1
|
Zheng Y, Li J, Zheng M, Li Y, Deng X, Zheng Z. Whole genome sequences of 135 "Candidatus Liberibacter asiaticus" strains from China. Sci Data 2024; 11:1018. [PMID: 39300139 PMCID: PMC11413205 DOI: 10.1038/s41597-024-03855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas) is a phloem-limited alpha-proteobacteria causing Citrus Huanglongbing, the destructive disease currently threatening global citrus industry. Genomic analyses of CLas provide insights into its evolution and biology. Here, we sequenced and assembled whole genomes of 135 CLas strains originally from 20 citrus cultivars collected at ten citrus-growing provinces in China. The resulting dataset comprised 135 CLas genomes ranging from 1,221,309 bp to 1,308,521 bp, with an average coverage of 675X. Prophage typing showed that 44 strains contained Type 1 prophage, 89 strains contained Type 2 prophage, 44 strains contained Type 3 prophage, and 34 of them contained more than one type of prophage/phage. The SNP calling identified a total of 5,090 SNPs. Genome-based phylogenetic analysis revealed two major clades among CLas strains, with Clade I dominated by CLas strains containing Type 1 prophage (79/95) and Clade II dominated by CLas strains containing Type 1 or Type 3 prophage (80/95). This CLas genome dataset provides valuable resources for studying genetic diversity and evolutionary pattern of CLas strains.
Collapse
Affiliation(s)
- Yongqin Zheng
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Jiaming Li
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Mingxin Zheng
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - You Li
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fujian, China
| | - Xiaoling Deng
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| | - Zheng Zheng
- State Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
2
|
Estrella-Maldonado H, González-Cruz C, Matilde-Hernández C, Adame-García J, Santamaría JM, Santillán-Mendoza R, Flores-de la Rosa FR. Insights into the Molecular Basis of Huanglongbing Tolerance in Persian Lime ( Citrus latifolia Tan.) through a Transcriptomic Approach. Int J Mol Sci 2023; 24:ijms24087497. [PMID: 37108662 PMCID: PMC10144405 DOI: 10.3390/ijms24087497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Huanglongbing (HLB) is a vascular disease of Citrus caused by three species of the α-proteobacteria "Candidatus Liberibacter", with "Candidatus Liberibacter asiaticus" (CLas) being the most widespread and the one causing significant economic losses in citrus-producing regions worldwide. However, Persian lime (Citrus latifolia Tanaka) has shown tolerance to the disease. To understand the molecular mechanisms of this tolerance, transcriptomic analysis of HLB was performed using asymptomatic and symptomatic leaves. RNA-Seq analysis revealed 652 differentially expressed genes (DEGs) in response to CLas infection, of which 457 were upregulated and 195 were downregulated. KEGG analysis revealed that after CLas infection, some DEGs were present in the plant-pathogen interaction and in the starch and sucrose metabolism pathways. DEGs present in the plant-pathogen interaction pathway suggests that tolerance against HLB in Persian lime could be mediated, at least partly, by the ClRSP2 and ClHSP90 genes. Previous reports documented that RSP2 and HSP90 showed low expression in susceptible citrus genotypes. Regarding the starch and sucrose metabolism pathways, some genes were identified as being related to the imbalance of starch accumulation. On the other hand, eight biotic stress-related genes were selected for further RT-qPCR analysis to validate our results. RT-qPCR results confirmed that symptomatic HLB leaves had high relative expression levels of the ClPR1, ClNFP, ClDR27, and ClSRK genes, whereas the ClHSL1, ClRPP13, ClPDR1, and ClNAC genes were expressed at lower levels than those from HLB asymptomatic leaves. Taken together, the present transcriptomic analysis contributes to the understanding of the CLas-Persian lime interaction in its natural environment and may set the basis for developing strategies for the integrated management of this important Citrus disease through the identification of blanks for genetic improvement.
Collapse
Affiliation(s)
- Humberto Estrella-Maldonado
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, Cong. Javier Rojo Gómez, Tlapacoyan C.P. 93600, Veracruz, Mexico
| | - Carlos González-Cruz
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, Cong. Javier Rojo Gómez, Tlapacoyan C.P. 93600, Veracruz, Mexico
| | - Cristian Matilde-Hernández
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, Cong. Javier Rojo Gómez, Tlapacoyan C.P. 93600, Veracruz, Mexico
| | - Jacel Adame-García
- Tecnológico Nacional de México, Campus Úrsulo Galván, Km 4.5 Carretera Cd. Cardel-Chachalacas, Úrsulo Galván C.P. 91667, Veracruz, Mexico
| | - Jorge M Santamaría
- Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ricardo Santillán-Mendoza
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, Cong. Javier Rojo Gómez, Tlapacoyan C.P. 93600, Veracruz, Mexico
| | - Felipe Roberto Flores-de la Rosa
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Ixtacuaco, Km 4.5 Carretera Martínez de la Torre-Tlapacoyan, Cong. Javier Rojo Gómez, Tlapacoyan C.P. 93600, Veracruz, Mexico
| |
Collapse
|
3
|
Higgins SA, Mann M, Heck M. Strain Tracking of ' Candidatus Liberibacter asiaticus', the Citrus Greening Pathogen, by High-Resolution Microbiome Analysis of Asian Citrus Psyllids. PHYTOPATHOLOGY 2022; 112:2273-2287. [PMID: 35678589 DOI: 10.1094/phyto-02-22-0067-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri, is an invasive insect and a vector of 'Candidatus Liberibacter asiaticus' (CLas), a bacterium whose growth in Citrus species results in huanglongbing (HLB), also known as citrus greening disease. Methods to enrich and sequence CLas from D. citri often rely on biased genome amplification and nevertheless contain significant quantities of host DNA. To overcome these hurdles, we developed a simple pretreatment DNase and filtration (PDF) protocol to remove host DNA and directly sequence CLas and the complete, primarily uncultivable microbiome from D. citri adults. The PDF protocol yielded CLas abundances upward of 60% and facilitated direct measurement of CLas and endosymbiont replication rates in psyllids. The PDF protocol confirmed our lab strains derived from a progenitor Florida CLas strain and accumulated 156 genetic variants, underscoring the utility of this method for bacterial strain tracking. CLas genetic polymorphisms arising in lab-reared psyllid populations included prophage-encoding regions with key functions in CLas pathogenesis, putative antibiotic resistance loci, and a single secreted effector. These variants suggest that laboratory propagation of CLas could result in different phenotypic trajectories among laboratories and could confound CLas physiology or therapeutic design and evaluation if these differences remain undocumented. Finally, we obtained genetic signatures affiliated with Citrus nuclear and organellar genomes, entomopathogenic fungal mitochondria, and commensal bacteria from laboratory-reared and field-collected D. citri adults. Hence, the PDF protocol can directly inform agricultural management strategies related to bacterial strain tracking, insect microbiome surveillance, and antibiotic resistance screening.
Collapse
Affiliation(s)
- Steven A Higgins
- Emerging Pests and Pathogens Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Ithaca, NY 14853
| | - Marina Mann
- Plant Pathology and Plant Microbe Biology Department, Cornell University, Ithaca, NY 14853
| | - Michelle Heck
- Emerging Pests and Pathogens Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Ithaca, NY 14853
- Plant Pathology and Plant Microbe Biology Department, Cornell University, Ithaca, NY 14853
| |
Collapse
|
4
|
Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in " Candidatus Liberibacter asiaticus". Int J Mol Sci 2022; 23:ijms231710024. [PMID: 36077424 PMCID: PMC9456138 DOI: 10.3390/ijms231710024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is the causal agent of citrus Huanglongbing (HLB, also called citrus greening disease), a highly destructive disease threatening citrus production worldwide. A novel Microviridae phage (named CLasMV1) has been found to infect CLas, providing a potential therapeutic strategy for CLas/HLB control. However, little is known about the CLasMV1 biology. In this study, we analyzed the population dynamics of CLasMV1 between the insect vector of CLas, the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) and the holoparasitic dodder plant (Cuscuta campestris Yunck.); both acquired CLasMV1-infected CLas from an HLB citrus. All CLas-positive dodder samples were CLasMV1-positive, whereas only 32% of CLas-positive ACP samples were identified as CLasMV1-positive. Quantitative analyses showed a similar distribution pattern of CLasMV1 phage and CLas among eight citrus cultivars by presenting at highest abundance in the fruit pith and/or the center axis of the fruit. Transcriptome analyses revealed the possible lytic activity of CLasMV1 on CLas in fruit pith as evidenced by high-level expressions of CLasMV1 genes, and CLas genes related to cell wall biogenesis and remodeling to maintain the CLas cell envelope integrity. The up-regulation of CLas genes were involved in restriction–modification system that could involve possible phage resistance for CLas during CLasMV1 infection. In addition, the regulation of CLas genes involved in cell surface components and Sec pathway by CLasMV1 phage could be beneficial for phage infection. This study expanded our knowledge of CLasMV1 phage that will benefit further CLas phage research and HLB control.
Collapse
|
5
|
Li T, Deng Y, Huang J, Liang J, Zheng Y, Xu Q, Fan S, Li W, Deng X, Zheng Z. Bidirectional mRNA transfer between Cuscuta australis and its hosts. FRONTIERS IN PLANT SCIENCE 2022; 13:980033. [PMID: 36072332 PMCID: PMC9441868 DOI: 10.3389/fpls.2022.980033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The holoparasitic dodder (Cuscuta spp.) is able to transfer mRNA and certain plant pathogens (e.g., viruses and bacteria) from the host plant. "Candidatus Liberibacter asiaticus," the phloem-limited causative agent of citrus Huanglongbing, can be transferred from citrus to periwinkle (Catharanthus roseus) mediated by dodder. However, characterization of mRNA transport between dodder and citrus/periwinkle remains unclear. In this study, we sequenced transcriptomes of dodder and its parasitizing host, sweet orange (Citrus sinensis "Newhall") and periwinkle (Catharanthus roseus), to identify and characterize mRNA transfer between dodder and the host plant during parasitism. The mRNA transfer between dodder and citrus/periwinkle was bidirectional and most of the transfer events occurred in the interface tissue. Compared with the citrus-dodder system, mRNA transfer in the periwinkle-dodder system was more frequent. Function classification revealed that a large number of mRNAs transferred between dodder and citrus/periwinkle were involved in secondary metabolism and stress response. Dodder transcripts encoding proteins associated with microtubule-based processes and cell wall biogenesis were transferred to host tissues. In addition, transcripts involved in translational elongation, plasmodesmata, and the auxin-activated signaling pathway were transmitted between dodder and citrus/periwinkle. In particular, transcripts involved in shoot system development and flower development were transferred between the host and dodder in both directions. The high abundance of dodder-origin transcripts, encoding MIP aquaporin protein, and S-adenosylmethionine synthetase 1 protein, in citrus and periwinkle tissues indicated they could play an important biological role in dodder-host interaction. In addition, the uptake of host mRNAs by dodder, especially those involved in seed germination and flower development, could be beneficial for the reproduction of dodder. The results of this study provide new insights into the RNA-based interaction between dodder and host plants.
Collapse
|
6
|
Cai L, Jain M, Munoz-Bodnar A, Huguet-Tapia JC, Gabriel DW. A synthetic 'essentialome' for axenic culturing of 'Candidatus Liberibacter asiaticus'. BMC Res Notes 2022; 15:125. [PMID: 35365194 PMCID: PMC8973516 DOI: 10.1186/s13104-022-05986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE 'Candidatus Liberibacter asiaticus' (CLas) is associated with the devastating citrus 'greening' disease. All attempts to achieve axenic growth and complete Koch's postulates with CLas have failed to date, at best yielding complex cocultures with very low CLas titers detectable only by PCR. Reductive genome evolution has rendered all pathogenic 'Ca. Liberibacter' spp. deficient in multiple key biosynthetic, metabolic and structural pathways that are highly unlikely to be rescued in vitro by media supplementation alone. By contrast, Liberibacter crescens (Lcr) is axenically cultured and its genome is both syntenic and highly similar to CLas. Our objective is to achieve replicative axenic growth of CLas via addition of missing culturability-related Lcr genes. RESULTS Bioinformatic analyses identified 405 unique ORFs in Lcr but missing (or truncated) in all 24 sequenced CLas strains. Site-directed mutagenesis confirmed and extended published EZ-Tn5 mutagenesis data, allowing elimination of 310 of these 405 genes as nonessential, leaving 95 experimentally validated Lcr genes as essential for CLas growth in axenic culture. Experimental conditions for conjugation of large GFP-expressing plasmids from Escherichia coli to Lcr were successfully established for the first time, providing a practical method for transfer of large groups of 'essential' Lcr genes to CLas.
Collapse
Affiliation(s)
- Lulu Cai
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | | | - Jose C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
7
|
Chen Q, Li Z, Liu S, Chi Y, Jia D, Wei T. Infection and distribution of Candidatus Liberibacter asiaticus in citrus plants and psyllid vectors at the cellular level. Microb Biotechnol 2022; 15:1221-1234. [PMID: 34469634 PMCID: PMC8966020 DOI: 10.1111/1751-7915.13914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022] Open
Abstract
Huanglongbing (HLB) is currently considered the most destructive disease of citrus worldwide. In the major citrus-growing areas in Asia and the US, the major causal agent of HLB is the bacterial pathogen Candidatus Liberibacter asiaticus (CLas). CLas is vectored by the Asian citrus psyllid, Diaphorina citri, in a persistent propagative manner. CLas cannot be cultured in vitro because of its unclear growth factors, leading to uncertainty in the infection mechanism of CLas at the cellular level in citrus and in D. citri. To characterize the detailed infection of CLas in the host and vector, the incidence of HLB was first investigated in citrus-growing fields in Fujian Province, China. It was found that the positive association of the level of CLas infection in the leaves correlated with the symptoms. Then antibodies against peptides of the outer membrane protein (OMP) of CLas were prepared and tested. The antibodies OMP-225, OMP-333 and OMP724 showed specificity to citrus plants in western blot analyses, whereas the antibodies OMP-47 and OMP-225 displayed specificity to the D. citri vector. The application of OMP-225 in the immunofluorescence assay indicated that CLas was located in and distributed throughout the phloem sieve cells of the leaf midribs and axile placenta of the fruit. CLas also infected the epithelial cells and visceral muscles of the alimentary canal of D. citri. The application of OMP-333 in immunoelectron microscopy indicated the round or oval CLas in the sieve cells of leaf midribs and axile placenta of fruit as well as in the epithelial cells and reticular tissue of D. citri alimentary canal. These results provide a reliable means for HLB detection, and enlighten a strategy via neutralizing OMP to control HLB. These findings also provide insight for the further investigation on CLas infection and pathogenesis, as well as CLas-vector interaction.
Collapse
Affiliation(s)
- Qian Chen
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Zhiqiang Li
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Shulin Liu
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Yunhua Chi
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Dongsheng Jia
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| | - Taiyun Wei
- Vector‐borne Virus Research CenterFujian Province Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhou, Fujian350002China
| |
Collapse
|
8
|
Yang C, Ancona V. An Overview of the Mechanisms Against " Candidatus Liberibacter asiaticus": Virulence Targets, Citrus Defenses, and Microbiome. Front Microbiol 2022; 13:850588. [PMID: 35391740 PMCID: PMC8982080 DOI: 10.3389/fmicb.2022.850588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLas. In this review, we summarize the main aspects that contribute to the understanding about the mechanisms against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms against CLas and the relationship of above aspects.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| |
Collapse
|
9
|
Zeng C, Wu H, Cao M, Zhou C, Wang X, Fu S. Integrated Analysis of the miRNAome and Transcriptome Reveals miRNA-mRNA Regulatory Networks in Catharanthus roseus Through Cuscuta campestris-Mediated Infection With " Candidatus Liberibacter asiaticus". Front Microbiol 2022; 13:799819. [PMID: 35308338 PMCID: PMC8928264 DOI: 10.3389/fmicb.2022.799819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Citrus Huanglongbing (HLB) is the most devastating disease of citrus caused by the Gram-negative phloem-limited bacterium "Candidatus Liberibacter asiaticus" (CLas). It can be transmitted by the Asian citrus psyllid "Diaphorina citri," by grafting, and by the holoparasitic dodder. In this study, the non-natural host periwinkle (Catharanthus roseus) was infected via dodder (Cuscuta campestris) from CLas-infected citrus plants, and the asymptomatic leaves (AS) were subjected to transcriptomic and small-RNA profiling. The results were analyzed together with a transcriptome dataset from the NCBI repository that included leaves for which symptoms had just occurred (S) and yellowing leaves (Y). There were 3,675 differentially expressed genes (DEGs) identified in AS, and 6,390 more DEGs in S and further 2109 DEGs in Y. These DEGs were commonly enriched in photosystem, chloroplast, membrane, oxidation-reduction process, metal/zinc ion binding on GO. A total of 14,974 DEGs and 336 DE miRNAs (30 conserved and 301 novel) were identified. Through weighted gene co-expression network and nested network analyses, two critical nested miRNA-mRNA regulatory networks were identified with four conserved miRNAs. The primary miR164-NAC1 network is potentially involved in plant defense responses against CLas from the early infection stage to symptom development. The secondary network revealed the regulation of secondary metabolism and nutrient homeostasis through miR828-MYB94/miR1134-HSF4 and miR827-ATG8 regulatory networks, respectively. The findings discovered new potential mechanisms in periwinkle-CLas interactions, and its confirmation can be done in citrus-CLas system later on. The advantages of periwinkle plants in facilitating the quick establishment and greater multiplication of CLas, and shortening latency for disease symptom development make it a great surrogate for further studies, which could expedite our understanding of CLas pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Shimin Fu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
10
|
Zhang L, Li Z, Bao M, Li T, Fang F, Zheng Y, Liu Y, Xu M, Chen J, Deng X, Zheng Z. A Novel Microviridae Phage (CLasMV1) From " Candidatus Liberibacter asiaticus". Front Microbiol 2021; 12:754245. [PMID: 34721359 PMCID: PMC8548822 DOI: 10.3389/fmicb.2021.754245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is an unculturable phloem-limited α-proteobacterium associated with citrus Huanglongbing (HLB; yellow shoot disease). HLB is currently threatening citrus production worldwide. Understanding the CLas biology is critical for HLB management. In this study, a novel single-stranded DNA (ssDNA) phage, CLasMV1, was identified in a CLas strain GDHZ11 from Guangdong Province of China through a metagenomic analysis. The CLasMV1 phage had a circular genome of 8,869 bp with eight open reading frames (ORFs). While six ORFs remain uncharacterized, ORF6 encoded a replication initiation protein (RIP), and ORF8 encoded a major capsid protein (MCP). Based on BLASTp search against GenBank database, amino acid sequences of both MCP and RIP shared similarities (coverage > 50% and identity > 25%) to those of phages in Microviridae, an ssDNA phage family. Phylogenetic analysis revealed that CLasMV1 MCP and RIP sequences were clustered with genes from CLas and “Ca. L. solanacearum” (CLso) genomes and formed a unique phylogenetic lineage, designated as a new subfamily Libervirinae, distinct to other members in Microviridae family. No complete integration form but partial sequence (∼1.9 kb) of CLasMV1 was found in the chromosome of strain GDHZ11. Read-mapping analyses on additional 15 HiSeq data sets of CLas strains showed that eight strains harbored complete CLasMV1 sequence with variations in single-nucleotide polymorphisms (SNPs) and small sequence insertions/deletions (In/Dels). PCR tests using CLasMV1-specific primer sets detected CLasMV1 in 577 out of 1,006 CLas strains (57%) from southern China. This is the first report of Microviridae phage associated with CLas, which expands our understanding of phage diversity in CLas and facilitates current research in HLB.
Collapse
Affiliation(s)
- Ling Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Ziyi Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Minli Bao
- China-United States Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Tao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Fang Fang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yongqin Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yaoxin Liu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Meirong Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Jianchi Chen
- United States Department of Agriculture, San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, Parlier, CA, United States
| | - Xiaoling Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zheng Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Darolt JC, Bento FDMM, Merlin BL, Peña L, Cônsoli FL, Wulff NA. The Genome of " Candidatus Liberibacter asiaticus" Is Highly Transcribed When Infecting the Gut of Diaphorina citri. Front Microbiol 2021; 12:687725. [PMID: 34322103 PMCID: PMC8312247 DOI: 10.3389/fmicb.2021.687725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
The Asian citrus psyllid, Diaphorina citri, is the vector of the bacterium "Candidatus Liberibacter asiaticus" (Las), associated with the devastating, worldwide citrus disease huanglongbing. In order to explore the molecular interactions of this bacterium with D. citri during the vector acquisition process, cDNA libraries were sequenced on an Illumina platform, obtained from the gut of adult psyllids confined in healthy (H) and in Las-infected young shoots (Las) for different periods of times (I = 1/2 days, II = 3/4 days, and III = 5/6 days). In each sampling time, three biological replicates were collected, containing 100 guts each, totaling 18 libraries depleted in ribosomal RNA. Reads were quality-filtered and mapped against the Chinese JXGC Las strain and the Floridian strain UF506 for the analysis of the activity of Las genome and SC1, SC2, and type 3 (P-JXGC-3) prophages of the studied Las strain. Gene activity was considered only if reads of at least two replicates for each acquisition access period mapped against the selected genomes, which resulted in coverages of 44.4, 79.9, and 94.5% of the JXGC predicted coding sequences in Las I, Las II, and Las III, respectively. These genes indicate an active metabolism and increased expression according to the feeding time in the following functional categories: energy production, amino acid metabolism, signal translation, cell wall, and replication and repair of genetic material. Pilins were among the most highly expressed genes regardless of the acquisition time, while only a few genes from cluster I of flagella were not expressed. Furthermore, the prophage region had a greater coverage of reads for SC1 and P-JXGC-3 prophages and low coverage in SC2 and no indication of activity for the lysis cycle. This research presents the first descriptive analysis of Las transcriptome in the initial steps of the D. citri gut colonization, where 95% of Las genes were active.
Collapse
Affiliation(s)
- Josiane Cecília Darolt
- Instituto de Química, Universidade Estadual Paulista “Julio de Mesquita Filho” – UNESP, Araraquara, Brazil
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
| | - Flavia de Moura Manoel Bento
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Bruna Laís Merlin
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Leandro Peña
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
- Instituto de Biologia Molecular y Celular de Plantas – Consejo Superior de Investigaciones Científicas, Universidade Politécnica de Valencia, Valencia, Spain
| | - Fernando Luis Cônsoli
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Nelson Arno Wulff
- Instituto de Química, Universidade Estadual Paulista “Julio de Mesquita Filho” – UNESP, Araraquara, Brazil
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
| |
Collapse
|
12
|
Li T, Zhang L, Deng Y, Deng X, Zheng Z. Establishment of a Cuscuta campestris-mediated enrichment system for genomic and transcriptomic analyses of 'Candidatus Liberibacter asiaticus'. Microb Biotechnol 2021; 14:737-751. [PMID: 33655703 PMCID: PMC7936317 DOI: 10.1111/1751-7915.13773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
‘Candidatus Liberibacter asiaticus’ (CLas) is a phloem‐limited non‐culturable α‐proteobacterium associated with citrus Huanglongbing, a highly destructive disease threatening global citrus industry. Research on CLas is challenging due to the current inability to culture CLas in vitro and the low CLas titre in citrus plant. Here, we develop a CLas enrichment system using the holoparasitic dodder plant (Cuscuta campestris) as an amenable host to acquire and enrich CLas from CLas‐infected citrus shoots maintained hydroponically. Forty‐eight out of fifty‐five (87%) dodder plants successfully parasitized CLas‐infected citrus shoots with detectable CLas by PCR. Among 48 dodders cultures, 30 showed two‐ to 419‐fold CLas titre increase as compared to the corresponding citrus hosts. The CLas population rapidly increased and reached the highest level in dodder tendrils at 15 days after parasitizing citrus shoot. Genome sequencing and assembly derived from CLas‐enriched dodder DNA samples generated a higher resolution than those obtained for CLas from citrus hosts. No genomic variation was detected in CLas after transmission from citrus to dodder during short‐term parasitism. Dual RNA‐Seq experiments showed similar CLas gene expression profiles in dodder and citrus samples, yet dodder samples generated a higher resolution of CLas transcriptome data. The ability of dodder to support CLas multiplication to high levels, as well as its advantage in CLas genomic and transcriptomic analyses, make it an optimal model for further studies on CLas–host interaction.
Collapse
Affiliation(s)
- Tao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China.,Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ling Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China.,Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yunshuang Deng
- Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiaoling Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China.,Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zheng Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, 510642, China.,Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|