1
|
Kumar A, Bisht A, SammraMaqsood, SaiqaAmjad, baghel S, Jaiswal SG, wei S. The role of Micro-biome engineering in enhancing Food safety and quality. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2025; 6:67-78. [PMID: 39912062 PMCID: PMC11795101 DOI: 10.1016/j.biotno.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
Microbiome engineering has emerged as a transformative approach to enhancing food safety and quality by strategically modulating microbial communities. This review critically examines state-of-the-art techniques, including synthetic biology, artificial intelligence (AI), and systems biology, that are revolutionizing our ability to improve nutritional profiles, extend shelf life, and optimize food production processes. The review further explores complex social, ethical, and regulatory considerations, emphasizing the importance of robust public engagement and the establishment of standardized frameworks to ensure safe and effective implementation. While microbiome engineering holds significant promise for revolutionizing food safety and quality control, further research is needed to address critical challenges, including understanding microbial dynamics in complex food systems and developing harmonized regulatory frameworks. By bridging interdisciplinary gaps, this paper underscores the necessity of collaborative efforts to unlock the full potential of microbiome-driven innovations for a more resilient and sustainable food industry.
Collapse
Affiliation(s)
- Anand Kumar
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
| | - Abhishek Bisht
- Department of Food Technology, School of Allied Sciences, Dev Bhoomi Uttarakhand University, Navgaon, Manduwala, Chakrata Road, Dehradun -248007, Uttarakhand, India
| | - SammraMaqsood
- National institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan
| | - SaiqaAmjad
- National institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan
| | - Sapna baghel
- Department of Bioscience and Biotechnology, Banasthali University, P.O. Banasthali Vidyapith, 304022, Rajasthan, India
| | - Swapnil Ganesh Jaiswal
- Food Engineering Laboratory, Department of Agricultural Engineering Maharashtra Institute of Technology Aurangabad, 431010, Maharashtra India
| | - Shuai wei
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
2
|
Modulating the Gut Microbiota of Humans by Dietary Intervention with Plant Glycans. Appl Environ Microbiol 2021; 87:AEM.02757-20. [PMID: 33355114 DOI: 10.1128/aem.02757-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human colon contains a community of microbial species, mostly bacteria, which is often referred to as the gut microbiota. The community is considered essential to human well-being by conferring additional energy-harvesting capacity, niche exclusion of pathogens, and molecular signaling activities that are integrated into human physiological processes. Plant polysaccharides (glycans, dietary fiber) are an important source of carbon and energy that supports the maintenance and functioning of the gut microbiota. Therefore, the daily quantity and quality of plant glycans consumed by the human host have the potential to influence health. Members of the gut microbiota differ in ability to utilize different types of plant glycans. Dietary interventions with specific glycans could modulate the microbiota, counteracting ecological perturbations that disrupt the intricate relationships between microbiota and host (dysbiosis). This review considers prospects and research options for modulation of the gut microbiota by the formulation of diets that, when consumed habitually, would correct dysbiosis by building diverse consortia that boost functional resilience. Traditional "prebiotics" favor bifidobacteria and lactobacilli, whereas dietary mixtures of plant glycans that are varied in chemical complexity would promote high-diversity microbiotas. It is concluded that research should aim at improving knowledge of bacterial consortia that, through shared nourishment, degrade and ferment plant glycans. The consortia may vary in composition from person to person, but functional outputs will be consistent in a given context because of metabolic redundancy among bacteria. Thus, the individuality of gut microbiotas could be encompassed, functional resilience encouraged, and correction of dysbiosis achieved.
Collapse
|
3
|
Traversi D, Rabbone I, Scaioli G, Vallini C, Carletto G, Racca I, Ala U, Durazzo M, Collo A, Ferro A, Carrera D, Savastio S, Cadario F, Siliquini R, Cerutti F. Risk factors for type 1 diabetes, including environmental, behavioural and gut microbial factors: a case-control study. Sci Rep 2020; 10:17566. [PMID: 33067559 PMCID: PMC7568546 DOI: 10.1038/s41598-020-74678-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a common autoimmune disease that is characterized by insufficient insulin production. The onset of T1D is the result of gene-environment interactions. Sociodemographic and behavioural factors may contribute to T1D, and the gut microbiota is proposed to be a driving factor of T1D. An integrated preventive strategy for T1D is not available at present. This case-control study attempted to estimate the exposure linked to T1D to identify significant risk factors for healthy children. Forty children with T1D and 56 healthy controls were included in this study. Anthropometric, socio-economic, nutritional, behavioural, and clinical data were collected. Faecal bacteria were investigated by molecular methods. The findings showed, in multivariable model, that the risk factors for T1D include higher Firmicutes levels (OR 7.30; IC 2.26-23.54) and higher carbohydrate intake (OR 1.03; IC 1.01-1.05), whereas having a greater amount of Bifidobacterium in the gut (OR 0.13; IC 0.05 - 0.34) was a protective factor for T1D. These findings may facilitate the development of preventive strategies for T1D, such as performing genetic screening, characterizing the gut microbiota, and managing nutritional and social factors.
Collapse
Affiliation(s)
- Deborah Traversi
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia 94, 10126, Torino, Italy.
- Department of Public Health and Pediatrics, Hygiene Unit, University of the Study of Turin, via Santena 5 bis, 10126, Torino, Italy.
| | - Ivana Rabbone
- S.S.V.D. Endocrinology and Diabetology, O.I.R.M., Azienda Ospedaliera Città Della Salute E Della Scienza, Turin, Italy
- Department of Health Science, University of Eastern Piedmont Amadeo Avogadro - Azienda Ospedaliero Universitaria Maggiore Della Carità - Novara, Novara, Italy
| | - Giacomo Scaioli
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia 94, 10126, Torino, Italy
- Department of Public Health and Pediatrics, Hygiene Unit, University of the Study of Turin, via Santena 5 bis, 10126, Torino, Italy
| | - Camilla Vallini
- S.S.V.D. Endocrinology and Diabetology, O.I.R.M., Azienda Ospedaliera Città Della Salute E Della Scienza, Turin, Italy
| | - Giulia Carletto
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia 94, 10126, Torino, Italy
- Department of Public Health and Pediatrics, Hygiene Unit, University of the Study of Turin, via Santena 5 bis, 10126, Torino, Italy
| | - Irene Racca
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia 94, 10126, Torino, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Torino, Italy
| | - Marilena Durazzo
- S.C.U. Medicina Interna 3, Azienda Ospedaliera Città Della Salute e Della Scienza Di Torino, Torino, Italy
| | - Alessandro Collo
- S.C.U. Medicina Interna 3, Azienda Ospedaliera Città Della Salute e Della Scienza Di Torino, Torino, Italy
- Dietetic and Clinical Nutrition Department, Azienda Ospedaliero Universitaria Maggiore Della Carità, Novara, Italy
| | - Arianna Ferro
- S.C.U. Medicina Interna 3, Azienda Ospedaliera Città Della Salute e Della Scienza Di Torino, Torino, Italy
| | - Deborah Carrera
- Paediatric Endocrinology, Azienda Ospedaliero Universitaria Maggiore Della Carità - Novara, Novara, Italy
| | - Silvia Savastio
- Paediatric Endocrinology, Azienda Ospedaliero Universitaria Maggiore Della Carità - Novara, Novara, Italy
| | - Francesco Cadario
- Paediatric Endocrinology, Azienda Ospedaliero Universitaria Maggiore Della Carità - Novara, Novara, Italy
| | - Roberta Siliquini
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia 94, 10126, Torino, Italy
- Department of Public Health and Pediatrics, Hygiene Unit, University of the Study of Turin, via Santena 5 bis, 10126, Torino, Italy
| | - Franco Cerutti
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia 94, 10126, Torino, Italy
- S.S.V.D. Endocrinology and Diabetology, O.I.R.M., Azienda Ospedaliera Città Della Salute E Della Scienza, Turin, Italy
| |
Collapse
|
4
|
Centanni M, Bell TJ, Sims IM, Tannock GW. Preferential use of plant glycans for growth by Bacteroides ovatus. Anaerobe 2020; 66:102276. [PMID: 32927049 DOI: 10.1016/j.anaerobe.2020.102276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
B. ovatus is a member of the human gut microbiota with a broad capability to degrade complex glycans. Here we show that B. ovatus degrades plant polysaccharides in a preferential order, and that glycan structural complexity plays a role in determining the prioritisation of polysaccharide usage.
Collapse
Affiliation(s)
- Manuela Centanni
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| | - Tracey J Bell
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt, 5040, New Zealand
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt, 5040, New Zealand
| | - Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand; Riddet Institute Centre of Research Excellence, Palmerston North, 4442, New Zealand
| |
Collapse
|
5
|
Mitochondria, the gut microbiome and ROS. Cell Signal 2020; 75:109737. [PMID: 32810578 DOI: 10.1016/j.cellsig.2020.109737] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
In this review, we discuss the connections between mitochondria and the gut microbiome provided by reactive oxygen species (ROS). We examine the mitochondrion as an endosymbiotic organelle that is a hub for energy production, signaling, and cell homeostasis. Maintaining a diverse gut microbiome is generally associated with organismal fitness, intestinal health and resistance to environmental stress. In contrast, gut microbiome imbalance, termed dysbiosis, is linked to a reduction in organismal well-being. ROS are essential signaling molecules but can be damaging when present in excess. Increasing ROS levels have been shown to influence human health, homeostasis of gut cells, and the gastrointestinal microbial community's biodiversity. Reciprocally, gut microbes can affect ROS levels, mitochondrial homeostasis, and host health. We propose that mechanistic understanding of the suite of bi-directional interactions between mitochondria and the gut microbiome will facilitate innovative interdisciplinary studies examining evolutionary divergence and provide novel treatments and therapeutics for disease. GLOSS: In this review, we focus on the nexus between mitochondria and the gut microbiome provided by reactive oxygen species (ROS). Mitochondria are a cell organelle that is derived from an ancestral alpha-proteobacteria. They generate around 80% of the adenosine triphosphate that an organism needs to function and release a range of signaling molecules essential for cellular homeostasis. The gut microbiome is a suite of microorganisms that are commensal, symbiotic and pathogenic to their host. ROS are one predominant group of essential signaling molecules that can be harmful in excess. We suggest that the mitochondria- microbiome nexus is a frontier of research that has cross-disciplinary benefits in understanding genetic divergence and human well-being.
Collapse
|
6
|
|
7
|
Substrate Use Prioritization by a Coculture of Five Species of Gut Bacteria Fed Mixtures of Arabinoxylan, Xyloglucan, β-Glucan, and Pectin. Appl Environ Microbiol 2020; 86:AEM.01905-19. [PMID: 31676481 DOI: 10.1128/aem.01905-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Dietary fiber provides growth substrates for bacterial species that belong to the colonic microbiota of humans. The microbiota degrades and ferments substrates, producing characteristic short-chain fatty acid profiles. Dietary fiber contains plant cell wall-associated polysaccharides (hemicelluloses and pectins) that are chemically diverse in composition and structure. Thus, depending on plant sources, dietary fiber daily presents the microbiota with mixtures of plant polysaccharides of various types and complexity. We studied the extent and preferential order in which mixtures of plant polysaccharides (arabinoxylan, xyloglucan, β-glucan, and pectin) were utilized by a coculture of five bacterial species (Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, and Veillonella parvula). These species are members of the human gut microbiota and have the biochemical capacity, collectively, to degrade and ferment the polysaccharides and produce short-chain fatty acids (SCFAs). B. ovatus utilized glycans in the order β-glucan, pectin, xyloglucan, and arabinoxylan, whereas B. longum subsp. longum utilization was in the order arabinoxylan, arabinan, pectin, and β-glucan. Propionate, as a proportion of total SCFAs, was augmented when polysaccharide mixtures contained galactan, resulting in greater succinate production by B. ovatus and conversion of succinate to propionate by V. parvula Overall, we derived a synthetic ecological community that carries out SCFA production by the common pathways used by bacterial species for this purpose. Systems like this might be used to predict changes to the emergent properties of the gut ecosystem when diet is altered, with the aim of beneficially affecting human physiology.IMPORTANCE This study addresses the question as to how bacterial species, characteristic of the human gut microbiota, collectively utilize mixtures of plant polysaccharides such as are found in dietary fiber. Five bacterial species with the capacity to degrade polymers and/or produce acidic fermentation products detectable in human feces were used in the experiments. The bacteria showed preferential use of certain polysaccharides over others for growth, and this influenced their fermentation output qualitatively. These kinds of studies are essential in developing concepts of how the gut microbial community shares habitat resources, directly and indirectly, when presented with mixtures of polysaccharides that are found in human diets. The concepts are required in planning dietary interventions that might correct imbalances in the functioning of the human microbiota so as to support measures to reduce metabolic conditions such as obesity.
Collapse
|
8
|
Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat Commun 2019; 10:5783. [PMID: 31857577 PMCID: PMC6923387 DOI: 10.1038/s41467-019-13727-9] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/22/2019] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota represents a huge community of microorganisms that play essential roles in immune modulation and homeostasis maintenance. Microbiota transplantation is an important approach to prevent and treat disease as it can inhibit pathogen colonization and positively modulate bacterial composition. However, the development of oral bacterial therapeutics has been restricted by low bioavailability and limited retention in the gastrointestinal tract. Here, we report a simple yet highly efficient method to coat gut microbes via biointerfacial supramolecular self-assembly. Coating can be performed within 15 min by simply vortexing with biocompatible lipids. Bacteria coated with an extra self-assembled lipid membrane exhibit significantly improved survival against environmental assaults and almost unchanged viability and bioactivity. We demonstrate their enhanced efficacies in oral delivery and treatment using two murine models of colitis. We suggest that biointerfacial supramolecular self-assembly may provide a unique platform to generate advanced bacterial therapeutics for the treatment of various diseases. Oral microbiota delivery is an approach to treat and prevent disease but suffers from low retention and bioavailability. Here the authors report on a lipid coating to protect against environmental assault maintaining viability and bioactivity of the bacteria and demonstrate effective application in a colitis model.
Collapse
|
9
|
Tannock GW, Liu Y. Guided dietary fibre intake as a means of directing short-chain fatty acid production by the gut microbiota. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1657471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Yafei Liu
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Centanni M, Carnachan SM, Bell TJ, Daines AM, Hinkley SFR, Tannock GW, Sims IM. Utilization of Complex Pectic Polysaccharides from New Zealand Plants ( Tetragonia tetragonioides and Corynocarpus laevigatus) by Gut Bacteroides Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7755-7764. [PMID: 31251611 DOI: 10.1021/acs.jafc.9b02429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pectic polysaccharides from New Zealand (NZ) spinach (Tetragonia tetragonioides) and karaka berries (Corynocarpus laevigatus) were extracted and analyzed. NZ spinach polysaccharides comprised mostly homogalacturonan (64.4%) and rhamnogalacturonan I (5.8%), with side chains of arabinan (8.1%), galactan (2.2%), and type II arabinogalactan (7.1%); karaka berry polysaccharides comprised homogalacturonan (21.8%) and rhamnogalacturonan I (10.0%), with greater proportions of side chains (arabinan, 15.6%; galactan, 23.8%; and type II arabinogalactan, 19.3%). Screening of gut commensal Bacteroides showed that six were able to grow on the NZ spinach extract, while five were able to grow on the karaka berry extract. Analysis of the polysaccharides remaining after fermentation, by size-exclusion chromatography and constituent sugar analysis, showed that the Bacteroides species that grew on these two substrates showed preferences for the different pectic polysaccharide types. Our data suggest that, to completely degrade and utilize the complex pectin structures found in plants, members of Bacteroides and other bowel bacteria work as metabolic consortia.
Collapse
Affiliation(s)
| | - Susan M Carnachan
- Ferrier Research Institute , Victoria University of Wellington , 69 Gracefield Road , Lower Hutt 5040 , New Zealand
| | - Tracey J Bell
- Ferrier Research Institute , Victoria University of Wellington , 69 Gracefield Road , Lower Hutt 5040 , New Zealand
| | - Alison M Daines
- Ferrier Research Institute , Victoria University of Wellington , 69 Gracefield Road , Lower Hutt 5040 , New Zealand
| | - Simon F R Hinkley
- Ferrier Research Institute , Victoria University of Wellington , 69 Gracefield Road , Lower Hutt 5040 , New Zealand
| | - Gerald W Tannock
- Riddet Institute Centre of Research Excellence , Palmerston North 4442 , New Zealand
| | - Ian M Sims
- Ferrier Research Institute , Victoria University of Wellington , 69 Gracefield Road , Lower Hutt 5040 , New Zealand
| |
Collapse
|
11
|
Timmis K, Timmis JK, Brüssow H, Fernández LÁ. Synthetic consortia of nanobody-coupled and formatted bacteria for prophylaxis and therapy interventions targeting microbiome dysbiosis-associated diseases and co-morbidities. Microb Biotechnol 2019; 12:58-65. [PMID: 30575298 PMCID: PMC6302794 DOI: 10.1111/1751-7915.13355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Designed nanobody-linked synthetic consortia for microbiota dysbiosis therapies. A. Nanobodies (Nb) are selected for specific antigens on target bacteria destined for a synthetic therapy consortium that may consist of two (B) or multiple (C) members. For the treatment of dysbiosis co-morbidities requiring two functionally distinct consortia, these may be linked through a common member to generate a single bi-functional microbiota therapy (D).
Collapse
Affiliation(s)
- Kenneth Timmis
- Institute of MicrobiologyTechnical University BraunschweigBraunschweigGermany
| | | | - Harald Brüssow
- Division of Animal and Human Health EngineeringDepartment of BiosystemsKatholieke Universiteit LeuvenLeuvenBelgium
| | - Luis Ángel Fernández
- Department of Microbial BiotechnologyCentro Nacional de BiotecnologíaConsejo Superior de Investigaciones CientíficasMadridSpain
| |
Collapse
|
12
|
Bell TJ, Draper SL, Centanni M, Carnachan SM, Tannock GW, Sims IM. Characterization of Polysaccharides from Feijoa Fruits ( Acca sellowiana Berg.) and Their Utilization as Growth Substrates by Gut Commensal Bacteroides Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13277-13284. [PMID: 30516980 DOI: 10.1021/acs.jafc.8b05080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polysaccharides from feijoa fruit were extracted and analyzed; the composition of these polysaccharides conforms to those typically found in the primary cell walls of eudicotyledons. The two major polysaccharide extracts consisted of mainly pectic polysaccharides and hemicellulosic polysaccharides [xyloglucan (77%) and arabinoxylan (16%)]. A collection of commensal Bacteroides species was screened for growth in culture using these polysaccharide preparations and placed into five categories based on their preference for each substrate. Most of the species tested could utilize the pectic polysaccharides, but growth on the hemicellulose was more limited. Constituent sugar and glycosyl linkage analysis showed that species that grew on the hemicellulose fraction showed differences in their preference for the two polysaccharides in this preparation. Our data demonstrate that the members of the genus Bacteroides show differential hydrolysis of pectic polysaccharides, xyloglucan, and arabinoxylan, which might influence the structure and metabolic activities of the microbiota in the human gut.
Collapse
Affiliation(s)
- Tracey J Bell
- Ferrier Research Institute , Victoria University of Wellington , 69 Gracefield Road , Lower Hutt 5040 , New Zealand
| | - Sarah L Draper
- Ferrier Research Institute , Victoria University of Wellington , 69 Gracefield Road , Lower Hutt 5040 , New Zealand
| | | | - Susan M Carnachan
- Ferrier Research Institute , Victoria University of Wellington , 69 Gracefield Road , Lower Hutt 5040 , New Zealand
| | - Gerald W Tannock
- Riddet Institute Centre of Research Excellence , Palmerston North 4442 , New Zealand
| | - Ian M Sims
- Ferrier Research Institute , Victoria University of Wellington , 69 Gracefield Road , Lower Hutt 5040 , New Zealand
| |
Collapse
|
13
|
Bifidobacterium pseudolongum in the Ceca of Rats Fed Hi-Maize Starch Has Characteristics of a Keystone Species in Bifidobacterial Blooms. Appl Environ Microbiol 2018; 84:AEM.00547-18. [PMID: 29802187 DOI: 10.1128/aem.00547-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/19/2018] [Indexed: 12/18/2022] Open
Abstract
Starches resistant to mammalian digestion are present in foods and pass to the large bowel, where they may be degraded and fermented by the microbiota. Increases in relative abundances of bifidobacteria (blooms) have been reported in rats whose diet was supplemented with Hi-Maize resistant starch. We determined that the bifidobacterial species present in the rat cecum under these circumstances mostly belonged to Bifidobacterium animalis However, cultures of B. animalis isolated from the rats failed to degrade Hi-Maize starch to any extent. In contrast, Bifidobacterium pseudolongum also detected in the rat microbiota had high starch-degrading ability. Transcriptional comparisons showed increased expression of a type 1 pullulanase, alpha-amylase, and glycogen debranching enzyme by B. pseudolongum when cultured in medium containing Hi-Maize starch. Maltose was released into the culture medium, and B. animalis cultures had shorter doubling times in maltose medium than did B. pseudolongum Thus, B. pseudolongum, which was present at a consistently low abundance in the microbiota, but which has extensive enzymatic capacity to degrade resistant starch, showed the attributes of a keystone species associated with the bifidobacterial bloom.IMPORTANCE This study addresses the microbiology and function of a natural ecosystem (the rat gut) using DNA-based observations and in vitro experimentation. The microbial community of the large bowel of animals, including humans, has been studied extensively through the use of high-throughput DNA sequencing methods and advanced bioinformatics analysis. These studies reveal the compositions and genetic capacities of microbiotas but not the intricacies of how microbial communities function. Our work, combining DNA sequence analysis and laboratory experiments with cultured strains of bacteria, revealed that the increased abundance of bifidobacteria in the rat gut, induced by feeding indigestible starch, involved a species that cannot itself degrade the starch (Bifidobacterium animalis) but cohabits with a species that can (Bifidobacterium pseudolongum). B. pseudolongum has the characteristics of a keystone species in the community because it had low abundance but high ability to perform a critical function, the hydrolysis of resistant starch.
Collapse
|
14
|
Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat Biotechnol 2018; 36:359-367. [PMID: 29553575 PMCID: PMC6118326 DOI: 10.1038/nbt.4110] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/23/2018] [Indexed: 01/01/2023]
Abstract
Rumen microbiome biology gets a boost with the release of 410 high-quality reference genomes from the Hungate1000 project. Productivity of ruminant livestock depends on the rumen microbiota, which ferment indigestible plant polysaccharides into nutrients used for growth. Understanding the functions carried out by the rumen microbiota is important for reducing greenhouse gas production by ruminants and for developing biofuels from lignocellulose. We present 410 cultured bacteria and archaea, together with their reference genomes, representing every cultivated rumen-associated archaeal and bacterial family. We evaluate polysaccharide degradation, short-chain fatty acid production and methanogenesis pathways, and assign specific taxa to functions. A total of 336 organisms were present in available rumen metagenomic data sets, and 134 were present in human gut microbiome data sets. Comparison with the human microbiome revealed rumen-specific enrichment for genes encoding de novo synthesis of vitamin B12, ongoing evolution by gene loss and potential vertical inheritance of the rumen microbiome based on underrepresentation of markers of environmental stress. We estimate that our Hungate genome resource represents ∼75% of the genus-level bacterial and archaeal taxa present in the rumen.
Collapse
|
15
|
Thaiss CA, Elinav E. The remedy within: will the microbiome fulfill its therapeutic promise? J Mol Med (Berl) 2017; 95:1021-1027. [PMID: 28656322 DOI: 10.1007/s00109-017-1563-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/07/2017] [Accepted: 06/14/2017] [Indexed: 12/24/2022]
Abstract
The last decade of research has witnessed a tremendous upsurge in our understanding of the intestinal microbiome and its role in a large range of human diseases, which has incited hopes for a rapid clinical utilization of the new insights for the development of microbiome-based therapies. Nonetheless, only a single microbiome-targeted therapy has so far found its way into clinical routine: fecal microbiota transplantation for patients suffering from recurrent Clostridium difficile infections. Herein, we discuss the current hopes, advances, challenges, and obstacles for translating basic microbiome research into therapeutic applications for a larger number of diseases and provide an outline of how such clinical applications might emerge.
Collapse
Affiliation(s)
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
16
|
Abstract
OBJECTIVE Rapidly expanding insights into the human microbiome and health suggest that Western medicine is poised for significant evolution, or perhaps revolution-this while medicine continues on a trajectory from reductionism to a biopsychosocial (BPS) paradigm recognizing biological, psychological, and social influences on health. The apparent sensitivity of the microbiota to perturbations across BPS domains suggests that a broad and inclusive framework is needed to develop applicable knowledge in this emerging area. We outline an ecological framework of the human microbiome by extending the BPS concept to better incorporate environmental and human factors as members of a global, dynamic set of systems that interact over time. METHODS We conducted a selective literature review across disciplines to integrate microbiome research into a BPS framework. RESULTS The microbiome can be understood in terms of ecological systems encompassing BPS domains at four levels: (a) immediate (molecular, genetic, and neural processes), (b) proximal (physiology, emotion, social integration), (c) intermediate (built environments, behaviors, societal practices), and (d) distal (physical environments, attitudes, and broad cultural, economic, and political factors). The microbiota and host are thus understood in terms of their immediate interactions and the more distal physical and social arenas in which they participate. CONCLUSIONS A BPS ecological paradigm encourages replicable, generalizable, and interdisciplinary/transdisciplinary research and practices that take into account the vast influences on the human microbiome that may otherwise be overlooked or understood out of context. It also underscores the importance of sustainable bioenvironmental, psychological, and social systems that broadly support microbial, neural, and general health.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize potential modulations of the intestinal microbiome aimed at preventing or delaying progression to overt type 1 diabetes in the light of recently identified perturbations of the gut microbiota associated with the development of type 1 diabetes. RECENT FINDINGS Accumulated data suggest that the gut microbiota is involved at two different steps in the evolution of type 1 diabetes. At the first step, the intestinal tract is colonized by a microbial community unable to provide an adequate education of the immune system. As a consequence, the infant acquires susceptibility to immune-mediated diseases, type 1 diabetes included. At the other step, the young child seroconverts to positivity for diabetes-associated autoantibodies. This is preceded or accompanied by a decrease in the diversity of the intestinal microbiota and an increased abundance of Bacteroides species. These changes will affect the disease process promoting progression toward overt type 1 diabetes. By providing specific probiotics, one can affect the colonization of the intestinal tract in the newborn infant or strengthen the immune education in early life. Human milk oligosaccharides function as nutrients for "healthy" bacteria. Dietary interventions applying modified starches can influence the numbers and activities of both autoreactive and regulatory T cells and provide protection against autoimmune diabetes in non-obese diabetic mice. Modulation of the intestinal microbiome holds the promise of effective protection against human type 1 diabetes.
Collapse
Affiliation(s)
- Mikael Knip
- Children's Hospital, University of Helsinki, P.O. Box 22, (Stenbäckinkatu 11), FI, -00014, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland.
| | - Jarno Honkanen
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Clinicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Tannock GW, Taylor MW. Embracing the co-operative society to better understand assembly of the gut microbiota. Environ Microbiol 2017; 19:2924-2925. [PMID: 28401677 DOI: 10.1111/1462-2920.13752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Gerald W Tannock
- Department of Microbiology & Immunology, & Microbiome Otago, University of Otago, Dunedin, New Zealand
- Riddet Centre of Research Excellence, Massey University, New Zealand
| | - Michael W Taylor
- School of Biological Sciences & Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
19
|
Centanni M, Hutchison JC, Carnachan SM, Daines AM, Kelly WJ, Tannock GW, Sims IM. Differential growth of bowel commensal Bacteroides species on plant xylans of differing structural complexity. Carbohydr Polym 2017; 157:1374-1382. [DOI: 10.1016/j.carbpol.2016.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/25/2016] [Accepted: 11/04/2016] [Indexed: 01/30/2023]
|
20
|
Castro-Marrero J, Sáez-Francàs N, Santillo D, Alegre J. Treatment and management of chronic fatigue syndrome/myalgic encephalomyelitis: all roads lead to Rome. Br J Pharmacol 2017; 174:345-369. [PMID: 28052319 DOI: 10.1111/bph.13702] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/25/2016] [Accepted: 12/14/2016] [Indexed: 01/10/2023] Open
Abstract
This review explores the current evidence on benefits and harms of therapeutic interventions in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) and makes recommendations. CFS/ME is a complex, multi-system, chronic medical condition whose pathophysiology remains unknown. No established diagnostic tests exist nor are any FDA-approved drugs available for treatment. Because of the range of symptoms of CFS/ME, treatment approaches vary widely. Studies undertaken have heterogeneous designs and are limited by sample size, length of follow-up, applicability and methodological quality. The use of rintatolimod and rituximab as well as counselling, behavioural and rehabilitation therapy programs may be of benefit for CFS/ME, but the evidence of their effectiveness is still limited. Similarly, adaptive pacing appears to offer some benefits, but the results are debatable: so is the use of nutritional supplements, which may be of value to CFS/ME patients with biochemically proven deficiencies. To summarize, the recommended treatment strategies should include proper administration of nutritional supplements in CFS/ME patients with demonstrated deficiencies and personalized pacing programs to relieve symptoms and improve performance of daily activities, but a larger randomized controlled trial (RCT) evaluation is required to confirm these preliminary observations. At present, no firm conclusions can be drawn because the few RCTs undertaken to date have been small-scale, with a high risk of bias, and have used different case definitions. Further, RCTs are now urgently needed with rigorous experimental designs and appropriate data analysis, focusing particularly on the comparison of outcomes measures according to clinical presentation, patient characteristics, case criteria and degree of disability (i.e. severely ill ME cases or bedridden).
Collapse
Affiliation(s)
- Jesus Castro-Marrero
- CFS/ME Unit, Vall d'Hebron University Hospital, Collserola Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Dafna Santillo
- CFS/ME Unit, Vall d'Hebron University Hospital, Collserola Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Alegre
- CFS/ME Unit, Vall d'Hebron University Hospital, Collserola Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Szafrański SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 2017; 250:29-44. [PMID: 28108235 DOI: 10.1016/j.jbiotec.2017.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
Infections induced by oral biofilms include caries, as well as periodontal, and peri-implant disease, and may influence quality of life, systemic health, and expenditure. As bacterial biofilms are highly resistant and resilient to conventional antibacterial therapy, it has been difficult to combat these infections. An innovative alternative to the biocontrol of oral biofilms could be to use bacteriophages or phages, the viruses of bacteria, which are specific, non-toxic, self-proliferating, and can penetrate into biofilms. Phages for Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Fusobacterium nucleatum, Lactobacillus spp., Neisseria spp., Streptococcus spp., and Veillonella spp. have been isolated and characterised. Recombinant phage enzymes (lysins) have been shown to lyse A. naeslundii and Streptococcus spp. However, only a tiny fraction of available phages and their lysins have been explored so far. The unique properties of phages and their lysins make them promising but challenging antimicrobials. The genetics and biology of phages have to be further explored in order to determine the most effective way of applying them. Studying the effect of phages and lysins on multispecies biofilms should pave the way for microbiota engineering and microbiota-based therapy.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | - Andreas Winkel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Meike Stiesch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| |
Collapse
|
22
|
Abstract
The gut microbiome research is going from a descriptive into an intervention phase. To optimize beneficial microbe–host interaction, we need to understand how to steer the system by modulating the nutrient input with which the system is literally fed (e.g. diets, fibres, prebiotics, human milk oligosaccharides), and we must learn how to modulate the composition of the gut microbiota by adding beneficial microbes (e.g. probiotics, faecal transplants) and by eliminating disturbing microbial members using, for example, bacteriophages in this highly complex ecosystem. The current status of the field is reviewed together with an outlook what might be expected until 2020, highlighting obstacles to progress and possible solutions to these problems.
Collapse
Affiliation(s)
- Harald Brüssow
- Nestlé Research Center, Nutrition and Health Research, Host-Microbe Interaction, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland
| |
Collapse
|