1
|
Shao S, Wang X, Sorial C, Sun X, Xia X. Sensitive Colorimetric Lateral Flow Assays Enabled by Platinum-Group Metal Nanoparticles with Peroxidase-Like Activities. Adv Healthc Mater 2025; 14:e2401677. [PMID: 39108051 PMCID: PMC11799360 DOI: 10.1002/adhm.202401677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/07/2024] [Indexed: 02/07/2025]
Abstract
The last several decades have witnessed the success and popularity of colorimetric lateral flow assay (CLFA) in point-of-care testing. Driven by increasing demand, great efforts have been directed toward enhancing the detection sensitivity of CLFA. Recently, platinum-group metal nanoparticles (PGM NPs) with peroxidase-like activities have emerged as a type of promising colorimetric labels for enhancing the sensitivity of CLFA. By incorporating a simple and rapid post-treatment process, the PGM NP-based CLFAs are orders of magnitude more sensitive than conventional gold nanoparticle-based CLFAs. In this perspective, the study begins with introducing the design, synthesis, and characterization of PGM NPs with peroxidase-like activities. The current techniques for surface modification of PGM NPs are then discussed, followed by operation and optimization of PGM NP-based CLFAs. Afterward, opinions are provided on the social impact of PGM NP-based CLFAs. Lastly, this perspective is concluded with an outlook of future research directions in this emerging field, where the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Shikuan Shao
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaochuan Wang
- School of Social Work, College of Health Professions and Sciences, University of Central Florida, Orlando, Florida 32816, United States
| | - Caroline Sorial
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaohan Sun
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaohu Xia
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
2
|
Lau Q, Igawa T, Kosch TA, Dharmayanthi AB, Berger L, Skerratt LF, Satta Y. Conserved Evolution of MHC Supertypes among Japanese Frogs Suggests Selection for Bd Resistance. Animals (Basel) 2023; 13:2121. [PMID: 37443920 DOI: 10.3390/ani13132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The chytrid fungus Batrachochytrium dendrobatidis (Bd) is a major threat to amphibians, yet there are no reports of major disease impacts in East Asian frogs. Genetic variation of the major histocompatibility complex (MHC) has been associated with resistance to Bd in frogs from East Asia and worldwide. Using transcriptomic data collated from 11 Japanese frog species (one individual per species), we isolated MHC class I and IIb sequences and validated using molecular cloning. We then compared MHC from Japanese frogs and other species worldwide, with varying Bd susceptibility. Supertyping analysis, which groups MHC alleles based on physicochemical properties of peptide binding sites, identified that all examined East Asian frogs contained at least one MHC-IIb allele belonging to supertype ST-1. This indicates that, despite the large divergence times between some Japanese frogs (up to 145 million years), particular functional properties in the peptide binding sites of MHC-II are conserved among East Asian frogs. Furthermore, preliminary analysis using NetMHCIIpan-4.0, which predicts potential Bd-peptide binding ability, suggests that MHC-IIb ST-1 and ST-2 have higher overall peptide binding ability than other supertypes, irrespective of whether the peptides are derived from Bd, other fungi, or bacteria. Our findings suggest that MHC-IIb among East Asian frogs may have co-evolved under the same selective pressure. Given that Bd originated in this region, it may be a major driver of MHC evolution in East Asian frogs.
Collapse
Affiliation(s)
- Quintin Lau
- Research Center for Integrative Evolutionary Science, Sokendai (The Graduate University for Advanced Studies), Hayama 240-0115, Japan
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tiffany A Kosch
- One Health Research Group, Faculty of Science, University of Melbourne, Parkville 3010, Australia
| | - Anik B Dharmayanthi
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Lee Berger
- One Health Research Group, Faculty of Science, University of Melbourne, Parkville 3010, Australia
| | - Lee F Skerratt
- One Health Research Group, Faculty of Science, University of Melbourne, Parkville 3010, Australia
| | - Yoko Satta
- Research Center for Integrative Evolutionary Science, Sokendai (The Graduate University for Advanced Studies), Hayama 240-0115, Japan
| |
Collapse
|
3
|
Romero-Zambrano GL, Bermúdez-Puga SA, Sánchez-Yumbo AF, Yánez-Galarza JK, Ortega-Andrade HM, Naranjo-Briceño L. Amphibian chytridiomycosis, a lethal pandemic disease caused by the killer fungus Batrachochytrium dendrobatidis: New approaches to host defense mechanisms and techniques for detection and monitoring. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chytridiomycosis is a catastrophic disease currently decimating worldwide amphibian populations, caused by the panzootic chytrid fungus Batrachochytrium dendrobatidis. Massive species decline to extinction catalyzes radical changes in ecosystems globally, including the largest continuous rainforest ecosystem on Earth, the Amazon rainforest. Innovative research that aims to propose feasible mechanisms of mitigation and the origins of the disease is vital, including studies addressing climatic effects on the expansion of chytridiomycosis. Thus, this publication aims to provide a comprehensive review of: i) the current technologies used for B. dendrobatidis detection and monitoring, and ii) the known Neotropical amphibian's skin microbiota with anti-fungal properties against B. dendrobatidis. Several immunologic and DNA-based methods are discussed to understand the emerging fungal pathogens and their effects on the biosphere, which can help to mitigate the devastating ecological impacts of mass amphibian morbidity. The establishment of rapid and highly accurate B. dendrobatidis detection techniques and methods for monitoring amphibian's cutaneous microbiome is crucial in the fight against chytridiomycosis.
Collapse
Affiliation(s)
- Génesis L. Romero-Zambrano
- Biotechnology Engineering Career. Faculty of Life Sciences. Universidad Regional Amazónica Ikiam, Tena, Ecuador 150150
| | - Stalin A. Bermúdez-Puga
- Biotechnology Engineering Career. Faculty of Life Sciences. Universidad Regional Amazónica Ikiam, Tena, Ecuador 150150
| | - Alex F. Sánchez-Yumbo
- Biotechnology Engineering Career. Faculty of Life Sciences. Universidad Regional Amazónica Ikiam, Tena, Ecuador 150150
| | - Jomira K. Yánez-Galarza
- Biotechnology Engineering Career. Faculty of Life Sciences. Universidad Regional Amazónica Ikiam, Tena, Ecuador 150150
| | - H. Mauricio Ortega-Andrade
- 2Biogeography and Spatial Ecology Research Group, Universidad Regional Amazónica Ikiam, Tena, Ecuador 150150 3Herpetology Division, Instituto Nacional de Biodiversidad (INABIO), calle Rumipamba 341 y Av. de los Shyris, Quito, Ecuador
| | - Leopoldo Naranjo-Briceño
- Biotechnology Engineering Career. Faculty of Life Sciences. Universidad Regional Amazónica Ikiam, Tena, Ecuador 150150
| |
Collapse
|
4
|
Rodriguez KM, Voyles J. The amphibian complement system and chytridiomycosis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:706-719. [PMID: 33052039 PMCID: PMC7821119 DOI: 10.1002/jez.2419] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
Understanding host immune function and ecoimmunology is increasingly important at a time when emerging infectious diseases (EIDs) threaten wildlife. One EID that has emerged and spread widely in recent years is chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), which is implicated unprecedented amphibian declines around the world. The impacts of Bd have been severe for many amphibian species, but some populations have exhibited signs of persistence, and even recovery, in some regions. Many mechanisms may underpin this pattern and amphibian immune responses are likely one key component. Although we have made great strides in understanding amphibian immunity, the complement system remains poorly understood. The complement system is a nonspecific, innate immune defense that is known to enhance other immune responses. Complement activation can occur by three different biochemical pathways and result in protective mechanisms, such as inflammation, opsonization, and pathogen lysis, thereby providing protection to the host. We currently lack an understanding of complement pathway activation for chytridiomycosis, but several studies have suggested that it may be a key part of an early and robust immune response that confers host resistance. Here, we review the available research on the complement system in general as well as amphibian complement responses to Bd infection. Additionally, we propose future research directions that will increase our understanding of the amphibian complement system and other immune responses to Bd. Finally, we suggest how a deeper understanding of amphibian immunity could enhance the conservation and management of amphibian species that are threatened by chytridiomycosis.
Collapse
Affiliation(s)
| | - Jamie Voyles
- Department of Biology, University of Nevada-Reno, Reno, Nevada, USA
| |
Collapse
|
5
|
Ossiboff RJ, Towe AE, Brown MA, Longo AV, Lips KR, Miller DL, Carter ED, Gray MJ, Frasca S. Differentiating Batrachochytrium dendrobatidis and B. salamandrivorans in Amphibian Chytridiomycosis Using RNAScope ® in situ Hybridization. Front Vet Sci 2019; 6:304. [PMID: 31572738 PMCID: PMC6751264 DOI: 10.3389/fvets.2019.00304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
Batrachochytrium dendrobatidis and B. salamandrivorans are important amphibian pathogens responsible for morbidity and mortality in free-ranging and captive frogs, salamanders, and caecilians. While B. dendrobatidis has a widespread global distribution, B. salamandrivorans has only been detected in amphibians in Asia and Europe. Although molecular detection methods for these fungi are well-characterized, differentiation of the morphologically similar organisms in the tissues of affected amphibians is incredibly difficult. Moreover, an accurate tool to identify and differentiate Batrachochytrium in affected amphibian tissues is essential for a specific diagnosis of the causative agent in chytridiomycosis cases. To address this need, an automated dual-plex chromogenic RNAScope®in situ hybridization (ISH) assay was developed and characterized for simultaneous detection and differentiation of B. dendrobatidis and B. salamandrivorans. The assay, utilizing double Z target probe pairs designed to hybridize to 28S rRNA sequences, was specific for the identification of both organisms in culture and in formalin-fixed paraffin-embedded amphibian tissues. The assay successfully identified organisms in tissue samples from five salamander and one frog species preserved in formalin for up to 364 days and was sensitive for the detection of Batrachochytrium in animals with qPCR loads as low as 1.1 × 102 zoospores/microliter. ISH staining of B. salamandrivorans also highlighted the infection of dermal cutaneous glands, a feature not observed in amphibian B. dendrobatidis cases and which may play an important role in B. salamandrivorans pathogenesis in salamanders. The developed ISH assay will benefit both amphibian chytridiomycosis surveillance projects and pathogenesis studies by providing a reliable tool for Batrachochytrium differentiation in tissues.
Collapse
Affiliation(s)
- Robert J Ossiboff
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Anastasia E Towe
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Melissa A Brown
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Ana V Longo
- Department of Biology, University of Florida, Gainesville, FL, United States.,Department of Biology, University of Maryland College Park, College Park, MD, United States
| | - Karen R Lips
- Department of Biology, University of Maryland College Park, College Park, MD, United States
| | - Debra L Miller
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States.,Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - E Davis Carter
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Salvatore Frasca
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Ghosh PN, Fisher MC, Bates KA. Diagnosing Emerging Fungal Threats: A One Health Perspective. Front Genet 2018; 9:376. [PMID: 30254662 PMCID: PMC6141620 DOI: 10.3389/fgene.2018.00376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/24/2018] [Indexed: 11/17/2022] Open
Abstract
Emerging fungal pathogens are a growing threat to global health, ecosystems, food security, and the world economy. Over the last century, environmental change and globalized transport, twinned with the increasing application of antifungal chemical drugs have led to increases in outbreaks of fungal diseases with sometimes catastrophic effects. In order to tackle contemporary epidemics and predemic threats, there is a pressing need for a unified approach in identification and monitoring of fungal pathogens. In this paper, we discuss current high throughput technologies, as well as new platforms capable of combining diverse data types to inform practical epidemiological strategies with a focus on emerging fungal pathogens of wildlife.
Collapse
Affiliation(s)
- Pria N. Ghosh
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Kieran A. Bates
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| |
Collapse
|
8
|
Mosher BA, Huyvaert KP, Bailey LL. Beyond the swab: ecosystem sampling to understand the persistence of an amphibian pathogen. Oecologia 2018; 188:319-330. [PMID: 29860635 DOI: 10.1007/s00442-018-4167-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 05/12/2018] [Indexed: 10/14/2022]
Abstract
Understanding the ecosystem-level persistence of pathogens is essential for predicting and measuring host-pathogen dynamics. However, this process is often masked, in part due to a reliance on host-based pathogen detection methods. The amphibian pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal) are pathogens of global conservation concern. Despite having free-living life stages, little is known about the distribution and persistence of these pathogens outside of their amphibian hosts. We combine historic amphibian monitoring data with contemporary host- and environment-based pathogen detection data to obtain estimates of Bd occurrence independent of amphibian host distributions. We also evaluate differences in filter- and swab-based detection probability and assess inferential differences arising from using different decision criteria used to classify samples as positive or negative. Water filtration-based detection probabilities were lower than those from swabs but were > 10%, and swab-based detection probabilities varied seasonally, declining in the early fall. The decision criterion used to classify samples as positive or negative was important; using a more liberal criterion yielded higher estimates of Bd occurrence than when a conservative criterion was used. Different covariates were important when using the liberal or conservative criterion in modeling Bd detection. We found evidence of long-term Bd persistence for several years after an amphibian host species of conservation concern, the boreal toad (Anaxyrus boreas boreas), was last detected. Our work provides evidence of long-term Bd persistence in the ecosystem, and underscores the importance of environmental samples for understanding and mitigating disease-related threats to amphibian biodiversity.
Collapse
Affiliation(s)
- Brittany A Mosher
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kathryn P Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Larissa L Bailey
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
9
|
Fisher MC, Ghosh P, Shelton JMG, Bates K, Brookes L, Wierzbicki C, Rosa GM, Farrer RA, Aanensen DM, Alvarado-Rybak M, Bataille A, Berger L, Böll S, Bosch J, Clare FC, A Courtois E, Crottini A, Cunningham AA, Doherty-Bone TM, Gebresenbet F, Gower DJ, Höglund J, James TY, Jenkinson TS, Kosch TA, Lambertini C, Laurila A, Lin CF, Loyau A, Martel A, Meurling S, Miaud C, Minting P, Ndriantsoa S, O'Hanlon SJ, Pasmans F, Rakotonanahary T, Rabemananjara FCE, Ribeiro LP, Schmeller DS, Schmidt BR, Skerratt L, Smith F, Soto-Azat C, Tessa G, Toledo LF, Valenzuela-Sánchez A, Verster R, Vörös J, Waldman B, Webb RJ, Weldon C, Wombwell E, Zamudio KR, Longcore JE, Garner TWJ. Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi. Sci Rep 2018; 8:7772. [PMID: 29773857 PMCID: PMC5958081 DOI: 10.1038/s41598-018-24472-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/23/2018] [Indexed: 11/09/2022] Open
Abstract
Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.
Collapse
Affiliation(s)
- Matthew C Fisher
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK.
| | - Pria Ghosh
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK.,Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom, 2520, South Africa
| | - Jennifer M G Shelton
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - Kieran Bates
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - Lola Brookes
- Institute of Zoology, Regent's Park, London, NW1 4RY, UK
| | - Claudia Wierzbicki
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - Gonçalo M Rosa
- Institute of Zoology, Regent's Park, London, NW1 4RY, UK.,Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Rhys A Farrer
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - David M Aanensen
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK.,Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Cambridgeshire, UK
| | - Mario Alvarado-Rybak
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Republica 440, Santiago, Chile
| | - Arnaud Bataille
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.,CIRAD, UMR ASTRE, F-34398 Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Lee Berger
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Susanne Böll
- Agency for Population Ecology and Nature Conservancy, Gerbrunn, Germany
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC c/Jose Gutierrez Abascal 2, 28006, Madrid, Spain
| | - Frances C Clare
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK
| | - Elodie A Courtois
- Laboratoire Ecologie, évolution, interactions des systèmes amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, 97300, Cayenne, French Guiana
| | - Angelica Crottini
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, 4485-661, Vairão, Portugal
| | | | | | - Fikirte Gebresenbet
- Department of Integrative Biology, Oklahoma State University, 113 Life Sciences West, Stillwater, OK, 74078, USA
| | - David J Gower
- Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Jacob Höglund
- Department of Ecology and Genetics, EBC, Uppsala University, Norbyv. 18D, SE-75236, Uppsala, Sweden
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Thomas S Jenkinson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Tiffany A Kosch
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.,One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Carolina Lambertini
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Anssi Laurila
- Department of Ecology and Genetics, EBC, Uppsala University, Norbyv. 18D, SE-75236, Uppsala, Sweden
| | - Chun-Fu Lin
- Zoology Division, Endemic Species Research Institute, 1 Ming-shen East Road, Jiji, Nantou, 552, Taiwan
| | - Adeline Loyau
- Helmholtz Centre for Environmental Research - UFZ, Department of Conservation Biology, Permoserstrasse 15, 04318, Leipzig, Germany.,ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Sara Meurling
- Department of Ecology and Genetics, EBC, Uppsala University, Norbyv. 18D, SE-75236, Uppsala, Sweden
| | - Claude Miaud
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Biogéographie et Ecologie des vertébrés, Montpellier, France
| | - Pete Minting
- Amphibian and Reptile Conservation (ARC) Trust, 655A Christchurch Road, Boscombe, Bournemouth, Dorset, BH1 4AP, UK
| | - Serge Ndriantsoa
- Durrell Wildlife Conservation Trust, Madagascar Programme, Antananarivo, Madagascar
| | - Simon J O'Hanlon
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, W2 1PG, UK.,Institute of Zoology, Regent's Park, London, NW1 4RY, UK
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | | | - Falitiana C E Rabemananjara
- Durrell Wildlife Conservation Trust, Madagascar Programme, Antananarivo, Madagascar.,IUCN SSC Amphibian Specialist Group-Madagascar, 101, Antananarivo, Madagascar
| | - Luisa P Ribeiro
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Dirk S Schmeller
- Helmholtz Centre for Environmental Research - UFZ, Department of Conservation Biology, Permoserstrasse 15, 04318, Leipzig, Germany.,ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Benedikt R Schmidt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Info Fauna Karch, Université de Neuchâtel, Bellevaux 51, UniMail Bâtiment 6, 2000, Neuchâtel, Switzerland
| | - Lee Skerratt
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Freya Smith
- National Wildlife Management Centre, APHA, Woodchester Park, Gloucestershire, GL10 3UJ, UK
| | - Claudio Soto-Azat
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Republica 440, Santiago, Chile
| | - Giulia Tessa
- Non-profit Association Zirichiltaggi - Sardinia Wildlife Conservation, Strada Vicinale Filigheddu 62/C, I-07100, Sassari, Italy
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Andrés Valenzuela-Sánchez
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Republica 440, Santiago, Chile.,ONG Ranita de Darwin, Nataniel Cox 152, Santiago, Chile
| | - Ruhan Verster
- Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom, 2520, South Africa
| | - Judit Vörös
- Collection of Amphibians and Reptiles, Department of Zoology, Hungarian Natural History Museum, Budapest, Baross u, 13., 1088, Hungary
| | - Bruce Waldman
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Rebecca J Webb
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia
| | - Che Weldon
- Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom, 2520, South Africa
| | - Emma Wombwell
- Institute of Zoology, Regent's Park, London, NW1 4RY, UK
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, Maine, 04469, USA
| | - Trenton W J Garner
- Institute of Zoology, Regent's Park, London, NW1 4RY, UK.,Non-profit Association Zirichiltaggi - Sardinia Wildlife Conservation, Strada Vicinale Filigheddu 62/C, I-07100, Sassari, Italy.,Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
10
|
More S, Angel Miranda M, Bicout D, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Michel V, Raj M, Saxmose Nielsen S, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baláž V, Martel A, Murray K, Fabris C, Munoz-Gajardo I, Gogin A, Verdonck F, Gortázar Schmidt C. Risk of survival, establishment and spread of Batrachochytrium salamandrivorans (Bsal) in the EU. EFSA J 2018; 16:e05259. [PMID: 32625888 PMCID: PMC7009437 DOI: 10.2903/j.efsa.2018.5259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Batrachochytrium salamandrivorans (Bsal) is an emerging fungal pathogen of salamanders. Despite limited surveillance, Bsal was detected in kept salamanders populations in Belgium, Germany, Spain, the Netherlands and the United Kingdom, and in wild populations in some regions of Belgium, Germany and the Netherlands. According to niche modelling, at least part of the distribution range of every salamander species in Europe overlaps with the climate conditions predicted to be suitable for Bsal. Passive surveillance is considered the most suitable approach for detection of Bsal emergence in wild populations. Demonstration of Bsal absence is considered feasible only in closed populations of kept susceptible species. In the wild, Bsal can spread by both active (e.g. salamanders, anurans) and passive (e.g. birds, water) carriers; it is most likely maintained/spread in infected areas by contacts of salamanders or by interactions with anurans, whereas human activities most likely cause Bsal entry into new areas and populations. In kept amphibians, Bsal contamination via live silent carriers (wild birds and anurans) is considered extremely unlikely. The risk-mitigation measures that were considered the most feasible and effective: (i) for ensuring safer international or intra-EU trade of live salamanders, are: ban or restrictions on salamander imports, hygiene procedures and good practice manuals; (ii) for protecting kept salamanders from Bsal, are: identification and treatment of positive collections; (iii) for on-site protection of wild salamanders, are: preventing translocation of wild amphibians and release/return to the wild of kept/temporarily housed wild salamanders, and setting up contact points/emergency teams for passive surveillance. Combining several risk-mitigation measures improve the overall effectiveness. It is recommended to: introduce a harmonised protocol for Bsal detection throughout the EU; improve data acquisition on salamander abundance and distribution; enhance passive surveillance activities; increase public and professionals' awareness; condition any movement of captive salamanders on Bsal known health status.
Collapse
|
11
|
Thomas V, Blooi M, Van Rooij P, Van Praet S, Verbrugghe E, Grasselli E, Lukac M, Smith S, Pasmans F, Martel A. Recommendations on diagnostic tools for Batrachochytrium salamandrivorans. Transbound Emerg Dis 2018; 65:e478-e488. [PMID: 29341499 DOI: 10.1111/tbed.12787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 02/05/2023]
Abstract
Batrachochytrium salamandrivorans (Bsal) poses a major threat to amphibian, and more specifically caudata, diversity. Bsal is currently spreading through Europe, and mitigation measures aimed at stopping its spread and preventing its introduction into naïve environments are urgently needed. Screening for presence of Bsal and diagnosis of Bsal-induced disease in amphibians are essential core components of effective mitigation plans. Therefore, the aim of this study was to present an overview of all Bsal diagnostic tools together with their limitations and to suggest guidelines to allow uniform interpretation. Here, we investigate the use of different diagnostic tools in post-mortem detection of Bsal and whether competition between Bd and Bsal occurs in the species-specific Bd and Bsal duplex real-time PCR. We also investigate the diagnostic sensitivity, diagnostic specificity and reproducibility of the Bsal real-time PCR and show the use of immunohistochemistry in diagnosis of Bsal-induced chytridiomycosis in amphibian samples stored in formaldehyde. Additionally, we have drawn up guidelines for the use and interpretation of the different diagnostic tools for Bsal currently available, to facilitate standardization of execution and interpretation.
Collapse
Affiliation(s)
- V Thomas
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Blooi
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - P Van Rooij
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S Van Praet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E Verbrugghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E Grasselli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Universita di Genova, Genova, Italy
| | - M Lukac
- Department of Poultry Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - S Smith
- Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria
| | - F Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - A Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
12
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Candiani D, Fabris C, Georgiadis M, Zancanaro G, Beltrán-Beck B, Kohnle L, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Batrachochytrium salamandrivorans ( Bsal). EFSA J 2017; 15:e05071. [PMID: 32625359 PMCID: PMC7010176 DOI: 10.2903/j.efsa.2017.5071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Batrachochytrium salamandrivorans (Bsal) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of Bsal to be listed, Article 9 for the categorisation of Bsal according to disease prevention and control rules as in Annex IV, and Article 8 on the list of animal species related to Bsal. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, Bsal can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in sections 4 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (d) and (e) of Article 9(1). The assessment here performed on compliance with the criteria as in Section 1 of Annex IV referred to in point (a) of Article 9(1) is inconclusive. The animal species to be listed for Bsal according to Article 8(3) criteria are species of the families Salamandridae and Plethodontidae as susceptible and Salamandridae and Hynobiidae as reservoirs.
Collapse
|
13
|
Klocke B, Becker M, Lewis J, Fleischer RC, Muletz-Wolz CR, Rockwood L, Aguirre AA, Gratwicke B. Batrachochytrium salamandrivorans not detected in U.S. survey of pet salamanders. Sci Rep 2017; 7:13132. [PMID: 29030586 PMCID: PMC5640657 DOI: 10.1038/s41598-017-13500-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/25/2017] [Indexed: 02/01/2023] Open
Abstract
We engaged pet salamander owners in the United States to screen their animals for two amphibian chytrid fungal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). We provided pet owners with a sampling kit and instructional video to swab the skin of their animals. We received 639 salamander samples from 65 species by mail, and tested them for Bd and Bsal using qPCR. We detected Bd on 1.3% of salamanders (95% CI 0.0053–0.0267) and did not detect Bsal (95% CI 0.0000–0.0071). If Bsal is present in the U.S. population of pet salamanders, it occurs at a very low prevalence. The United States Fish and Wildlife Service listed 201 species of salamanders as “injurious wildlife” under the Lacey Act (18 U.S.C. § 42) on January 28, 2016, a precautionary action to prevent the introduction of Bsal to the U.S. through the importation of salamanders. This action reduced the number of salamanders imported to the U.S. from 2015 to 2016 by 98.4%. Our results indicate that continued precautions should be taken to prevent the introduction and establishment of Bsal in the U.S., which is a hotspot of salamander biodiversity.
Collapse
Affiliation(s)
- Blake Klocke
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, 22030, United States of America. .,Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America. .,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America.
| | - Matthew Becker
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America.,Department of Biology and Chemistry, Liberty University, Lynchburg, Virginia, 24515, United States of America
| | - James Lewis
- Rainforest Trust, Warrenton, VA, 20187, United States of America
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America
| | - Larry Rockwood
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, 22030, United States of America.,Department of Biology, George Mason University, Fairfax, Virginia, 22030, United States of America
| | - A Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, 22030, United States of America
| | - Brian Gratwicke
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America
| |
Collapse
|
14
|
Chytrid fungus infection in zebrafish demonstrates that the pathogen can parasitize non-amphibian vertebrate hosts. Nat Commun 2017; 8:15048. [PMID: 28425465 PMCID: PMC5411484 DOI: 10.1038/ncomms15048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/23/2017] [Indexed: 01/07/2023] Open
Abstract
Aquatic chytrid fungi threaten amphibian biodiversity worldwide owing to their ability to rapidly expand their geographical distributions and to infect a wide range of hosts. Combating this risk requires an understanding of chytrid host range to identify potential reservoirs of infection and to safeguard uninfected regions through enhanced biosecurity. Here we extend our knowledge on the host range of the chytrid Batrachochytrium dendrobatidis by demonstrating infection of a non-amphibian vertebrate host, the zebrafish. We observe dose-dependent mortality and show that chytrid can infect and proliferate on zebrafish tissue. We also show that infection phenotypes (fin erosion, cell apoptosis and muscle degeneration) are direct symptoms of infection. Successful infection is dependent on disrupting the zebrafish microbiome, highlighting that, as is widely found in amphibians, commensal bacteria confer protection against this pathogen. Collectively, our findings greatly expand the limited tool kit available to study pathogenesis and host response to chytrid infection.
Collapse
|
15
|
Dillon MJ, Bowkett AE, Bungard MJ, Beckman KM, O'Brien MF, Bates K, Fisher MC, Stevens JR, Thornton CR. Tracking the amphibian pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans using a highly specific monoclonal antibody and lateral-flow technology. Microb Biotechnol 2017; 10:381-394. [PMID: 27995742 PMCID: PMC5328824 DOI: 10.1111/1751-7915.12464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/27/2016] [Indexed: 11/30/2022] Open
Abstract
The fungus Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a lethal epizootic disease of amphibians. Rapid identification of the pathogen and biosecurity is essential to prevent its spread, but current laboratory-based tests are time-consuming and require specialist equipment. Here, we describe the generation of an IgM monoclonal antibody (mAb), 5C4, specific to Bd as well as the related salamander and newt pathogen Batrachochytrium salamandrivorans (Bsal). The mAb, which binds to a glycoprotein antigen present on the surface of zoospores, sporangia and zoosporangia, was used to develop a lateral-flow assay (LFA) for rapid (15 min) detection of the pathogens. The LFA detects known lineages of Bd and also Bsal, as well as the closely related fungus Homolaphlyctis polyrhiza, but does not detect a wide range of related and unrelated fungi and oomycetes likely to be present in amphibian habitats. When combined with a simple swabbing procedure, the LFA was 100% accurate in detecting the water-soluble 5C4 antigen present in skin, foot and pelvic samples from frogs, newts and salamanders naturally infected with Bd or Bsal. Our results demonstrate the potential of the portable LFA as a rapid qualitative assay for tracking these amphibian pathogens and as an adjunct test to nucleic acid-based detection methods.
Collapse
Affiliation(s)
- Michael J. Dillon
- BiosciencesUniversity of ExeterGeoffrey Pope BuildingExeterEX4 4QDUK
| | | | | | | | | | - Kieran Bates
- Department of Infectious Disease EpidemiologyImperial College LondonLondonSW7 2AZUK
| | - Matthew C. Fisher
- Department of Infectious Disease EpidemiologyImperial College LondonLondonSW7 2AZUK
| | - Jamie R. Stevens
- BiosciencesUniversity of ExeterGeoffrey Pope BuildingExeterEX4 4QDUK
| | | |
Collapse
|