1
|
Zhang Y, Li J, Yong YC, Fang Z, Liu W, Yan H, Jiang H, Meng J. Efficient butyrate production from rice straw in an optimized cathodic electro-fermentation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117695. [PMID: 36907062 DOI: 10.1016/j.jenvman.2023.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Butyrate production from renewable biomass shows great potential against climate change and over-consumption of fossil fuels. Herein, key operational parameters of a cathodic electro-fermentation (CEF) process were optimized for efficient butyrate production from rice straw by mixed culture. The cathode potential, controlled pH and initial substrate dosage were optimized at -1.0 V (vs Ag/AgCl), 7.0 and 30 g/L, respectively. Under the optimal conditions, 12.50 g/L butyrate with yield of 0.51 g/g-rice straw were obtained in batch-operated CEF system. In fed-batch mode, butyrate production significantly increased to 19.66 g/L with the yield of 0.33 g/g-rice straw, but 45.99% butyrate selectivity still needs to be improved in future. Enriched butyrate producing bacteria (Clostridium cluster XIVa and IV) with proportion of 58.75% on the 21st day of the fed-batch fermentation, contributed to the high-level butyrate production. The study provides a promising approach for efficient butyrate production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yafei Zhang
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China; Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jianzheng Li
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Wenbin Liu
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China
| | - Han Yan
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China
| | - Haicheng Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Jia Meng
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
2
|
Sriram S, Wong JWC, Pradhan N. Recent advances in electro-fermentation technology: A novel approach towards balanced fermentation. BIORESOURCE TECHNOLOGY 2022; 360:127637. [PMID: 35853590 DOI: 10.1016/j.biortech.2022.127637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Biotransformation of organic substrates via acidogenic fermentation (AF) to high-value products such as C1-C6 carboxylic acids and alcohol serves as platform chemicals for various industrial applications. However, the AF technology suffers from low product titers due to thermodynamic constraints. Recent studies suggest that augmenting AF redox potential can regulate the metabolic pathway and provide seamless electron flow by lowering the activation energy barrier, thus positively influencing the substrate utilization rate, product yield, and speciation. Hence, the augmented AF system with an exogenous electricity supply is termed as electro-fermentation (EF), which has enormous potential to strengthen the fermentation technology domain. Therefore, this critical review systematically discusses the current understanding of EF with a special focus on the extracellular electron transfer mechanism of electroactive bacteria and provides perspectives and research gaps to further improve the technology for green chemical synthesis, sustainable waste management, and circular bio-economy.
Collapse
Affiliation(s)
- Saranya Sriram
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR
| | - Jonathan W C Wong
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR.
| | - Nirakar Pradhan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR.
| |
Collapse
|
3
|
Virdis B, Hoelzle R, Marchetti A, Boto ST, Rosenbaum MA, Blasco-Gómez R, Puig S, Freguia S, Villano M. Electro-fermentation: Sustainable bioproductions steered by electricity. Biotechnol Adv 2022; 59:107950. [PMID: 35364226 DOI: 10.1016/j.biotechadv.2022.107950] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 01/06/2023]
Abstract
The market of biobased products obtainable via fermentation processes is steadily increasing over the past few years, driven by the need to create a decarbonized economy. To date, industrial fermentation (IF) employs either pure or mixed microbial cultures (MMC) whereby the type of the microbial catalysts and the used feedstock affect metabolic pathways and, in turn, the type of product(s) generated. In many cases, especially when dealing with MMC, the economic viability of IF is hindered by factors such as the low attained product titer and selectivity, which ultimately challenge the downstream recovery and purification steps. In this context, electro-fermentation (EF) represents an innovative approach, based on the use of a polarized electrode interface to trigger changes in the rate, yield, titer or product distribution deriving from traditional fermentation processes. In principle, the electrode in EF can act as an electron acceptor (i.e., anodic electro-fermentation, AEF) or donor (i.e., cathodic electro-fermentation, CEF), or simply as a mean to control the oxidation-reduction potential of the fermentation broth. However, the molecular and biochemical basis underlying the EF process are still largely unknown. This review paper provides a comprehensive overview of recent literature studies including both AEF and CEF examples with either pure or mixed microbial cultures. A critical analysis of biochemical, microbiological, and engineering aspects which presently hamper the transition of the EF technology from the laboratory to the market is also presented.
Collapse
Affiliation(s)
- Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert Hoelzle
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angela Marchetti
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Santiago T Boto
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Ramiro Blasco-Gómez
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Sebastià Puig
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
4
|
Modeling and Optimal Control of an Electro-Fermentation Process within a Batch Culture. Processes (Basel) 2022. [DOI: 10.3390/pr10030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Electro-fermentation is a novel process that consists in coupling a microbial fermentative metabolism with an electrochemical system. In such a process, the electrodes act either as the electron sinks or sources modifying the fermentation balance of a microbial fermentative metabolism and provide new options for the control of microbial activity. A theoretical framework for the analysis and control of fermentations using electro-fermentation is currently lacking. In this paper, we propose a simple electro-fermentation model in which a population of fermentative bacteria switch between two metabolic behaviors in response to different electrode potentials. We then mathematically analyze optimal strategies to maximize the production of one of the rising products in a batch fermentation using Pontryagin’s Maximum Principle. The obtained results show that, in some experimental configurations, a dynamic control of the electrode potential is required for the maximization of the desired product. Consequences of the obtained optimal strategy for driving electro-fermentation experiments are discussed through a realistic example. This analysis also highlights that the transition rates between fermentation and electro-fermentation behaviors are currently unknown and would be crucial to quantify in order to apply such a control approach.
Collapse
|
5
|
Abstract
Electro-fermentation (EF) is an upcoming technology that can control the metabolism of exoelectrogenic bacteria (i.e., bacteria that transfer electrons using an extracellular mechanism). The fermenter consists of electrodes that act as sink and source for the production and movement of electrons and protons, thus generating electricity and producing valuable products. The conventional process of fermentation has several drawbacks that restrict their application and economic viability. Additionally, metabolic reactions taking place in traditional fermenters are often redox imbalanced. Almost all metabolic pathways and microbial strains have been studied, and EF can electrochemically control this. The process of EF can be used to optimize metabolic processes taking place in the fermenter by controlling the redox and pH imbalances and by stimulating carbon chain elongation or breakdown to improve the overall biomass yield and support the production of a specific product. This review briefly discusses microbe-electrode interactions, electro-fermenter designs, mixed-culture EF, and pure culture EF in industrial applications, electro methanogenesis, and the various products that could be hence generated using this process.
Collapse
|
6
|
Mayr JC, Rosa LFM, Klinger N, Grosch J, Harnisch F, Spiess AC. Response-Surface-Optimized and Scaled-Up Microbial Electrosynthesis of Chiral Alcohols. CHEMSUSCHEM 2020; 13:1808-1816. [PMID: 31951080 PMCID: PMC7187473 DOI: 10.1002/cssc.201903428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Indexed: 06/10/2023]
Abstract
A variety of enzymes can be easily incorporated and overexpressed within Escherichia coli cells by plasmids, making it an ideal chassis for bioelectrosynthesis. It has recently been demonstrated that microbial electrosynthesis (MES) of chiral alcohols is possible by using genetically modified E. coli with plasmid-incorporated and overexpressed enzymes and methyl viologen as mediator for electron transfer. This model system, using NADPH-dependent alcohol dehydrogenase from Lactobacillus brevis to convert acetophenone into (R)-1-phenylethanol, is assessed by using a design of experiment (DoE) approach. Process optimization is achieved with a 2.4-fold increased yield of 94±7 %, a 3.9-fold increased reaction rate of 324±67 μm h-1 , and a coulombic efficiency of up to 68±7 %, while maintaining an excellent enantioselectivity of >99 %. Subsequent scale-up to 1 L by using electrobioreactors under batch and fed-batch conditions increases the titer of (R)-1-phenylethanol to 12.8±2.0 mm and paves the way to further develop E. coli into a universal chassis for MES in a standard biotechnological process environment.
Collapse
Affiliation(s)
- Jeannine C. Mayr
- Institute of Biochemical EngineeringTechnische Universität BraunschweigRebenring 5638106BraunschweigGermany
- Braunschweig Integrated Centre of Systems Biology (BRICS)Technische Universität BraunschweigRebenring 5638106BraunschweigGermany
| | - Luis F. M. Rosa
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research (UFZ)Permoserstrasse 1504318LeipzigGermany
| | - Natalia Klinger
- Institute of Biochemical EngineeringTechnische Universität BraunschweigRebenring 5638106BraunschweigGermany
| | - Jan‐Hendrik Grosch
- Institute of Biochemical EngineeringTechnische Universität BraunschweigRebenring 5638106BraunschweigGermany
- Braunschweig Integrated Centre of Systems Biology (BRICS)Technische Universität BraunschweigRebenring 5638106BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigFranz-Liszt-Strasse 35a38106BraunschweigGermany
| | - Falk Harnisch
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research (UFZ)Permoserstrasse 1504318LeipzigGermany
| | - Antje C. Spiess
- Institute of Biochemical EngineeringTechnische Universität BraunschweigRebenring 5638106BraunschweigGermany
- Braunschweig Integrated Centre of Systems Biology (BRICS)Technische Universität BraunschweigRebenring 5638106BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigFranz-Liszt-Strasse 35a38106BraunschweigGermany
| |
Collapse
|
7
|
Liu S, Deng Z, Li H, Feng K. Contribution of electrodes and electric current to process stability and methane production during the electro-fermentation of food waste. BIORESOURCE TECHNOLOGY 2019; 288:121536. [PMID: 31146076 DOI: 10.1016/j.biortech.2019.121536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Electro-fermentation is used as an alternative to conventional anaerobic digestion to enhance system stability and methane production from food waste. In particular, the contributions of electrode materials and an electric current are analyzed separately. The results showed that the introduction of electrodes (conductive carbon brushes without applied voltage) rapidly decreased the average concentration of volatile fatty acids (VFAs) from 6617 mg/L to 174 mg/L quickly, accelerated stabilization of digestion system, and improved methane production by 13.5%. When low voltage was supplied, the VFAs concentration declined to 129 mg/L, and methane production increased by 26.3%. Electric current stimulated the growth of hydrogenotrophic methanogens, but acetotrophic Methanosaeta still made up 27.6-61.9% of archaeal community. Geobacter occurred at the cathode with a low abundance. The energy contained in incremental methane was 4.55 times the consumption of electric energy, indicating the enhanced methanogenesis was mainly attributed to the improved digestion environment.
Collapse
Affiliation(s)
- Sai Liu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Zhou Deng
- Shenzhen Lisai Environmental Technology Co, Ltd, Shenzhen 518055, China
| | - Huan Li
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Kai Feng
- Guangdong Engineering Research Center of Urban Water Cycle and Environment Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
8
|
Mayr JC, Grosch JH, Hartmann L, Rosa LFM, Spiess AC, Harnisch F. Resting Escherichia coli as Chassis for Microbial Electrosynthesis: Production of Chiral Alcohols. CHEMSUSCHEM 2019; 12:1631-1634. [PMID: 30762315 DOI: 10.1002/cssc.201900413] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Chiral alcohols constitute important building blocks that can be produced enantioselectively by using nicotinamide adenine dinucleotide (phosphate) [NAD(P)H]-dependent oxidoreductases. For NAD(P)H regeneration, electricity delivers the cheapest reduction equivalents. Enzymatic electrosynthesis suffers from cofactor and enzyme instability, whereas microbial electrosynthesis (MES) exploits whole cells. Here, we demonstrate MES by using resting Escherichia coli as biocatalytic chassis for a production platform towards fine chemicals through electric power. This chassis was exemplified for the synthesis of chiral alcohols by using a NADPH-dependent alcohol dehydrogenase from Lactobacillus brevis for synthesis of (R)-1-phenylethanol from acetophenone. The E. coli strain and growth conditions affected the performance. Maximum yields of (39.4±5.7) % at a coulombic efficiency of (50.5±6.0) % with enantiomeric excess >99 % was demonstrated at a rate of (83.5±13.9) μm h-1 , confirming the potential of MES for synthesis of high-value compounds.
Collapse
Affiliation(s)
- Jeannine C Mayr
- Institute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany
| | - Jan-Hendrik Grosch
- Institute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35a, 38106, Braunschweig, Germany
| | - Lena Hartmann
- Institute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany
| | - Luis F M Rosa
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, UFZ Permoserstraße 15, 04318, Leipzig, Germany
| | - Antje C Spiess
- Institute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35a, 38106, Braunschweig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, UFZ Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
9
|
Jiang Y, May HD, Lu L, Liang P, Huang X, Ren ZJ. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. WATER RESEARCH 2019; 149:42-55. [PMID: 30419466 DOI: 10.1016/j.watres.2018.10.092] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Carbon-rich waste materials (solid, liquid, or gaseous) are largely considered to be a burden on society due to the large capital and energy costs for their treatment and disposal. However, solid and liquid organic wastes have inherent energy and value, and similar as waste CO2 gas they can be reused to produce value-added chemicals and materials. There has been a paradigm shift towards developing a closed loop, biorefinery approach for the valorization of these wastes into value-added products, and such an approach enables a more carbon-efficient and circular economy. This review quantitatively analyzes the state-of-the-art of the emerging microbial electrochemical technology (MET) platform and provides critical perspectives on research advancement and technology development. The review offers side-by-side comparison between microbial electrosynthesis (MES) and electro-fermentation (EF) processes in terms of principles, key performance metrics, data analysis, and microorganisms. The study also summarizes all the processes and products that have been developed using MES and EF to date for organic waste and CO2 valorization. It finally identifies the technological and economic potentials and challenges on future system development.
Collapse
Affiliation(s)
- Yong Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Harold D May
- Hollings Marine Laboratory, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Lu Lu
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
10
|
Ren G, Hu A, Huang S, Ye J, Tang J, Zhou S. Graphite-assisted electro-fermentation methanogenesis: Spectroelectrochemical and microbial community analyses of cathode biofilms. BIORESOURCE TECHNOLOGY 2018; 269:74-80. [PMID: 30149257 DOI: 10.1016/j.biortech.2018.08.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/17/2018] [Accepted: 08/19/2018] [Indexed: 05/28/2023]
Abstract
The stimulatory effect of conductive particles on anaerobic digestion has been demonstrated in recent years. However, it is yet to be determined whether and how conductive particles affect methanogenesis via electro-fermentation (electro-fermentation methanogenesis). In this study, it was demonstrated, for the first time, that conductive graphite boosted the methane production yield by 54.3% and increased the maximum methane production rate by 72.2% during electro-fermentation methanogenesis. Graphite significantly affected the composition of cathode biofilms, with more live and large aggregates being observed. Spectroelectrochemical analyses further showed that the kinds and intensities of biocatalytic active sites and redox groups on the cathode biofilms increased during graphite-assisted electro-fermentation methanogenesis. Particularly, c-type cytochromes, humic acid-like substances, and humic substances improved the long-range electron transport to methanogens such as Methanobacterium and Methanosarcina. The results have implications for the improvement of electro-fermentation process and the use of conductive materials for biofuel recovery.
Collapse
Affiliation(s)
- Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Andong Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaofu Huang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
|
12
|
Oh YK, Hwang KR, Kim C, Kim JR, Lee JS. Recent developments and key barriers to advanced biofuels: A short review. BIORESOURCE TECHNOLOGY 2018. [PMID: 29523378 DOI: 10.1016/j.biortech.2018.02.089] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biofuels are regarded as one of the most viable options for reduction of CO2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein.
Collapse
Affiliation(s)
- You-Kwan Oh
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung-Ran Hwang
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Changman Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bioenergy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| |
Collapse
|
13
|
Electrochemical biotechnologies minimizing the required electrode assemblies. Curr Opin Biotechnol 2018; 50:182-188. [PMID: 29414058 DOI: 10.1016/j.copbio.2018.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/25/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
Microbial electrochemical systems (MESs) are expected to be put into practical use as an environmental technology that can support a future environmentally friendly society. However, conventional MESs present a challenge of inevitably increasing initial investment, mainly due to requirements for a large numbers of electrode assemblies. In this review, we introduce electrochemical biotechnologies that are under development and can minimize the required electrode assemblies. The novel biotechnologies, called electro-fermentation and indirect electro-stimulation, can drive specific microbial metabolism by electrochemically controlling intercellular and extracellular redox states, respectively. Other technologies, namely electric syntrophy and microbial photo-electrosynthesis, obviate the need for electrode assemblies, instead stimulating targeted reactions by using conductive particles to create new metabolic electron flows.
Collapse
|
14
|
Moscoviz R, Trably E, Bernet N. Electro-fermentation triggering population selection in mixed-culture glycerol fermentation. Microb Biotechnol 2017; 11:74-83. [PMID: 28695687 PMCID: PMC5743810 DOI: 10.1111/1751-7915.12747] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/04/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
Electro‐fermentation is a new technique that could be used to influence the global metabolism in mixed‐culture fermentation. In this study, a mixed‐culture cathodic electro‐fermentation of glycerol was investigated. Both microbial community structure and metabolic patterns were altered when compared to standard fermentation. This microbial population shift was more significant when the working electrodes were pre‐colonized by Geobacter sulfurreducens, before electro‐fermentation. The electro‐fermenting microbial community was more efficient for producing 1,3‐propanediol with an improved yield of 10% when compared with fermentation controls. Such improvement did not require high energy and total electron input represented < 1% of the total electron equivalents provided only by glycerol. A linear model was developed to estimate the individual metabolic pattern of each operational taxonomic unit. Application of this model compared to the experimental results suggests that the changes in global metabolism were supported by bacterial population selection rather than individual metabolism shift. This study shows for the first time that both fermentation pattern and bacterial community composition can be influenced by electro‐fermentation conditions.
Collapse
Affiliation(s)
- Roman Moscoviz
- LBE, INRA, 102 Avenue des étangs, 11100, Narbonne, France
| | - Eric Trably
- LBE, INRA, 102 Avenue des étangs, 11100, Narbonne, France
| | - Nicolas Bernet
- LBE, INRA, 102 Avenue des étangs, 11100, Narbonne, France
| |
Collapse
|
15
|
Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N. Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems. Trends Biotechnol 2016; 34:856-865. [DOI: 10.1016/j.tibtech.2016.04.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
|
16
|
Schievano A, Pepé Sciarria T, Vanbroekhoven K, De Wever H, Puig S, Andersen SJ, Rabaey K, Pant D. Electro-Fermentation – Merging Electrochemistry with Fermentation in Industrial Applications. Trends Biotechnol 2016; 34:866-878. [DOI: 10.1016/j.tibtech.2016.04.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022]
|
17
|
Roume H, Arends JBA, Ameril CP, Patil SA, Rabaey K. Enhanced Product Recovery from Glycerol Fermentation into 3-Carbon Compounds in a Bioelectrochemical System Combined with In Situ Extraction. Front Bioeng Biotechnol 2016; 4:73. [PMID: 27725929 PMCID: PMC5035740 DOI: 10.3389/fbioe.2016.00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/06/2016] [Indexed: 11/20/2022] Open
Abstract
Given the large amount of crude glycerol formed as a by-product in the biodiesel industries and the concomitant decrease in its overall market price, there is a need to add extra value to this biorefinery side stream. Upgrading can be achieved by new biotechnologies dealing with recovery and conversion of glycerol present in wastewaters into value-added products, aiming at a zero-waste policy and developing an economically viable process. In microbial bioelectrochemical systems (BESs), the mixed microbial community growing on the cathode can convert glycerol reductively to 1,3-propanediol (1,3-PDO). However, the product yield is rather limited in BESs compared with classic fermentation processes, and the synthesis of side-products, resulting from oxidation of glycerol, such as organic acids, represents a major burden for recovery of 1,3-PDO. Here, we show that the use of an enriched mixed-microbial community of glycerol degraders and in situ extraction of organic acids positively impacts 1,3-PDO yield and allows additional recovery of propionate from glycerol. We report the highest production yield achieved (0.72 mol1,3-PDO mol−1glycerol) in electricity-driven 1,3-PDO biosynthesis from raw glycerol, which is very close to the 1,3-PDO yield reported thus far for a mixed-microbial culture-based glycerol fermentation process. We also present a combined approach for 1,3-PDO production and propionate extraction in a single three chamber reactor system, which leads to recovery of additional 3-carbon compounds in BESs. This opens up further opportunities for an economical upgrading of biodiesel refinery side or waste streams.
Collapse
Affiliation(s)
- Hugo Roume
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University , Gent , Belgium
| | - Jan B A Arends
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University , Gent , Belgium
| | - Camar P Ameril
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University , Gent , Belgium
| | - Sunil A Patil
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University , Gent , Belgium
| | - Korneel Rabaey
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent University , Gent , Belgium
| |
Collapse
|
18
|
Roy S, Schievano A, Pant D. Electro-stimulated microbial factory for value added product synthesis. BIORESOURCE TECHNOLOGY 2016; 213:129-139. [PMID: 27034155 DOI: 10.1016/j.biortech.2016.03.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Interplay of charge between bacteria and electrode has led to emergence of bioelectrochemical systems which leads to applications such as production of electricity, wastewater treatment, bioremediation and production of value added products. Many electroactive bacteria have been identified that have unique external electron transport systems. Coupling of electron transport with carbon metabolism has opened a new approach of carbon dioxide sequestration. The electron transport mechanism involves various cellular and sub cellular molecules. The outer membrane cytochromes, Mtr-complex and Ech-complex are few key molecules involved in electron transport in many electrogenic bacteria. Few cytochrome independent acetogenic electroactive bacteria were also discovered using Rnf complex to transport electrons. For improved productivity, an efficient bioreactor design is mandatory. It should encompass all certain critical issues such as microbial cell retention, charge dissipation, separators and simultaneous product recovery.
Collapse
Affiliation(s)
- Shantonu Roy
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Andrea Schievano
- Department of Agricultural and Environmental Science (DISAA), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Deepak Pant
- Separation and Conversion Technology, VITO - Flemish Institute for Technological Research, Boeretang 200, Mol, 2400, Belgium.
| |
Collapse
|