220 days). The metabolome analysis revealed that the metabolites of the Jiupei changed rapidly from 18 to 32 days of fermentation, with a significant increase in the relative content of amino acids, peptides and analogs and a significant decrease in the relative content of sugars; the metabolites of the Jiupei changed slowly from 32 to 220 days of fermentation, with a stabilization of the content of amino acids, peptides and analogs. This work provides insights into the microbial succession and microbial drivers during the long-term fermentation of Jiupei, which have potential implications for optimizing production and improving the flavor of Baijiu.
Collapse
Affiliation(s)
- Xiaogang Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,Luzhou Laojiao Group Co. Ltd., Luzhou, Sichuan, China
| | - Dongna Ma
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chen Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qianqian Yin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, China,National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, China,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu, China
| | - Caihong Shen
- Luzhou Laojiao Group Co. Ltd., Luzhou, Sichuan, China,Caihong Shen, ✉
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, China,National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, China,Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, Jiangsu, China,*Correspondence: Jian Mao, ✉
| |
Collapse
|
28
|
Bacillus species in food fermentations: an under-appreciated group of organisms for safe use in food fermentations. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
29
|
Xia Y, Zhou W, Du Y, Wang Y, Zhu M, Zhao Y, Wu Z, Zhang W. Difference of microbial community and gene composition with saccharification function between Chinese nongxiangxing daqu and jiangxiangxing daqu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:637-647. [PMID: 36053854 DOI: 10.1002/jsfa.12175] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The saccharification function of daqu is usually characterized by two indicators: saccharification power and liquefaction power. Daqu provides diverse microbial saccharifying enzymes for hydrolyzing carbohydrate in Baijiu fermenting grain. Obviously, the composition of microbial communities and enzymatic genes in different types of daqu cultured at varied temperatures is different. However, these differences in saccharification function are not fully understood. RESULTS The findings suggested that the saccharification power and liquefaction power of jiangxiangxing daqu were lower than those of nongxiangxing daqu throughout the production process. We employed metagenomics to find evidence that a mode of multiple saccharifying enzymes involving amylase, cellulase and hemicellulase originating from various microbes exists in daqu. Moreover, a totality of 541 related differential genes were obtained, some of which, annotated to genera of Aspergillus, Lactobacillus and Weissella, were significantly enriched (P < 0.05) in nongxiangxing daqu, while others, annotated to thermophilic genera of Virgibacillus, Bacillus, Kroppenstedtia and Saccharopolyspora, showed a higher relative abundance in jiangxiangxing daqu (P < 0.05). CONCLUSION Various microbial communities of daqu showed diverse saccharification capacity during cultivation of different parameters. These findings are helpful in comprehending the saccharification functional genes of daqu. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Wen Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yake Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yan Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Min Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yajiao Zhao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- School of Liquor-Making Engineering, Sichuan University Jinjiang College, Meishan, China
| |
Collapse
|
30
|
Pang Z, Li W, Hao J, Xu Y, Du B, Zhang C, Wang K, Zhu H, Wang H, Li X, Guo C. Correlational Analysis of the Physicochemical Indexes, Volatile Flavor Components, and Microbial Communities of High-Temperature Daqu in the Northern Region of China. Foods 2023; 12:326. [PMID: 36673417 PMCID: PMC9857448 DOI: 10.3390/foods12020326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Daqu is a microbial-rich baijiu fermentation starter. The high-temperature Daqu plays an essential role in the manufacturing of sauce-flavored baijiu. However, few studies have focused on three kinds of high-temperature Daqu (white, yellow, and black Daqu) in northern China. In this study, the physicochemical indexes, volatile flavor compounds, and microbial characteristics of the three different colors of high-temperature Daqu in northern China were comparatively analyzed to reveal their potential functions. White Daqu (WQ) exhibited the highest liquefying power and starch, and black Daqu (BQ) showed the highest saccharifying and esterifying powers. A total of 96 volatile components were identified in the three types of Daqu, and the contents of the volatile components of yellow Daqu (YQ) were the highest. The microbial community structure analysis showed that Bacillus and Byssochlamys were dominant in BQ, Kroppenstedtia and Thermoascus were dominant in WQ, and Virgibacillus and Thermomyces dominated the YQ. The RDA analysis revealed the correlation between the dominant microorganisms and different physicochemical indexes. The Spearman correlation analysis indicated that Oceanobacillus, Saccharopolyspora, Staphylococcus, Pseudogracilibacillus, Byssochlamys, and Thermomyces showed positive correlations with part of the majority of the key volatile flavor compounds. This work provides a scientific basis for the actual production of different colors of high-temperature Daqu in the northern region of China for sauce-flavored baijiu.
Collapse
Affiliation(s)
- Zemin Pang
- Key Laboratory of Molecular and Cytogenetic, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Hao
- Key Laboratory of Molecular and Cytogenetic, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Binghao Du
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kun Wang
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Hua Zhu
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Hongan Wang
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Changhong Guo
- Key Laboratory of Molecular and Cytogenetic, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
31
|
Xu Y, Wu M, Niu J, Lin M, Zhu H, Wang K, Li X, Sun B. Characteristics and Correlation of the Microbial Communities and Flavor Compounds during the First Three Rounds of Fermentation in Chinese Sauce-Flavor Baijiu. Foods 2023; 12:207. [PMID: 36613423 PMCID: PMC9818360 DOI: 10.3390/foods12010207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Sauce-flavor Baijiu is representative of solid-state fermented Baijiu. It is significant to deeply reveal the dynamic changes of microorganisms in the manufacturing process and their impact on the formation of flavor chemicals correlated with the quality of Baijiu. Sauce-flavor Baijiu manufacturing process can be divided into seven rounds, from which seven kinds of base Baijius are produced. The quality of base Baijiu in the third round is significantly better than that in the first and second rounds, but the mystery behind the phenomenon has not yet been revealed. Based on high-throughput sequencing and flavor analysis of fermented grains, and correlation analysis, the concentrations of flavor chemicals in the third round of fermented grains were enhanced, including esters hexanoic acid, ethyl ester; octanoic acid, ethyl ester; decanoic acid, ethyl ester; dodecanoic acid, ethyl ester; phenylacetic acid, ethyl ester; 3-(methylthio)-propionic acid ethyl ester; acetic acid, phenylethyl ester; hexanoic acid, butyl ester, and other flavor chemicals closely related to the flavor of sauce-flavor Baijiu, such as tetramethylpyrazine. The changes in flavor chemicals should be an important reason for the quality improvement of the third round of base Baijiu. Correlation analysis showed that ester synthesis was promoted by the bacteria genus Lactobacillus and many low abundances of fungal genera, and these low abundances of fungal genera also had important contributions to the production of tetramethylpyrazine. Meanwhile, the degrading metabolic pathway of tetramethylpyrazine was investigated, and the possible microorganisms were correlated. These results clarified the base Baijiu quality improvement of the third round and helped to provide a theoretical basis for improving base Baijiu quality.
Collapse
Affiliation(s)
- Youqiang Xu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Mengqin Wu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jialiang Niu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Mengwei Lin
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Hua Zhu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Kun Wang
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
32
|
Xia Y, Luo H, Wu Z, Zhang W. Microbial diversity in jiuqu and its fermentation features: saccharification, alcohol fermentation and flavors generation. Appl Microbiol Biotechnol 2022; 107:25-41. [DOI: 10.1007/s00253-022-12291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
|
33
|
Liu S, Jiang Z, Ma D, Liu X, Li Y, Ren D, Zhu Y, Zhao H, Qin H, Huang M, Zhang S, Mao J. Distance decay pattern of fermented-related microorganisms in the sauce-flavor Baijiu producing region. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Screening of Yeasts Isolated from Baijiu Environments for Producing 3-Methylthio-1-propanol and Optimizing Production Conditions. Foods 2022; 11:foods11223616. [PMID: 36429207 PMCID: PMC9689521 DOI: 10.3390/foods11223616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
3-Methylthio-1-propanol (3-Met) is widely used as a flavoring substance and an essential aroma ingredient in many foods. Producing 3-Met by microbial transformation is green and eco-friendly. In the present study, one strain, YHM-G, which produced a high level of 3-Met, was isolated from the Baijiu-producing environment. Strain YHM-G was identified as Hyphopichia burtonii according to its morphological properties, physiological and biochemical characteristics, and ribosomal large subunit 26S rRNA gene D1/D2 domain sequence analysis. The optimal conditions for 3-Met production by YHM-G were obtained by single factor design, Plackett-Burman design, steepest ascent path design and response surface methodology as follows: 42.7 g/L glucose, pH 6, 0.9 g/L yeast extract, 6 g/L L-methionine (L-Met), culture temperature 28 °C, shaking speed 210 rpm, loading volume 50 mL/250 mL, inoculum size 0.5% (v/v), culturing period 48 h and 2.5 g/L Tween-80. Under these optimal conditions, the 3-Met production by strain YHM-G was 3.16 g/L, a value 88.1% higher than that before optimization. Strain YHM-G can also produce a variety of flavor compounds that are important for many foods. This strain thus has the potential to increase the abundance of 3-Met in some fermented foods and enhance their aroma profiles.
Collapse
|
35
|
Chen C, Yang H, Liu J, Luo H, Zou W. Systematic Review of Actinomycetes in the Baijiu Fermentation Microbiome. Foods 2022; 11:3551. [PMID: 36429142 PMCID: PMC9689711 DOI: 10.3390/foods11223551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Actinomycetes (a group of filamentous bacteria) are the dominant microbial order in the Daqu (DQ) fermentation starter and in the pit mud (PM) of the Baijiu fermentation microbiome. Actinomycetes produce many of the key enzymes and flavor components, and supply important precursors, which have a major influence on its characteristic aroma components, to other microorganisms during fermentation. This paper reviews the current progress on actinomycete research related to Baijiu fermentation, including the isolation and identification, distribution, interspecies interactions, systems biology, and main metabolites. The main metabolites and applications of the actinomycetes during Baijiu fermentation are also discussed.
Collapse
Affiliation(s)
- Cong Chen
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| | - Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jie Liu
- Anhui Linshui Liquor Co., Ltd., Lu’an 237471, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| |
Collapse
|
36
|
Combining autohydrolysis with xylanase hydrolysis for producing xylooligosaccharides from Jiuzao. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Wu Y, Hou Y, Chen H, Wang J, Zhang C, Zhao Z, Ao R, Huang H, Hong J, Zhao D, Sun B. “Key Factor” for Baijiu Quality: Research Progress on Acid Substances in Baijiu. Foods 2022; 11:foods11192959. [PMID: 36230035 PMCID: PMC9562207 DOI: 10.3390/foods11192959] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Baijiu is the national liquor of China, which has lasted in China for more than 2000 years. Abundant raw materials, multi-strain co-fermentation, and complex processes make the secrets of baijiu flavor and taste still not fully explored. Acid substances not only have a great influence on the flavor and taste of baijiu, but also have certain functions. Therefore, this paper provides a systematic review for the reported acid substances, especially for their contribution to the flavor and functional quality of baijiu. Based on previous studies, this paper puts forward a conjecture, a suggestion, and a point of view, namely: the conjecture of “whether acid substances can be used as ‘key factor’ for baijiu quality “; the suggestion of “the focus of research on acid substances in baijiu should be transferred to evaluating their contribution to the taste of baijiu”; and the view of “acid substances are ‘regulators’ in the fermentation process of baijiu”. It is worth thinking about whether acid substances can be used as the key factors of baijiu to be studied and confirmed by practice in the future. It is hoped that the systematic review of acid substances in baijiu in this paper can contribute to further in-depth and systematic research on baijiu by researchers in the future.
Collapse
Affiliation(s)
- Yashuai Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Yaxin Hou
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Hao Chen
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Junshan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Chunsheng Zhang
- Chengde Qianlongzui Distillery Company, Chengde 067400, China
| | - Zhigang Zhao
- Chengde Qianlongzui Distillery Company, Chengde 067400, China
| | - Ran Ao
- Chengde Qianlongzui Distillery Company, Chengde 067400, China
| | - He Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaxin Hong
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Department of Nutrition and Health, China Agriculture University, Beijing 100193, China
| | - Dongrui Zhao
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-10-68988715
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
38
|
Wang J, Lu C, Xu Q, Li Z, Song Y, Zhou S, Zhang T, Luo X. Bacterial Diversity and Lactic Acid Bacteria with High Alcohol Tolerance in the Fermented Grains of Soy Sauce Aroma Type Baijiu in North China. Foods 2022; 11:foods11121794. [PMID: 35741991 PMCID: PMC9222270 DOI: 10.3390/foods11121794] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Soy sauce aroma type baijiu (also known as Maotai-flavor baijiu) is one of the most popular types of baijiu in China. Traditionally, it is mainly produced in Southwest China. However, in recent decades, some other regions in China have also been able to produce high-quality soy sauce aroma type baijiu, but their microbial flora characteristics during fermentation are still unclear. Here, the bacterial microbial community structure of fermented grains in different rounds of Lutaichun soy sauce aroma type baijiu produced in North China was studied by high-throughput sequencing technology, and the potential probiotics strains with good characteristics (alcohol tolerance, etc.) were screened. The results showed that lactic acid bacteria were the main bacteria in the process of baijiu fermentation. However, as the number of repeated fermentation rounds increased, the proportion of lactic acid bacteria decreased. Firmicutes (96.81%) were the main bacteria in baijiu fermentation at the phylum level, and Lactobacillus (66.50%) were the main bacteria at the genus level. Finally, two strains with high resistance to alcohol stress, Lactiplantibacillus plantarum LTJ12 and Pediococcus acidilactici LTJ28, were screened from 48 strains of lactic acid bacteria in the fermented grains. The survival rates of L. plantarum LTJ12 and P. acidilactici LTJ28 under the 8% alcohol stress treatment were 59.01% and 55.50%, respectively. To the best of our knowledge, this study is the first to reveal the microbial succession of fermented grains in different rounds of soy sauce aroma type baijiu from North China, and has the benefit of explaining the deep molecular mechanism in the process of baijiu fermentation. In addition, the obtained lactic acid bacteria strains with high alcohol tolerance could be conducive to the development of new products such as active probiotic alcoholic beverages and may have important industrial development prospects also.
Collapse
|
39
|
Tu W, Cao X, Cheng J, Li L, Zhang T, Wu Q, Xiang P, Shen C, Li Q. Chinese Baijiu: The Perfect Works of Microorganisms. Front Microbiol 2022; 13:919044. [PMID: 35783408 PMCID: PMC9245514 DOI: 10.3389/fmicb.2022.919044] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Chinese Baijiu is one of the famous distilled liquor series with unique flavors in the world. Under the open environment, Chinese Baijiu was produced by two solid-state fermentation processes: jiuqu making and baijiu making. Chinese Baijiu can be divided into different types according to the production area, production process, starter type, and product flavor. Chinese Baijiu contains rich flavor components, such as esters and organic acids. The formation of these flavor substances is inseparable from the metabolism and interaction of different microorganisms, and thus, microorganisms play a leading role in the fermentation process of Chinese Baijiu. Bacteria, yeasts, and molds are the microorganisms involved in the brewing process of Chinese Baijiu, and they originate from various sources, such as the production environment, production workers, and jiuqu. This article reviews the typical flavor substances of different types of Chinese Baijiu, the types of microorganisms involved in the brewing process, and their functions. Methods that use microbial technology to enhance the flavor of baijiu, and for detecting flavor substances in baijiu were also introduced. This review systematically summarizes the role and application of Chinese Baijiu flavor components and microorganisms in baijiu brewing and provides data support for understanding Chinese Baijiu and further improving its quality.
Collapse
Affiliation(s)
- Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xiaonian Cao
- Luzhou Laojiao Co. Ltd., Luzhou, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Jie Cheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou, China
| |
Collapse
|